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Influence of hydrophobic effects on streaming potential
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We study the influence of hydrophobic effects on streaming potential mediated flow through a narrow
confinement. In a clear departure from the approach used in prior works, we use a phase-field model to capture the
hydrophobicity-induced depletion in the near wall region, and express the variation of viscosity and permittivity
across the interfacial layer in terms of the phase-field variable. We then use these in the determination of the
flow velocity, and highlight the sensitive interplay between the intrinsic length scale of the electrical double
layer and that of the depletion in terms of the variations of an effective normalized viscosity that captures the
electroviscous effect. We expect that this work will be an important step forward in the realistic continuum
modeling of interfacial physics in the particular context of streaming potential mediated flows.
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I. INTRODUCTION

Streaming potential significantly influences pressure-
gradient driven flows, especially in narrow confinements. The
genesis of the streaming potential lies in the establishment
of an electrified interface between a substrate and its incipient
fluid. Such an electrified interface consists of a charged surface
and a distribution of ionic species in its immediate vicinity;
together they are referred to as the electrical double layer
(EDL). The ions having the same charge as that of the surface
are called counterions while the others are called the coions.
The advection of these ionic species with the pressure-gradient
driven flow gives rise to an electric current (streaming current)
if there is a return path for the charges (closed circuit
situation), or an electrical potential (which is called the
streaming potential) if the sensing electrodes are connected
to a high-input impedance voltmeter (open circuit situation).
It is only after an initial transient period that a dynamic
equilibrium is established, when there is zero net ionic current.
The potential difference measured across the flow conduit in
this condition is called the streaming potential [1]. This has
a number of practical applications in diverse areas ranging
from colloid science (for zeta potential measurements) [2,3],
and geophysics [4–7] to physiology [8–10] and membrane
technology [11,12]. The influence of streaming potential has
also been studied in the context of electroviscous effects
and electrokinetic lift [13–22]. For lab-on-a-chip technology,
streaming potential has also been actively investigated for the
fabrication of nanochannel batteries as miniaturized energy
conversion systems [23–29].

It is well known that even without the streaming potential
effects, as the characteristic dimensions of the confinements
through which such pressure-gradient driven flows occur
go down to the micron, submicron, and ultimately to the
nanometer regime, the hydraulic resistances become increas-
ingly stronger. This is because the hydraulic resistance is
proportional to the inverse of the fourth power of the char-
acteristic dimension [30]. Such resistances may be overcome
to a considerable extent through the use of surfaces made of
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hydrophobic materials. Even when overcoming the resistances
is not the primary motivation, the materials used to fabricate
the microfluidic devices do often possess a hydrophobic nature.
Thus, it is important to understand the effects stemming from
such hydrophobic materials and to incorporate them properly
in mathematical models.

It is a common practice to model the hydrodynamics in the
presence of hydrophobic effects through the use of a Navier
slip coefficient at the confining boundaries to represent the
relevant hydrodynamic boundary conditions [31–35]. Such
conditions have been termed as “apparent slip” in the literature
because the classical no-slip boundary condition may still
remain valid at the solid boundary [31]. To understand the
origin of this apparent slip, we need to understand the
mechanism starting from the origin of the hydrophobic effect
itself.

The physical origin of the hydrophobic effects has been
argued in the scientific community for a long time. Despite
ongoing debates over the intricate details, it is generally
agreed upon that hydrophobic effects induce the formation of a
depleted region in the liquid adjacent to the wall [36–48]. This
is because molecules of water (considering the most common
and technologically important instance of a flow medium)
are more entropically favored to form hydrogen bonds with
themselves than with the hydrophobic surfaces. In reality,
therefore, it is the higher affinity for water molecules for
themselves and not any explicit repulsion from the surfaces
(as the term “phobic” might misleadingly suggest) which
leads to the formation of the depleted region [49]. This
wall-adjacent depleted region is what acts as a smoothening
blanket preventing the liquid flow to be inhibited by the surface
asperities, if any.

It is the smooth sailing of the bulk liquid over an ultrathin
cushion of the depleted phase (typically spanning over a
length scale of 10 nm) that gives rise to the apparent slip.
It is important to appreciate, however, that the use of the
Navier slip coefficient betokens an inability to resolve the
steep velocity gradients within the depleted phase. Such a
practice involves the extrapolation of velocity profiles obtained
in the liquid layer above the depleted region down and
beyond the true boundary resulting thereby in an artificial (or,
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apparent) deviation from the no-slip boundary condition that
nevertheless prevails in reality at the wall.

The influence that such hydrophobicity mediated effects
has in micro- and nanoscale flows is particularly strong in
the case of electrokinetic flows. This is because the typical
length scale of the EDL matches well with that of the depleted
phase, leading, in turn, to possibilities of intriguing interplays
between these effects. Recognizing this, huge augmentations
in electro-osmotic transport velocities have been reported
when walls are hydrophobic [50–64]. The possibilities of
exploiting such hydrophobicity-induced slip in enhancing
electrokinetic energy conversion efficiencies have also been
reported [65–67].

As far as the continuum approaches in this reported
literature are concerned, the boundary conditions have been
invariably represented through the specification of a slip length
(which is nothing but the Navier slip coefficient). This slip
length is itself estimated by a two-layer model that has been
extensively investigated by Tretheway and Meinhart [68]. The
discreteness of the two layers in this model indeed provides a
convenient mathematical framework. However, the true picture
of the depletion getting progressively (and smoothly) weaker
with increasing distance from the wall is unfortunately lost in
the mathematical convenience of these discrete layers.

In a distinctive departure from this approach, Chakraborty
et al. [69], building on earlier works of Chakraborty [54,70],
presented a phase-field model which is not based on the
consideration of predefined discrete layers. They compared
the results of hydrophobicity affected electro-osmotic flow
modeled using this phase-field approach with those of the
two-layer model. In this phase-field model, a free-energy
minimization approach is employed. The distribution of the
phase-field variable termed the “order parameter” determines
the relative phase distribution across a smooth profile in a
thermodynamically consistent manner. Crucially, this phase-
field parameter is used to describe the effective interfacial
properties, namely, the viscosity and the electrical permittivity,
instead of preassigning them with discrete values correspond-
ing to either a liquid or a depleted phase. Additionally, this
phase-field model allows us to relate the contact angle directly
with the degree of depletion.

In the work we present here, we use the aforementioned
phase-field model for streaming potential mediated flows.
Notably, we consider the smooth variation of viscosity and
permittivity profiles in the determination of the streaming
potential mediated flow velocity. The remaining part of this
article is organized as follows. In Sec. II A, we present
the phase-field model for the description of the interfacial
structure in terms of the profile of the order parameter
variable. We then express the variation of the viscosity and the
permittivity as a linear function of the order parameter profile.
In Sec. II B, we use the profiles obtained for the viscosity and
the permittivity for determining the streaming potential field,
and the flow velocity arising as a combined consequence of the
pressure-gradient driven and the induced streaming potential.
We identify an effective normalized viscosity to represent
the overall flow character. In Sec. III, we compare different
flow situations in terms of this effective normalized viscosity,
and in doing so delineate the intricate interplay between the
length scale of the EDL and the length scale of the depleted

region. We also highlight the influence that the strength of the
hydrophobicity has on the overall flow character by studying
the variation with different contact angles. In Sec. IV, we draw
conclusions based on our findings reported in this work.

II. MODEL DESCRIPTION

We consider the model problem of streaming potential
mediated flow of a binary electrolyte with symmetric valences
of the cations ( + ) and the anions (−) through a slit channel
of height 2H (0 � y � 2H ), x being the axial direction, and
y being the direction transverse to the walls. A pressure
gradient applied across the length of the channel establishes
a unidirectional flow through it. The consequent streaming
of the ions induces a backstreaming potential so that the
resultant flow is a combined consequence of the pressure
gradient and the electric field associated with the streaming
potential. The electrical permittivity and the dynamic viscosity
which are necessary for the mathematical description of the
hydrodynamics vary along the y direction because of the
depletion in the liquid adjacent to the hydrophobic wall. We
capture this variation based on the distribution of an order
parameter variable, which, in turn, is resolved by a phase-field
model. In the following we describe this phase-field model.

A. Phase-field model

The understanding which motivates the use of the phase-
field model is that the depletion of solvent molecules in
the vicinity of a hydrophobic substrate is basically a phase-
separation phenomenon of a single component fluid into its
vapor and liquid phases. The fluid is considered to be a binary
mixture of liquid and vapor phases, and this undergoes a
demixing process under the influence of hydrophobic effects.
We track the spatial variation of the composition of this binary
mixture with an order parameter variable φ = (n1 − n2)/(n1 +
n2) where ni are the number densities of the two separating
phases. In our study, φ = −1 represents the bulk liquid phase
and φ = 1 represents the vapor phase, with the consideration
that the average location of a smeared boundary between the
two is located at the position corresponding to φ = 0.

For the phase-field model development, we closely follow
the work of Andrienko et al. [71] and Chakraborty et al.
[69] using the same underlying restrictions and assumptions,
among which the most significant artifice involves calculating
the equilibrium order parameter variation assuming that the
flow does not disturb that variation. The description of the
demixing thermodynamics is initiated by first considering a
free-energy functional which represents the excess Ginzburg-
Landau free energy for a binary mixture, and is given by [72]

��(φ) =
∫ ∞

0

[
k

2

(
dφ

dy

)2

+ �ω(φ)

]
dy + �S, (1)

where �ω(φ) = ω(φ) − ω(φ0) − (φ − φ0)(∂ω/∂φ)φ0 is the
free energy required to produce a unit volume of uniform
fluid of composition φ from a large reservoir at composition
φ0. Here, 0.5k(dφ/dy)2 is the penalty for the presence of the
interfacial gradient, and �S is the surface energy that accounts
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for the interactions between the substrate and the fluid.
Noting that for the two phases (liquid and vapor) to coexist
there should be two minima in the free energy, we select a
double-well shaped form of �ω following Chakraborty [70]
and Badalassi et al. [73]:

�ω = B

4

(
φ −

√
A

B

)2 (
φ +

√
A

B

)2

, (2)

where A and B are two positive constants such that
A,B ∼ kBTC with TC being the critical temperature for
the liquid-vapor coexistence [70]. The double-well shape is
clearly shown by this form of �ω, and the minima occur at
φeq = +√

A/B, − √
A/B, which represent, respectively, the

bulk order parameter values for the vapor and the liquid.
We note that the requirement of having two minima is

a fundamental one in demixing phenomena because it is
a necessity for the existence of two stable phases. The
double-well potential provides the simplest realization (in
mathematical terms) of such a requirement. The basis of the
double-well potential lies in the van der Waals equation of
state. In the context of phase-separation problems including
liquid-vapor phase separation, this double-well form has been
a preferred choice in many previous works [74–84]. Of course,
to take into account a generic demixing phenomenon, other
forms of the potential also exist in the literature, and a
comprehensive discussion of such forms is presented by Chen
[85]. Interestingly, even in this comprehensive review [85], the
alternative forms of the potential are presented as variations
on the double-well potential.

In our subsequent analysis, we adopt the principle of free-
energy minimization to obtain an equilibrium order parameter
profile, which we then apply to determine the streaming
potential fluid flow. We use the equilibrium order parameter
profile with the understanding that the unidirectional flow
does not disturb this profile. Such an understanding follows
immediately from the translational invariance of the conditions
on the wall (which are perfectly parallel to each other), and is
not dependent on any “weak flow” consideration.

Towards a full-fledged description of the interfacial struc-
ture, we note that the minimization of the free-energy func-
tional Eq. (1) results in the following Euler-Lagrange equation:

d�ω

dφ
− d

dy

[
k

2

d

dφ′

{(
dφ

dy

)2
}]

= 0, (3)

so that

�ω = k

2

(
dφ

dy

)2

+ constant, (4)

together with the boundary condition at y = 0:

d�S

dφ
− d

dφ′
(

k

2
φ′2

)
= 0.

This implies

d�S

dφ
− k

dφ

dy

∣∣∣∣
y=0

= 0. (5)

In the bulk, �ω = dφ/dy = 0, so that from Eq. (4), we have

�ω = k

2

(
dφ

dy

)2

,

or,

dφ

dy
= ±

√
2�ω

k
. (6)

We obtain the profile for the order parameter from Eqs. (3)
and (5). If we are to use the boundary condition given by
Eq. (6), we need a specification of �S in terms of the short-
range surface field and the surface enhancement parameters
[86]. However, here we take a different approach following
Chakraborty [70] and Chakraborty et al. [69] in order to
make the interfacial electrohydrodynamics to be explicitly
dependent on the substrate wettability. This necessitates
establishing a link between the interfacial order parameter
variations with the contact angle, θw. It is important to note
here that the contact angle is simply a means to characterize the
hydrophobicity of the substrate. This is the contact angle that
would have been formed had we placed a droplet of the same
liquid on that same substrate.

We note that the equilibrium free energy is nothing but the
minimum value of the functional Eq. (1). Thus,

γ = �min = �S +
∫ y2

y1

k

2

(
dφ

dy

)2

2dy. (7)

Changing the variable of integration from y to φ, we get

γ = �S +
∫ φ0

φS

(
dφ

dy

)2
dy

dφ
dφ

= �S +
∫ φ0

φS

√
2k�ωdφ. (8)

This allows us to express the surface free energies of the
solid-vapor, solid-liquid, and liquid-vapor for a droplet-solid-
vapor system as

γsv = �S +
∫ φS

β

√
2k�ωdφ, (9a)

γsl = �S +
∫ −β

φS

√
2k�ωdφ, (9b)

γlv =
∫ −β

β

√
2k�ωdφ. (9c)

Importantly, no solid surface contributions feature in
Eq. (9c). Now, following Pismen and Pomeau [87], we use
the celebrated Young’s equation for the contact angle, as given
by cos θw = (γsv − γsl)/γlv , to obtain

cos θw = φ3
S − 3β2φS

2β3
, (10)

where β = √
A/B. Thus, the boundary condition at the wall,

y = 0, becomes

φ|y=0 = φS = g (θw; β) , (11)

where g is a function of the contact angle θw and the
parameter β.
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We may now obtain the profile of the phase-field variable
from Eq. (3). Together with the form of �ω adopted in Eq. (2),
we then have

d2φ

dȳ2
− BH 2

k
(φ2 − β2)φ = 0. (12)

where ȳ = y

H
. For the boundary conditions, we have Eq. (11)

and the bulk condition:

φ(ȳ = 1) = −β. (13)

We note that k ∼ Bξ 2 where ξ is a measure of the
interfacial thickness (up to a multiplicative constant). Then,
the coefficient of the nonlinear term in Eq. (12) becomes C2 =
H 2/ξ 2 � 1. In an alternative notation, if we use ε = 1/C �
1, Eq. (12) is clearly perceived to be in the form of a singular
perturbation problem, where the physical manifestation of
the mathematical “boundary layer” is through the interfacial
layer where the depletion occurs. The interfacial thickness
is clearly O (ε), and it is important to understand that the
boundary condition given by Eq. (13) is valid for small ε

only. We solve Eq. (14) using a control volume based finite
difference approach, together with a continuation technique
[88] to overcome the difficulties associated with ε � 1 or,
equivalently C � 1.

Having obtained the profile for the order parameter variable,
we now describe the interfacial variations of the viscosity and
the permittivity in terms of φ. Without sacrificing the essential
physics, we adopt a simple linearized functional dependence,
as described below:

ε = εv

1 + φ

2
+ εl

1 − φ

2
, (14)

η = ηv

1 + φ

2
+ ηl

1 − φ

2
. (15)

In this context, we mention that the dynamic viscosity and
the electrical permittivity of the solvent are both material
properties, and these are but an upscaled continuum level
manifestation of the mechanical and electrical interactions
among the solvent molecules. Therefore, it is reasonable to
expect that these properties will have a direct dependence on
the actual number of molecules present. From the perspective
of our phase-field formalism, the order parameter variable
represents the relative distribution of the number density of
the liquid and “depleted liquid” phases of the same fluid
molecules. Thus, it stands to reason that both the dynamic
viscosity and the electrical permittivity of the fluid should be
proportional to the variation of this order parameter variable.
The linear variation we adopt in Eqs. (14) and (15) ensures that
the essence of the variations in the number density (captured
by the order parameter variable) is captured directly in the
variation of these two physicochemical properties of the fluid.
Such linear form has also been used in previous works (see,
for instance, the works by Andrienko et al. [71], Ding and
Spelt [89], Ding et al. [90], Borcia and Bestehorn [91], Park
et al. [92], and Chakraborty et al. [69]). If instead, we were
to choose any nonlinear dependence, it would necessarily
imply the imposition of ad hoc variations digressing from the
underlying variations in the fluid. We also note that the profile
of the permittivity obtained thus is qualitatively similar to
the sigmoidal variation with spatial coordinate as assumed by

Le and Zhang [93]. Needless to say, the permittivity variation
(as we consider here) does indeed stand on some physically
justifiable ground, and, hence, is more natural in contrast to the
form assumed by Le and Zhang [93]. An added feature of our
approach is that the variation of ε has an explicit dependence
on the degree of substrate wettability (through the specification
of θw). Nevertheless, we do note that both these variations may
be found to be practically superimposed on each other through
suitable matching of ancillary parameters. In this context,
we also note that the decrements in permittivity values with
solvent depletion in the proximity of hydrophobic substrates
have been extensively discussed by Mishchuk [94,95].

B. Model of the streaming potential flow

The potential distribution ψ(y) is determined from the
Poisson-Boltzmann formalism described with two critical dif-
ferences from the traditional approach. First, the permittivity ε

is now considered as a function of y. Second, the depletion is
considered to have an explicit influence on the electrochemical
potential (setting the gradient of which to zero determines the
ionic number density profiles), and this influence is captured
through an extra “potential” term that is dependent on the local
fluid density, following Joly et al. [52]: μ± = kBT ln n± ±
zeψ + Vext, where Vext = −kBT ln ρ(z)

ρl
, with ρ(z) being the

local fluid density, and ρl being the bulk value of the liquid
density (far from the wall). The physical origin of this simple
modification is based on the understanding that the distribution
of the ionic species is not only a function of the electrical
interactions but is also dependent on the fluid number density
distribution itself. This fluid distribution represented by the
local density varies linearly with the order parameter too so
that ρ(z)

ρl
= 1+φ

2 ρratio + 1−φ

2 (where ρratio is the ratio of the bulk
value of the vapor density to that of the liquid density). From
this particular form of the electrochemical potential, we obtain
a modified version of the Poisson-Boltzmann equation as

∂

∂y

(
ε
∂ψ

∂y

)
= 2n0ez

ρ(z)

ρl

sinh

(
ezψ

kBT

)
, (16)

where n0 is the bulk value of the number density of the ions,
e is the elementary charge, z the valence (z+ = −z− = z), kB

the Boltzmann constant, and T the absolute temperature. We
use the nondimensionalization scheme:

ỹ = y

H
, ψ̃ = ezψ

kBT
, ε̃ = ε

εl

, (17)

so that Eq. (16) becomes

∂

∂ỹ

(
ε̃
∂ψ̃

∂ỹ

)
= K2γ sinh(ψ̃), (18)

where K = H/λl with λl =
√

εlkBT /2n0e2z2 being the
Debye screening length based on the bulk liquid permittivity
value, and γ = ρ(z)/ρl . Equation (18) is to be solved with the
boundary conditions

ψ̃ = ζ̃ at ỹ = 0, and
∂ψ̃

∂ỹ
= 0 at ỹ = 1. (19)

A finite volume based numerical approach is used to obtain
the profile for ψ̃ [96]. The hydrodynamics is determined by
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the equation

0 = −dp

dx
+ ∂

∂y

(
η
∂u

∂y

)
+ ρeES, (20)

where ρe is the charge density and is given by the Poisson
equation as ρe = −∂y(ε∂yψ), and ES is the streaming potential
(yet to be determined). Integrating Eq. (20) once with respect
to y and using the condition

∂ψ

∂y
= 0 and

∂u

∂y
= 0 at y = H, (21)

we have

0 = −dp

dx
(y − H ) + η

∂u

∂y
− ε

∂ψ

∂y
ES. (22)

Integrating once again from y = 0 to a general point, we have,
after setting u (y = 0) = 0,

u = dp

dx

∫ y

0

Y − H

η
dξ + ES

∫ y

0

ε

η

∂ψ

∂Y
dY ,

or,

u = −H 2

2ηl

dp

dx
ũp + εlζES

ηl

ũE, (23)

where Y is a dummy variable used to represent the integration
to the general point y. In Eq. (23),

ũp =
∫ ỹ

0
2

1 − Ỹ

η̃
dỸ , (24)

and

ũE =
∫ ỹ

0

ε̃

η̃ζ̃

∂ψ̃

∂Ỹ
dỸ , (25)

where Ỹ = Y/H , η̃ = η/ηl , and ζ̃ = ezζ/kBT .
The condition for finding the as-yet-unknown value of the

streaming potential field is that the total ionic current across
the cross section must be zero [97]:

I = ez

∫ 2H

0
(n+u+ − n−u−) dy = 0, (26)

from which we obtain

ẼS = ES

E0
= I1

I2 + R̄I3
, (27)

where

E0 = − f H 2

2ezηl

dp

dx
, (28)

I1 =
∫ 2

0
sinh(ψ̃)ũpdỹ, (29)

I2 =
∫ 2

0
cosh(ψ̃)dỹ, (30)

I3 = ζ̃

4

∫ 2

0
sinh(ψ̃)ũEdỹ, (31)

and

R̄ = 4f εlkBT

e2z2ηl

. (32)

Using these in the expression of the velocity from Eq. (23)
we have

ũ = ũp − 1
4 R̄ζ̃ ẼSũE, (33)

where u has been nondimensionalized by (−H 2

2ηl

dp

dx
).

The gross effect of the streaming potential is to retard the
flow. This might be viewed as an effective increase in viscosity.
To study this, we find an expression for the effective viscosity
considering only a pressure-gradient driven flow (with no
electrokinetic effects) that gives the same volumetric flow rate
as that due to the velocity profile in Eq. (33). Thus, equating
the volumetric flow rates we have

−H 2

2ηl

dp

dx

∫ 2

0
ũ dỹ =

∫ 2

0
ũPGdỹ,

where ũPG = − H 2

2ηeff

dp

dx
(2ỹ − ỹ2), so that

η̃eff = ηeff

ηl

= 4

3Q̃
, (34)

where Q̃ = ∫ 2
0 ũ dỹ.

III. RESULTS AND DISCUSSIONS

In this section, we first present a typical profile of the order
parameter variable, and then study the overall flow structure
in terms of the normalized effective velocity from Eq. (34),
looking at its variation with the degree of hydrophobicity (rep-
resented in terms of the contact angle value), and delineating
the interplay between the length scale of the EDL structure
and that of the hydrophobicity mediated depletion. For the
generation of our results we fix the values of ρratio = ρv/ρl at
0.001, εratio = εv/εl at 0.8 (following Le and Zhang [93]) and
ηratio = ηv/ηl at 1/3 (following Andrienko et al. [71]).

We illustrate a typical instance of the variation in the order
parameter variable φ in the direction normal to the wall. For
this, we choose β = 1 [54,69,70] and ε2 = (ξ/H )2 = 0.01.
From the profile in Fig. 1, we observe that the value of φ

decreases from the surface value, φS , that corresponds to θw =
140◦, and smoothly transitions into the bulk undepleted liquid
value (φ = −1). We also observe the variation of the surface
value φS with the contact angle θw in the inset of Fig. 1.
The higher the value of φS (corresponding to higher values of
the contact angle), the closer the region just adjacent to the
surface is to the “bulk” vapor value. This is consistent with
progressively stronger hydrophobic effects of the wall with
increasing value of the contact angle.

Figures 2(a)–2(d) show the variation of the effective
viscosity normalized by the bulk value of the liquid viscosity,
η̃eff = ηeff/ηl with the contact angle corresponding to the
values K = 5, 10, 25, 50, each panel showing the variations
for two different values of the nondimensional zeta potential,
ζ̃ = −1, −4. The general trend observed in all the panels
is that the effective viscosity decreases for both values of
the nondimensional zeta potential with increasing value of
the contact angle, i.e., with stronger hydrophobic effects.
This may be clearly attributed to the fact that such stronger
hydrophobic effects lead to stronger depletion of the liquid
from the interfacial region. It is important to note that “stronger
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FIG. 1. (Color online) Variation of the phase-field variable φ in
the direction normal to the wall for θw = 140◦ and ε2 = (ξ/H )2 =
0.01. The inset shows how the wall boundary condition for φ varies
with increasing values of the contact angle which in turn represent
higher degrees of hydrophobicity of the substrate.

depletion” does not mean that the extent of the depleted region
increases with increase in the value of the contact angle. Rather,
as shown in Fig. 1, higher contact angle value implies higher
value of φS indicating that the region just adjacent to the wall
becomes progressively closer to the bulk vapor region. That is,
within the same length scale of the depletion, the effects of the
bulk vapor with lower viscosity become more pronounced. It
is this stronger depletion with higher values of the contact
angle that leads to lower overall resistances to the fluid
flow.

Beyond this, we note two subtle points which may be
observed across the four panels. First, it is only for the first
two panels (corresponding to K = 5, 10) that the normalized
effective viscosity shows values higher than 1 for certain
regimes. Second, the discrepancy between the values of
the effective normalized viscosity for ζ̃ = −1 and ζ̃ = −4
become gradually smaller as the value of K increases from
panel (a) to panel (d). To explain these observations, it is
important to consider the values of K in concert with the
value of H/ξ . Indeed, for the entire set of results shown in
Fig. 2, the value of H/ξ is kept fixed at 10. This immediately
indicates that there are three distinct regimes of interest shown
in the four panels. In Fig. 2(a), K = H/λl = 5, implying
λl > ξ . This means that the characteristic thickness of the EDL
is higher than the depleted region length scale. In contrast,
for Fig. 2(b), we have K = H/λl = 10 implying λl = ξ . In
Figs. 2(c) and 2(d), however, we have K = H/λl = 25, 50,
respectively, implying that for both these cases, λl < ξ . It is
the interplay between the two length scales which gives rise
to the two subtle observations pointed out earlier. When the
length scale of the EDL is higher than that of the depleted
region, the electrokinetic effects have a tendency to dominate.
This is particularly manifested in Fig. 2(a) corresponding to
the higher value of the zeta potential (ζ̃ = −4), as attributed to

a well-established fact that streaming potential effects become
progressively stronger with higher values of the zeta potential.
Thus, for the entire regime of the contact angle (from 110◦
to 160◦), the normalized effective viscosity is higher than
1 indicating that the inhibition to the flow arising from the
electrokinetic component of the flow overwhelms whatever
little decrease in flow resistance is offered by the depleted
region. It is, of course, noteworthy that for ζ̃ = −1 when
the streaming potential effects are relatively weaker, even the
higher extent of the EDL is not sufficient to overwhelm
the hydrophobic effects, and that results in values of the
normalized effective viscosity being less than 1 for all values
of the contact angle.

Figure 2(b) shows a clear manifestation of the aforemen-
tioned interplay between the length scales of the EDL and the
depleted region, corresponding to the case with ζ̃ = −4. For
relatively lower values of the contact angle, the electrokinetic
effects continue to overwhelm the hydrophobic effects as in the
previous case. However, beyond θw ∼ 140◦, the normalized
effective viscosity falls below unity. This means that when the
length scales of the EDL and the depleted region are equal, the
sensitive interplay between them gets manifested such that for
sufficiently high value of the contact angle, the hydrophobic
effects countervail the inhibiting influence of the streaming
potential. A value of η̃eff less than 1 means that even though
the back electrokinetic flow induced by the streaming potential
field may be present, from the perspective of the overall flow
rate, the effective resistance to the fluid is still less than what it
would have been had there been only a pressure-gradient driven
flow with no hydrophobicity-induced depletion. Again, just as
in Fig. 2(a), the relatively weaker influence of the streaming
potential corresponding to ζ̃ = −1 ensures that η̃eff is less than
1 throughout.

In contrast, for Figs. 2(c) and 2(d), the length scale of the
EDL is less than that of the depleted region. This ensures
that the hydrophobic effects are consistently manifested in
being more resistant to the inhibiting effects of the streaming
potential so that the value of the effective normalized viscosity,
η̃eff is less than 1 in the entire regime of interest of the contact
angle and for both values of the dimensionless zeta potential,
ζ̃ = −1, 4.

The second observation that the discrepancy in the values
of the effective normalized viscosity for ζ̃ = −1 and ζ̃ = −4
becomes progressively smaller from Fig. 2(a) to Fig. 2(d)
can be easily explained again on the basis of the interplay
between the length scales of the EDL and the depleted region.
When λl > ξ [Fig. 2(a)], the influence of the electrokinetic
effects due to the streaming potential are relatively stronger
than the hydrophobic effects. So, even though the hydrophobic
effects are strong enough to countervail the inhibiting influence
for ζ̃ = −1 (manifested in η̃eff being less than 1), the
distinction between ζ̃ = −1 and ζ̃ = −4 is pronounced. As
the EDL length scale decreases in the other three panels,
it is the influence of the hydrophobic effects that start
taking precedence over the electrokinetic effects. Although
differences between ζ̃ = −1 and ζ̃ = −4 do get manifested,
such differences are progressively smaller indicating that the
overall flow tends towards a situation where the sole effect on
the primary pressure-gradient driven flow is that due to the
hydrophobicity-induced depletion.
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FIG. 2. (Color online) Variation of the effective viscosity normalized by the bulk liquid viscosity, η̃eff = ηeff/ηl , with the contact angle
for ζ̃ = −1 (represented by the blue solid lines), and ζ̃ = −4 (represented by the red dashed lines) corresponding to K = 5, 10, 25, 50,
respectively, in panels (a)–(d). The insets in each panel show the variation of the dimensionless streaming potential field with the contact angle.

Another important observation relates to the insets of
Figs. 2(a)–2(d) where the variation of the nondimensional
streaming potential field is shown corresponding to the same
regime of the contact angle for which the effective normalized
viscosities are shown, and also for the same two values of the
dimensionless zeta potential. The critical thing to note is that
while in Fig. 2(a) the value of the nondimensional streaming
potential field corresponding to ζ̃ = −1 is higher in magnitude
than the one corresponding to ζ̃ = −4, in Figs. 2(b)–2(d),
the trend is consistently opposite. This might apparently
indicate that the streaming potential effects should have been
weaker for ζ̃ = −4 compared to ζ̃ = −1. However, such a
possibility is precluded by the fact that in the expression of
the dimensionless velocity component due to the streaming
potential effects [Eq. (25)], the distribution of the electrokinetic
potential (associated with the distribution of the ions) has a
strong role to play. Thus, in the expression of the overall
velocity, Eq. (33), there is the influence of the streaming
potential field as well as that of this potential distribution
that determines the structure of the EDL. Since the influence
of this latter potential distribution (associated with the ionic
distribution in the EDL) propagates more into the bulk for
ζ̃ = −4 than for ζ̃ = −1, the overall electrokinetic effects
are indeed stronger for ζ̃ = −4. Interestingly, this discussion

again points to the paramount importance that the length scale
of the EDL has in determining the overall character of the flow.

An additional important point to note regarding the insets
in Fig. 2 is that the magnitude of the streaming potential
field increases corresponding to both ζ̃ = −1 and ζ̃ = −4
as the value of the contact angle increases. This increasing
trend is again in apparent conflict with the decreasing trend
of the effective normalized viscosity from which one might
naı̈vely assume that the streaming potential field should have
been progressively weaker. This, however, may be easily
explained if we note that the higher hydrophobicity implied
by higher values of the contact angle ensure that the bulk
vapor value is more strongly manifested in the wall-adjacent
region. Thus, even with the length scales held fixed, the degree
of hydrophobicity has a distinctive influence in determining
the overall character of the flow. This reasoning is a close
counterpart of the transitioning trend of η̃eff , changing from
values higher than 1 to lower than 1, observed in Fig. 2(b)
corresponding to the case of ζ̃ = −4. The higher values of
the streaming potential field with increase in the value of
the contact angle can be easily explained on the basis of the
fact that higher hydrophobicity leads to augmentations in the
base flow (driven by the pressure gradient) which, in turn,
results in higher streaming current of the ions. Since the
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streaming potential field directly (and strongly) depends on
this streaming current, its magnitude increases with increasing
hydrophobicity.

IV. CONCLUSIONS

In this study, we have attempted to capture the effects of
hydrophobicity on streaming potential mediated flows through
narrow conduits. In a clear departure from prior studies where
hydrophobic effects are relegated to the boundary through the
specification of a slip length, we have presented a phase-field
model to capture the realistic picture of hydrophobicity-
induced depletion of the fluid in the wall-adjacent region.
This depletion is represented through the phase-field variable
(alternatively, termed as order parameter). The viscosity and
the permittivity are expressed in terms of this order param-
eter so that the smooth variations in these physicochemical
parameters are realistically captured. These smooth variations
are then incorporated in the framework for the determination
of the streaming potential field and the velocity arising as a
combined consequence of the primary pressure-gradient drive
and the self-consistently induced streaming potential. Since

the overall effect of the streaming potential is to inhibit the
pressure-gradient driven flow (known as the electroviscous
effect), and since the total volumetric flow rate is of tremendous
importance in practical devices, we express the gross nature of
the flow in terms of an effective viscosity that would result in
the same (reduced) volumetric flow rate had there been only a
pressure-gradient driven flow (with no electrokinetic effects).
The variations of this effective viscosity (normalized by the
bulk liquid viscosity) with the contact angle (representing
the degree of hydrophobicity of the wall) unveil a sensitive
interplay between the length scale of the EDL structure and
that of the hydrophobicity-induced depletion. Of particular
importance to note is that prior to our investigation, it had
not been possible to study such interplays, particularly in the
context of streaming potential mediated flows. We expect that
this study will be an important step forward in more realistic
modeling of streaming potential mediated flows, especially as
the characteristic dimension of the confinements goes down to
the submicron and even nanometric scales. We also hope that
it will help in the design of practical devices, particularly those
concerned with electrokinetic energy conversion.
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