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Bifurcations and dynamics in convection with temperature-dependent viscosity
in the presence of the O(2) symmetry
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We focus on the study of a convection problem in a two-dimensional setup in the presence of the O(2) symmetry.
The viscosity in the fluid depends on the temperature as it changes its value abruptly in an interval around a
temperature of transition. The influence of the viscosity law on the morphology of the plumes is examined for
several parameter settings, and a variety of shapes ranging from spout- to mushroom-shaped are found. We
explore the impact of the symmetry on the time evolution of this type of fluid, and we find solutions which are
greatly influenced by its presence: at a large aspect ratio and high Rayleigh numbers, traveling waves, heteroclinic
connections, and chaotic regimes are found. These solutions, which are due to the presence of symmetry, have
not been previously described in the context of temperature-dependent viscosities. However, similarities are
found with solutions described in other contexts such as flame propagation problems or convection problems
with constant viscosity also in the presence of the O(2) symmetry, thus confirming the determining role of the
symmetry in the dynamics.
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I. INTRODUCTION

This paper addresses the numerical study of convection at
infinite Prandtl number in fluids in which viscosity strongly
depends on temperature in the presence of the O(2) symmetry.
Convection in fluids with temperature-dependent viscosity
is of interest because of its importance in engineering and
geophysics. Linear and quadratic dependencies of the viscosity
on temperature have been discussed [1–4], but in order
to address the Earth’s upper mantle convection, in which
viscosity contrasts are of several orders of magnitude, a
stronger dependence with temperature must be considered.
This problem has been approached both in experiments [5–8]
and in theory [9–14]. In these contexts, the dependence
of viscosity with temperature is expressed by means of
an Arrhenius law. In [10], the exponential dependence is
discussed as an approach to the Arrhenius law by means
of a Taylor series around a reference temperature. This is
also called the Frank-Kamenetskii approximation (see [15]).
Viscosity has also been considered when it depends on other
magnitudes such as depth [16,17], a combination of both
depth and temperature [17], or pressure [18]. However, it
is commonly accepted [18,19] that in the Earth’s interior,
viscosity depends most significantly on temperature. The usual
approach in numerical models of the mantle [12,17,20] is to
consider constant thermal conductivity. This approach has also
been verified in fluid experiments seeking to model mantle
convection [7]. However, studies also exist in which variations
on thermal conductivity are considered [21–23].

Here, we focus on the study of a fluid in which the
viscosity changes abruptly in a temperature interval around
a temperature of transition. This defines a phase change over
a mushy region, which expresses the melting of minerals or
other components. Melting and solidification processes are
important in magma chamber dynamics [24,25], in volcanic
conduits [26,27], in the formation of chimneys in mushy layers
[28], in metal processing in industry (see, for example, [29]),
etc. In phase transitions, other fluid properties in addition to

viscosity may change abruptly, such as density or thermal
diffusivity. However, in this study we consider solely the study
of effects due to the variability of viscosity, since consideration
of the effect of simultaneous variations on all the properties
prevents a focused understanding of the exact role played
by each one of these properties. Viscosity is a measure of
fluid resistance to gradual deformation, and in this sense very
viscous fluids are more likely to behave rigidly when compared
to less viscous fluids. When examining the proposed transition
with temperature, we focus on the global fluid motion when
some parts of it tend to be more rigid than others. Disregarding
the variations on density in this transition moves us away
from instabilities caused by abrupt density changes such as
the Rayleigh-Taylor instability, in which a denser fluid over a
lighter one tends to penetrate it by forming a fingering pattern.
A recent article by Ulvrová et al. [30] deals with a problem
similar to ours, but takes into account variations both in density
and in viscosity. Thermal conductivity effects are related to
the relative importance of heat advection versus diffusion. In
this way, diffusive effects are important at large conductivity,
while heat advection by fluid particles is dominant at low
conductivity. The contrasts arising from these variations are
beyond the scope of our work and thus are disregarded here.

This paper addresses the convection of a two-dimensional
(2D) fluid layer with temperature-dependent viscosity and
periodic boundary conditions possessing the O(2) symmetry.
The motivation arises from the fact that symmetric systems
typically exhibit more complicated bifurcations than nonsym-
metric systems and introduce conditions and degeneracies in
bifurcation analysis. There exist numerous novel dynamical
phenomena whose existence is fundamentally related to the
presence of symmetry [31–34]. Solutions related to the
presence of symmetry include rotating waves [35], mod-
ulated waves [36,37], slow “phase” drifts along directions
of broken symmetry [38], and stable heteroclinic cycles
[37,39,40]. SO(2) symmetry is present in problems described
by the Navier-Stokes [41,42] or the Kuramoto-Sivashinsky
[40,43] equations with periodic boundary conditions, since the
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equations are invariant under translations and the boundary
conditions do not break this invariance. Additionally, if the
reflection symmetry exists, the full symmetry group is the O(2)
group. While in classical convection problems (with constant
viscosity), the study of the solutions and bifurcations in the
presence of symmetries has been the object of much attention
[44–51], its counterpart in fluids with viscosity depending on
temperature has received less consideration. Our 2D physical
setup is idealized with respect to realistic geophysical flows
occurring in the Earth’s interior, as these are three-dimensional
(3D) flows moving in spherical shells [52,53]. Under these
conditions, the symmetry present in the problem is formed by
all the orientation-preserving rigid motions of R3 that fix the
origin, which is the SO(3) group [54–56]. The effects of the
Earth’s rotation are negligible in this respect and do not break
this symmetry, since the high viscosity of the mantle makes the
Coriolis number insignificant. The link between our simplified
problem and these realistic setups is that the O(2) symmetry
is isomorphic to the rotations along the azimuthal coordinate,
which form a closed subgroup of SO(3). Additionally, the O(2)
symmetry is present in systems with cylindrical geometry,
which provide an idealized setting for volcanic conduits and
magma chambers. SO(2) symmetry is also present in 3D flows
moving in spherical shells which rotate around an axis.

In this way, specific symmetry-related solutions found in
our setting are expected to be present in these other contexts.
The interest in 2D numerical studies for representing 3D
time-dependent thermal convection with constant viscosity has
been addressed in [57]. The authors report that, in turbulent
regimes at high Rayleigh numbers, the flow structure and
global quantities such as the Nusselt number and the Reynolds
number show a similar behavior in 3D and 2D simulations
as far as high values of the Prandtl number are concerned. In
some sense, these results suggest that our simulations might
be illustrative for the 3D case, since although they are far
from a turbulent regime and do not correspond to the case
of constant viscosity, they have been performed according
to the infinite Prandtl number approach. In this article we
show that typical solutions of systems with symmetries,
as previously reported in diverse contexts [37,40,58], could
be also present in mantle convection and magma-related
problems. We report the presence of traveling waves and limit
cycles near heteroclinic connections after a Hopf bifurcation.
We do this by means of bifurcation analysis techniques and
direct numerical simulations of the full partial differential
equation system.

The article is organized as follows: In Sec. II, we formulate
the problem, providing the description of the physical setup,
the basic equations, and the boundary conditions. In Sec. III
we present the viscosity law under consideration and discuss
several limits in which previously studied dependencies are
recovered. Section IV summarizes the numerical methods
used to sketch an outlook of the solutions displayed by the
system. Section V discusses the solutions obtained for a broad
parameter set. Finally, Sec. VI presents the conclusions.

II. FORMULATION OF THE PROBLEM

As shown in Fig. 1 we consider a fluid layer, placed in a 2D
container of length L (x coordinate) and depth d (z coordinate).

To

1T

L

d

x

z

FIG. 1. Problem setup. A 2D container of length L and depth
d with periodic lateral boundary conditions. The bottom plate is at
temperature T0 and is rigid, while at the upper plate the temperature
is T1 (T1 < T0) and free slip.

The bottom plate is at temperature T0 and the upper plate is at
T1, where T1 = T0 − �T and �T is the vertical temperature
difference, which is positive, i.e., T1 < T0.

The magnitudes involved in the equations governing the
system are the velocity field u = (ux,uz), the temperature
T , and the pressure P . The spatial coordinates are x and z

and the time is denoted by t . Equations are simplified by
invoking the Boussinesq approximation, where the density ρ

is considered as constant everywhere except in the external
forcing term, where a dependence on temperature is assumed,
as follows: ρ = ρ0[1 − α(T − T1)]. Here ρ0 is the mean
density at temperature T1 and α is the thermal expansion
coefficient.

The equations are expressed with magnitudes in dimen-
sionless form after rescaling as follows: (x ′,z′) = (x,z)/d,
t ′ = κt/d2, u′ = du/κ , P ′ = d2P/(ρ0κν0), and θ ′ = (T −
T1)/(�T ). Here, κ is the thermal diffusivity and ν0 is the
maximum viscosity of the fluid, which is the viscosity at
temperature T1. After the domain is rescaled, �1 = [0,L) ×
[0,d] is transformed into �2 = [0,	) × [0,1], where 	 = L/d

is the aspect ratio. The system evolves according to the
momentum and the mass balance equations, as well as to the
energy conservation principle. The nondimensional equations
are (after dropping the primes in the fields)

∇ · u = 0, (1)

1

Pr
(∂tu + u · ∇u)

= Raθ �e3 − ∇P + div

(
ν(θ )

ν0
(∇u + (∇u)T )

)
, (2)

∂tθ + u · ∇θ = �θ. (3)

Here, �e3 represents the unitary vector in the vertical direc-
tion, Ra = d4αg�T/(ν0κ) is the Rayleigh number, g is the
acceleration of gravity, and Pr = ν0/κ is the Prandtl number.
Typically for rocks Pr is very large, since they present low
thermal conductivity (approximately 10−6 m2/s) and very
large viscosity (of the order of 1020N s/m2) [19]. Thus, for the
problem under consideration, Pr can be considered as infinite
and the left-hand-side term in (2) can be made equal to zero.
The viscosity ν(θ ) is a smooth positive bounded function of
θ , which in our setup represents a transition in the fluid, due
for instance to the melting of minerals caused by an abrupt
change in viscosity at a certain temperature. This is discussed
in detail in the following section.
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FIG. 2. Representation of the arctangent viscosity law vs the dimensionless temperature for different parameters values; (a) b = 10, a = 0.1,
and different Ra values; (b) a = 0.1, Ra = 1300, and different b values; (c) b = 10, Ra = 1300, and different a values.

For the boundary conditions, we consider that the bottom
plate is rigid and that the upper surface is nondeformable
and free slip. The dimensionless boundary conditions are
expressed as

θ = 1, u = �0 on z = 0 and θ = ∂zux = uz = 0 on z = 1.

(4)

Lateral boundary conditions are periodic. Jointly with
Eqs. (1)–(3), these conditions are invariant under translations
along the x coordinate, which introduces the symmetry SO(2)
into the problem. In convection problems with constant viscos-
ity, reflection symmetry x → −x is also present insofar as the
fields are conveniently transformed as follows: (θ,ux,uz,p) →
(θ, − ux,uz,p). In this case, the O(2) group expresses the full
symmetry of the problem. The new terms introduced by the
temperature-dependent viscosity in the current setup equation
(2) maintain the reflection symmetry, and the symmetry group
is O(2).

III. THE VISCOSITY LAW

We consider that the viscosity depends on temperature and
that it changes more or less abruptly at a certain temperature
interval centered at a temperature of transition. This is
expressed with an arctangent law, which reads as follows:

ν(T ) = A1 arctan{β[(T − T1) − b]} + A2. (5)

The parameter β controls how abrupt the transition of
the viscosity with temperature is. Very high β values imply
that the viscosity transition occurs within a very narrow
temperature gap, while a finite and not too large β value
indicates that the phase change happens over a mushy region
of finite thickness [30]. For the results reported in this article,
we have fixed β = 0.9. As β is fixed, the viscosity transition
always occurs in a temperature interval with constant thickness
�θ ∼ 0.23. The temperature at which the transition occurs is
controlled by b. The constants A1 and A2 are adjusted by
imposing that at the reference temperature T1 the viscosity
law (5) must be ν0. On the other hand, in the limit T � T1, for
instance T − T1 = 2500, the viscosity is fixed to a fraction a

of the viscosity ν0. These conditions supply the system

ν0 = A1 arctan(−βb) + A2,

ν0a = A1 arctan[β(2500 − b)] + A2,

which has the solution

A1 = ν0(1 − a)

arctan(−βb) − arctan[β(2500 − b)]
,

A2 = ν0 − A1 arctan(−bβ).

In dimensionless form, the viscosity law becomes

ν(θ )

ν0
= C1 arctan[β(Raθμ − b)] + C2, (6)

where C1 = A1/ν0 and C2 = A2/ν0. In this expression, Ra is
the Rayleigh number and θ is the dimensionless temperature,
which takes values between 0 at the upper surface and 1 at
the bottom. The parameter μ, defined as μ = ν0κ/(d3αg), is
in this study fixed to μ = 0.0146. The parameter a is related
to the inverse of the maximum viscosity contrast on the fluid
layer, although the viscosity ν0a may not correspond to any
element of the fluid layer. For instance, Fig. 2(a) shows the
viscosity variation with temperature for different Rayleigh
numbers at a = 0.1 and b = 10. It is observed that, at low
Ra, Ra = 600, the viscosity is almost uniform in the fluid
layer, and it is only beyond Ra = 1000 that the sharp change
in the viscosity is perceived. Figure 2(b) shows the effect of
varying b at Ra = 1300 and a = 0.1. If b is as small as 1,
the transition occurs close to θ = 1 and most of the layer
has low viscosity, while if b is very large at this Ra number
most of the fluid has constant viscosity ν0. It is interesting to
relate the viscosity law as represented in these figures with the
linear stability analysis of a fluid layer with constant viscosity
ν0, as presented in Fig. 3. In this figure, one may observe
that the critical value of Ra is approximately Rac ∼ 1100.
On the other hand, in Fig. 2(b) one may observe that if b is
large, the viscosity near the critical Rayleigh number is almost
constant across the fluid layer. In this case, the phase transition
is noticed in the fluid at large Ra, well above Ra = 1300, in a
convection state in which vigorous plumes are already formed,
as may be deduced from Fig. 2(a). Figure 3(a) confirms that
at this limit the instability threshold of the conductive state
remains unchanged with respect to that obtained with constant
viscosity. On the other hand, if b is small, changes in the
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FIG. 3. Critical instability curves of the Rayleigh number, Ra, vs the aspect ratio 	 at different wave numbers m. The results are for a fluid
layer (a) with constant viscosity and (b) with temperature-dependent viscosity μ = 0.0146 for a = 0.1 and b = 30.

fluid viscosity are noticed at low Ra values—below the critical
threshold of a fluid with constant viscosity—and in this case
the instability threshold of the conductive state is affected
by the phase transition. This is illustrated, for instance, in
Figs. 2(a) and 3(b). For b = 10 and a = 0.1, the changes in
the viscosity across the fluid layer are noticed from Ra = 800
onward, which is below the instability threshold obtained for
constant viscosity. In this case, the instability thresholds for
the conductive solution are as those displayed in Fig. 4, and
thus the phase transition is perceived from the beginning by
weakly convective states.

We now discuss the relation between the arctangent law
and an Arrhenius-type law frequently used in the literature
to model mantle convection problems. This viscosity law is
expressed according to [19,59] as

ν(θ ) = ν0 exp

[
E∗

R�θ

(
1

θ + t1
− 1

1 + t1

)]
, (7)

where E∗ is the activation energy, R is the universal gas
constant, �θ is the temperature drop across the fluid layer, and
t1 is the surface temperature divided by the temperature drop
across the layer. Figure 5 represents the viscosity (7) versus the
dimensionless temperature for E∗

R�θ
= 0.25328 and t1 = 0.1

as considered by [59]. Additionally, several arctangent laws
with different b values are displayed. In this representation,
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FIG. 4. Critical instability curves of the Rayleigh number, Ra, vs
the aspect ratio 	 at different wave numbers m. The results are for
a fluid layer with temperature-dependent viscosity μ = 0.0146 and
b = 10 and a = 0.1 (thick line) or a = 0.01 (thin line).

one may observe great similitude between the Arrhenius law
and the arctangent law for b = 1. At larger b values, the
decay rate between viscosities is still similar to an Arrhenius
law; however, temperature intervals exist with approximately
constant viscosities ν0 and ν0a.

One of the effects of the viscosity contrasts in the fluid
motion is that if they are very large, as achieved for instance
with the exponential or the Arrhenius law, they lead to a
stagnant lid convection regime [12,60,61], in which there exists
a nonmobile cap where heat is dissipated mainly by conduction
over a convecting flow. In [30,62] a similar stagnant regime
is obtained for a viscosity law similar to the one presented
in this section. In our setting, we have considered a free-slip
boundary at the top boundary; thus quiescence is not imposed.
This condition enables us to consider spontaneous transitions
from stagnant to nonstagnant regimes.

IV. NUMERICAL METHODS

Analysis of the solutions to the problem described by
Eqs.(1)–(3) and boundary conditions (4) is assisted by time-
dependent numerical simulations and bifurcation techniques
such as branch continuation. As highlighted in [63,64], the
combination of both techniques provide a thorough insight
into the solutions observed in the system. A full discussion
on the spectral numerical schemes used is given in [63]. For
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FIG. 5. The law of the viscosity dependent on temperature used
in [59] with a viscosity contrast of a factor of 10 against the arctangent
law (6) with parameters b = 1,5,10,30, Ra = 2500, and a = 0.1.
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completeness, we now summarize the essential elements of
the numerical approach.

A. Stationary solutions and their stability

The simplest stationary solution to the problem described
by Eqs. (1)–(3) with boundary conditions (4) is the conductive
solution which satisfies uc = 0 and θc = −z + 1. This solution
is stable only for a range of vertical temperature gradients
which are represented by small enough Rayleigh numbers.
Beyond the critical threshold Rac, a convective motion settles
in and new structures are observed which may be either
time dependent or stationary. In the latter case, the stationary
equations, obtained by canceling the time derivatives in the
system (1)–(3), are satisfied by the bifurcating solutions. At
the instability threshold of the conductive state, the growing
solutions are periodic and correspond to sine or cosine
eigenfunctions with wave number m. Figures 3 and 4 display
the critical instability curves for different m values as a
function of the aspect ratio. The new solutions depend on the
external physical parameters, and new critical thresholds exist
at which stability is lost, thereby giving rise to new bifurcated
structures. These solutions are numerically obtained by using
an iterative Newton-Raphson method. This method starts with
an approximate solution at step s = 0, to which is added a
small correction (denoted by a tilde):

(us + ũ,θ s + θ̃ ,P s + P̃ ). (8)

These expressions are introduced into the system (1)–(3), and
after canceling the nonlinear terms in tilde, the following
equations are obtained:

0 = ∇ · ũ + ∇ · us , (9)

0 = −∂xP̃ − ∂xP
s + 1

ν0

[
L11

(
θs,us

x,u
s
z

) + L12(θs)ũx

+L13(θs)ũz + L14
(
θs,us

x,u
s
z

)
θ̃
]
, (10)

0 = −∂zP̃ − ∂zP
s + 1

ν0

[
L21

(
θs,us

x,u
s
z

) + L22(θs)ũx

+L23(θs)ũz + (L24
(
θs,us

x,u
s
z

) + Ra)θ̃
]
, (11)

0 = ũ · ∇θs + us · ∇θ̃ + us · ∇θs − �θ̃ − �θs. (12)

Here, Lij (i = 1,2, j = 1,2,3,4) are linear operators with
nonconstant coefficients, which are defined as follows:

L11(θ,ux,uz) = 2∂θν(θ )∂xθ∂xux + ν(θ )�ux

+ ∂θν(θ )∂zθ (∂xuz + ∂zux), (13)

L12(θ ) = 2∂θν(θ )∂xθ∂x + ν(θ )� + ∂θν(θ )∂zθ∂x, (14)

L13(θ ) = ∂θν(θ )∂zθ∂x, (15)

L14(θ,ux,uz) = 2∂θν(θ )∂xux∂x + 2∂2
θθ ν(θ )∂xθ∂xux

+ ∂θν(θ )�ux + (∂xuz + ∂zux)(∂θν(θ )∂z

+ ∂2
θθ ν(θ )∂zθ ), (16)

L21(θ,ux,uz) = 2∂θν(θ )∂zθ∂zuz + ν(θ )�uz

+ ∂θν(θ )∂xθ (∂zux + ∂xuz), (17)

L22(θ ) = ∂θν(θ )∂xθ∂z, (18)

L23(θ,ux,uz) = 2∂θν(θ )∂zθ∂z + ν(θ )� + ∂θν(θ )∂xθ∂z, (19)

L24(θ,ux,uz)

= 2∂θν(θ )∂zuz∂z + 2∂θθν(θ )∂zθ∂zuz + ∂θν(θ )�uz

+ (∂zux + ∂xuz)(∂θν(θ )∂x + ∂θθν(θ )∂xθ ). (20)

The unknown fields ũ, P̃ , and θ̃ are found by solving the
linear system with the boundary conditions

θ̃ = 0, ũ = �0 on z = 0 and θ̃ = ∂zũx = ũz = 0 on z = 1.

(21)

Then the new approximate solution s + 1 is set to

us+1 = us + ũ, θ s+1 = θs + θ̃ , P s+1 = P s + P̃ .

The whole procedure is repeated for s + 1 until a convergence
criterion is fulfilled. In particular, we consider that the l2 norm
of the computed perturbation should be less than 10−9.

The study of the stability of the stationary solutions under
consideration is addressed by means of a linear stability
analysis. Now perturbations are added to a general stationary
solution, labeled with superindex b:

u(x,z,t) = ub(x,z) + ũ(x,z)eλt , (22)

θ (x,z,t) = θb(x,z) + θ̃ (x,z)eλt , (23)

P (x,z,t) = P b(x,z) + P̃ (x,z)eλt . (24)

The sign in the real part of the eigenvalue λ determines the
stability of the solution: if it is negative, the perturbation decays
and the stationary solution is stable, while if it is positive the
perturbation grows over time and the conductive solution is
unstable. The linearized equations are

0 = ∇ · ũ, (25)

0 = −∂xP̃ + 1

ν0

[
L12(θb)ũx + L13(θb)ũz

+L14
(
θb,ub

x,u
b
z

)
θ̃
]
, (26)

0 = −∂zP̃ + 1

ν0

[
L22(θb)ũx + L23(θb)ũz

+ (
L24

(
θb,ub

x,u
b
z

) + Ra
)
θ̃
]
, (27)

0 = ũ · ∇θb + ub · ∇ θ̃ + ub · ∇θb − �θ̃ + λθ̃, (28)

where the operators Lij are the same as those defined in
Eqs. (13)–(20). Equations (25)–(28) jointly with its boundary
conditions [identical to (21)] define a generalized eigenvalue
problem.

The unknown fields Y of the stationary (9)–(12) and
eigenvalue problems (25)–(28) are approached by means of
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a spectral method according to the expansion

Y (x,z) =
	L/2
∑
l=1

M−1∑
m=0

bY
lmTm(z) cos[(l − 1)x]

+
	L/2
∑
l=2

M−1∑
m=0

cY
lmTm(z) sin[(l − 1)x]. (29)

In this notation, 	·
 represents the nearest integer toward
infinity. Here L is an odd number as justified in [63].
4 × L × M unknown coefficients exist and these are de-
termined by a collocation method in which equations and
boundary conditions are imposed at the collocation points
(xj ,zi),

uniform grid: xj = (j − 1)
2π

L
,j = 1, . . . ,L,

Gauss-Lobatto: zi = cos

[(
i − 1

M − 1
− 1

)
π

]
,i = 1, . . . ,M,

according to the rules detailed in [63]. Expansion orders L and
M are taken to ensure accuracy on the results: details on their
values are provided in Sec. V.

B. Time-dependent schemes

Together with boundary conditions (4), the governing
equations (1)–(3) define a time-dependent problem for which
we propose a temporal scheme based on a spectral spatial
discretization analogous to that proposed in the previous
section. As before, expansion orders L and M are such that
they ensure accuracy of the results, and details on their values
are given in the following section. To integrate in time, we
use a third-order multistep scheme. In particular, we use a
backward differentiation formula (BDF), adapted for use with
a variable time step. The variable time step scheme controls
the step size according to an estimated error E for the fields.
The error estimation E is based on the difference between the
solutions obtained with third- and second-order schemes. The
result of an integration at time n + 1 is accepted if E is below
a certain tolerance. Details of the step adjustment are found
in [63].

BDFs are a particular case of multistep formulas which are
implicit; thus the BDF scheme implies solving at each time
step the problem (see [65])

0 = ∇ · un+1, (30)

0 = Raθn+1 �e3 − ∇P n+1

+ div

(
ν(θn+1)

ν0
(∇un+1 + (∇un+1)T )

)
, (31)

∂tθ
n+1 = −un+1 · ∇θn+1 + �θn+1, (32)

where ∂tθ
n+1 is replaced by a backward differentiation

formula.
In [63], it has been proved that instead of solving the

fully implicit scheme (30)–(32), a semi-implicit scheme can
produce results with a similar accuracy and less computation
time. The semi-implicit scheme approaches the nonlinear

terms in Eqs. (30)–(32) if one assumes that the solution at
time n + 1 is a small perturbation Z̃ of the solution at time n;
thus, zn+1 = zn + Z̃. Once linear equations for Z̃ are derived,
the equations are rewritten by replacing Z̃ = zn+1 − zn. The
solution is obtained at each step by solving the resulting linear
equation for variables in time n + 1.

V. RESULTS

A. Exploration of stationary solutions in the parameter space

In this section we explore how stationary solutions obtained
at a low aspect ratio 	 = 3.4 for the system (1)–(3) depend on
the parameters a and b of the viscosity law (6). We examine
the shape and structure of the plumes in a range of Rayleigh
numbers from Ra = 2500 to Ra = 3500.

We first consider that the parameter b is large: for instance,
as large as 30. In this case, Fig. 2(b) confirms that at the
instability threshold the viscosity across the fluid layer is
almost constant and equal to ν0, no matter what the value
of a may be. Thus, the viscosity transition becomes evident
in the fluid once convection has settled in at Ra values well
above the instability threshold. Figure 6(a) shows the plume
pattern observed at Ra = 2500 for a = 0.1; although values
a = 0.01 and a = 0.001 are not displayed, they provide a
very similar output. The plume is spout-shaped, with the tail
of the plume nearly as large as the head. In the pattern, the
two black contour lines mark temperatures between which
the viscosity decays most rapidly. These correspond to the
transition region in which the gradient of the viscosity law
(6) is large. Thus one of the contours, the coldest one, fits the
temperature θ1 at which the viscosity has decayed by 5% from
the maximum, i.e., ν = 0.95 ν0, while the second addresses
θ2 = θ1 + �θ with temperature increment �θ = 0.23. The
maximum viscosity decay rate always takes place at a constant
temperature increment, since the decay rate of the law (6), β,
is the same throughout this study. At larger Rayleigh numbers,
Ra = 3500, Fig. 6(b) shows that the head of the plume becomes
more prominent. A comparison between Fig. 6(b) and Fig. 6(c)
indicates that the large viscosity contrast favors the formation
of a balloon-shaped plume, with a thinner tail and more
prominent and rounded head. As regards the velocity fields,
none of these patterns develop a stagnant lid at the surface for
any of the viscosity contrasts a considered, even though the
upper part corresponds to the region with maximum viscosity.
This result is dissimilar to what is obtained in [30,62]. In [62] it
is argued that the cause of these differences could be attributed
to the transition sharpness controlled by β, which in this work
has been considered to be smoother. Additionally, the results
reported in [30] are obtained at larger viscosity contrasts, and
the fact that these need to be large enough for the development
of a stagnant lid has been addressed.

We now consider that the parameter b is small. As explained
in Sec. III, in this case the viscosity transition occurs at low
Ra, below the instability threshold of the fluid with constant
viscosity ν0. As low viscosity also implies diminishing the
critical Rayleigh number, the overall effect is that for small b

the instability threshold is below that with constant viscosity
ν0, and the phase transition is perceived by weakly convective
states. Figure 6(d) shows the structure of the plume obtained
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(a) b = 30, Ra = 2500, a = 0.1 (b) b = 30, Ra = 3500, a = 0.1 (c) b = 30, Ra = 3500, a = 0.001

(d) b = 10, Ra = 2500, a = 0.1 (e) b = 10, Ra = 3500, a = 0.1 (f) b = 10, Ra = 2500, a = 0.001

(g) b = 17, Ra = 2500, a = 0.1 (h) b = 17, Ra = 2500, a = 0.001 (i) b = 17, Ra = 3000, a = 0.001

FIG. 6. (Color online) Plumes obtained for several values of the viscosity parameter b. The arrows indicate the velocity field, while the
contour colors represent the temperature ranging from hot (bottom plate) to cold (upper plate). The two black contour lines indicate the
temperatures between which viscosity decays most rapidly.

for b = 10 and a = 0.1 at Ra = 2500. The head tends to be
spread over a wide area and the viscosity transition occurs at
cold fluid zones away from the main plume. This pattern is
rather similar to those obtained with b = 5 or b = 1, except
that for smaller b values the tail of the plume tends to be
thinner. Increasing Ra makes the tail of the plume thinner and
spreads the head of the plume in the upper part, as reflected in
Fig. 6(e). On the other hand, high Ra values shift the viscosity
transition toward colder temperature contours. As expected
from the viscosity law (6), there is no Rayleigh number
at which the whole fluid layer is “melted,” since this law
always imposes that a transition occurs across the fluid layer.
Figure 6(f) reports the effect of diminishing the viscosity
contrast a to a = 0.001 at Ra = 2500. A mushroom-shaped
plume with a thin tail and prominent head is observed. As
before, none of these solutions develop a stagnant lid at the
surface for any of the examined viscosity contrasts a.

Intermediate values such as b = 17 interpolate these
extreme patterns. Figure 6(g) shows the evolution from
Fig. 6(d) to Fig. 6(a) in which the black contour lines indicating
the position of maximum viscosity decay converge toward
the ascending plume boundary, thus highlighting its shape.
The head of the plume shrinks and the tail strengthens.
Diminishing a to the contrast 0.001 transforms the structure
into a balloon-shaped plume [Fig. 6(h)], while an increase in
Ra spreads the head of the plume in the upper fluid toward a
mushroom-shaped plume.

The structure of the observed plumes as a spout, balloon,
or mushroom shape follows the schematic profiles reported
in [59]. In the limit of low b, our viscosity law—as reported
in Sec. III—converges toward the Arrehnius law used by
these authors, and the plume shapes reported there are
similar to ours. However, a detailed comparison between both
works is not possible as unlike these authors we include the
Rayleigh number in the viscosity law, since this provides
a better expression of the realistic situation in which the
increment of the Rayleigh number is performed by increasing

the temperature differences between the bottom and upper
surfaces. Other viscosity laws, such as the exponential law
reported in [63], provide different plume structures, which are
mainly spout-shaped.

The results reported in this section are obtained with
expansions (L × M = 37 × 44), except that in Fig. 6(c),
which corresponds to (L × M = 47 × 42), similarly to what is
reported in [63]. The validity of these expansions is decided by
ensuring that it provides accuracy in the eigenvalue along the
neutral direction due to the SO(2) symmetry, which is always 0.
This eigenvalue is lost if the expansions employed are insuffi-
ciently large, because badly resolved basic states present noisy
structures either at the fields themselves or at their derivatives,
and both contribute to the stability problem (26)–(28).

B. Bifurcation diagrams and time-dependent solutions

Solutions to the system (1)–(3) experience bifurcations
depending on the aspect ratio and on the Rayleigh number. We
now describe how these solutions vary along the dotted lines
enhanced in Fig. 4 for parameters μ = 0.0146 and b = 10. We
consider for a the choices 0.1 and 0.01.

Figure 7 shows the branch bifurcation diagram as a function
of the aspect ratio for Ra = 1300 and a = 0.1. Branches are
obtained by representing along the vertical axis the sum of the
absolute value of two relevant coefficients in the expansion
of the temperature field, bθ

11 and bθ
12. Solid lines stand for

stable branches, while dashed lines are the unstable ones. The
horizontal line at |bθ

11| + |bθ
12| = 1 corresponds to the trivial

conductive solution. At a low aspect ratio, the stable branch
is that with wave number m = 1, and at a higher aspect ratio
the stable solutions increase their wave number to m = 2 and
m = 3. The unstable branch ending up with a saddle-node
bifurcation and connecting the m = 1 with the m = 2 branch
corresponds to a mixed mode.

Stationary stable and unstable solutions, obtained at the
positions indicated by arrows, are pictured. No stagnant lid
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FIG. 7. (Color online) Bifurcation diagram as a function of the
aspect ratio at Ra = 1300 for a fluid with viscosity dependent on
temperature (b = 10, a = 0.1). Stationary solutions are displayed at
different Ra numbers, which are highlighted by vertical lines. The
arrows tag the branch points corresponding to the disclosed patterns.
The dashed branches are unstable, while the solid ones are stable.

appears at the surface for any of the aspect ratios considered.
The expansion orders required by this figure to ensure accuracy
are not the same along all branches. We have guaranteed that
for successive order expansions the amplitude values displayed
on the vertical axis of the bifurcation diagrams are preserved.
A rule of thumb is that high modes obtained at larger aspect
ratios require higher expansions. Thus while for mode m = 1
expansions (L × M = 37 × 44) are sufficient, for m = 2 and
m = 3 at larger aspect ratios expansions are increased up to
(L × M = 61 × 44).

Bifurcations are further analyzed at three different aspect
ratios as a function of the Rayleigh number. Among the
many possible choices for the aspect ratios, we consider
occurrences at which the existence of solutions related to
symmetries are found, such choices thereby serving our
purpose of highlighting the importance of symmetries in fluids
with viscosity dependent on temperature. Figure 8 represents
the branching obtained at 	 = 3.4 for a = 0.1. The pictured
plumes, which are computed for a rather low Rayleigh number,
Ra = 1500, are spout-shaped, with the tail of the plume nearly
as large as the head. As already reported in the previous
section, for increasing Ra, plumes become balloon-shaped and
beyond that mushroom-shaped. No stagnant lid is observed at
any Rayleigh number. Several branches are distinguished. The
branch related to mode m = 1 arises at the lowest Rayleigh
number and is stable in the whole range displayed. Mode
m = 2 emerges at Ra ∼ 860 from the unstable conductive
solution through an unstable branch, which becomes stable
through a pitchfork bifurcation at Ra ∼ 890. Results at this
aspect ratio are obtained with expansions (L × M = 37 × 44).

This simple diagram with simple stationary solutions
obtained at a low aspect ratio is in contrast to those with more
complex solutions obtained at a larger aspect ratio. Figure 9
represents the bifurcations obtained at 	 = 6.9 as a function
of Ra for a = 0.01. Figure 9(a) examines the Ra interval from
800 to 1300. In this range several stationary solutions, both
stable and unstable, are portrayed.

FIG. 8. (Color online) Bifurcation diagram as a function of the
Rayleigh number for a fluid with viscosity dependent on temperature
(b = 10, a = 0.1) at 	 = 3.4. Stationary solutions are displayed at the
Ra number, which is highlighted with the vertical line. The arrows
tag the branch points corresponding to the disclosed patterns. The
dashed branches are unstable, while the solid ones are stable.

At Ra ∼ 1290, a Hopf bifurcation occurs at the branch
of mode m = 3 [see Fig. 9(b)]. After the bifurcation, a
traveling wave is found, as illustrated in the phase portrait
represented at Ra = 1300. The solution evolves in time
by traveling toward the left. This breaks the symmetry
x → −x. However, the right traveling solution obtained by
the symmetry transformation also exists, as expected from
equivariant bifurcation theory [31]. See [66] for further details.
The presence of traveling waves after a Hopf bifurcation
has been reported in diverse contexts in the presence of the
O(2) symmetry [31,37,40,58], and here they are reported in
the context of convection with variable viscosity. At larger
Rayleigh numbers, up to Ra ∼ 1320, the traveling wave
persists, while its frequency increases. A stable fixed point with
wave number m = 3 is found in the range Ra ∼ 1340–1380.
A limit cycle appears at around Ra ∼ 1400. In this regime,
the time-dependent solution consists of plumes that weakly
oscillate in the horizontal direction around their vertical axis
of symmetry. See [66] for further details. Close to Ra ∼ 1416,
a stable branch of fixed points emerges, which is visualized
at Ra ∼ 1525. It shows the presence of plumes that are
nonuniformly distributed along the horizontal coordinate: two
close plumes, which are asymmetric around their vertical axis,
and a third one that maintains its symmetry. None of the
described solutions develop stagnant lids at the surface. At low
Rayleigh numbers [i.e., Fig. 9(a)] results are obtained with
expansions (L × M = 47 × 44), while for higher Rayleigh
numbers [i.e., Fig. 9(b)] results are obtained with expansions
(L × M = 61 × 44).

Figure 10 shows the bifurcation diagram obtained at
	 = 7.4 as a function of Ra for a = 0.1. The mode m = 3
branch, marked with a solid black line, emerges at Ra ∼ 794.
Figure 10(b) shows that at R ∼ 2190 the branch undergoes
a Hopf bifurcation. Beyond this point, solutions embedded
in a projection over the coefficient space are represented
at the R values marked with vertical dotted lines. A limit
cycle is observed at Ra = 2210 just above the bifurcation
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FIG. 9. (Color online) Bifurcation diagrams as a function of the Rayleigh number for a fluid with viscosity dependent on temperature
(b = 10, a = 0.01) at 	 = 6.9. The dashed branches correspond to stationary unstable solutions, while solid branches correspond to stationary
stable ones. The gray lines indicate spatial patterns with period 2, while the black ones are for period-3 patterns. (a) Rayleigh number in the
range 800–1300. Stationary solutions are displayed at the Rayleigh number highlighted with the vertical line. Arrows tag the branch points
corresponding to the disclosed patterns; (b) Rayleigh number in the range 1250–1500. Stationary solutions are displayed at the Rayleigh
number, which is highlighted by the vertical line. The arrows tag the branch points corresponding to the disclosed patterns. Two additional
vertical lines highlight Rayleigh numbers of 1300 and 1400 at which time-dependent solutions are found. These are displayed as a time series
projected onto the coefficient space (for a description see the text and [66]).

point. Its projection over the coefficient space displays a point
at every time step of the time series. The solution appears
to reside in the neighborhood of a heteroclinic connection
between two fixed points as it evolves into a quasistationary
regime—-near the large density of points—followed by a rapid
transition to a new quasistationary regime. The two fixed
points between which the solution oscillates are similar to
the nonuniformly distributed plumes described in the previous
paragraph (see [66] for further details). A solution is found at
Ra = 2300 that has a time dependence in which the block
of plumes shifts irregularly along the horizontal direction,
toward both the left and the right (see [66]). For increasing

Rayleigh numbers, the horizontal motion persists, but the
oscillation becomes more regular and pattern displacements
along the x coordinate are gradually reduced. This is verified
through simulations at Ra = 2350 and at Ra = 2400 (see [66]).
The diagram displayed in Fig. 10(a) shows a gray solid line
associated with a mode m = 2 stable branch that emerges by
means of a saddle-node bifurcation jointly with an unstable
branch. An irregular pattern obtained at Ra = 1800 for the
unstable branch is included in this diagram. Once again, none
of the solutions described at this aspect ratio have a stagnant
lid at the surface. Results in this figure are obtained with dif-
ferent order expansions. At low Rayleigh number expansions
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FIG. 10. (Color online) Bifurcation diagrams as a function of the Rayleigh number for a fluid with viscosity dependent on temperature
(b = 10, a = 0.1) at 	 = 7.4. The dashed branches correspond to stationary unstable solutions, while solid branches correspond to stationary
stable ones. The gray lines stand for spatial patterns with period 2 while the black ones are for period-3 patterns. (a) Rayleigh number in the
range 700–1800. Stationary solutions are displayed at the Rayleigh number, which is highlighted by the vertical line. The arrows tag the branch
points corresponding to the disclosed patterns; (b) Rayleigh number in the range 1800–2500. Vertical lines highlight the Rayleigh numbers
at which time-dependent solutions are found. These are 2210, 2300, 2350, and 2400. These are displayed as a time series projected onto the
coefficient space (for a description see the text and [66]).

(L × M = 47 × 42) are sufficient while for higher Rayleigh
numbers they are increased up to (L × M = 61 × 44) and even
to (L × M = 101 × 44).

The time-dependent solutions reported in Figs. 9 and 10 in
many respects resemble those described for the Kuramoto-
Sivashinsky (KS) equation [40,67] in the presence of the

O(2) symmetry, in which the presence of traveling waves
and heteroclinic cycles are also reported. The KS equation is
proposed in order to describe thermal diffusive instabilities
in flame fronts [68], and while apparently this setting is
rather different from ours, the similitude between solutions
suggest that the abrupt changes in the viscosity could define

043005-10



BIFURCATIONS AND DYNAMICS IN CONVECTION WITH . . . PHYSICAL REVIEW E 88, 043005 (2013)

a similar kind of front to those observed in flame propagation
phenomena. On the other hand, similar solutions have been
found in 3D convection with constant viscosity in the presence
of the O(2) symmetry [49,50], thus confirming the determining
role of the symmetry in the dynamics.

VI. CONCLUSIONS

In this article we have addressed the study of a convection
problem with temperature-dependent viscosity in the presence
of the O(2) symmetry. In particular, the considered viscosity
law represents a viscosity transition at a certain temperature
interval around a temperature of transition. This is a problem
of great interest for its many applications in geophysical
and industrial flows and in this work the focus has been on
exploring the impact of symmetry on the solutions displayed
by the system.

Our results report the influence on parameters a and b of
the viscosity law on the morphology of the plumes at a low
aspect ratio (	 = 3.4). It is shown that if the temperature of
transition is well above the instability threshold of a fluid with
constant viscosity ν0, i.e., b is large, plumes tend to be thicker
and show spout-like shapes. Increasing the Rayleigh number
induces their evolution toward balloon-shaped plumes, and this
effect is more pronounced for high viscosity contrasts (small
a). At low b values plumes are thinner, and the head of the

plume tends to spread in a mushroom-like shape in the upper
part of the fluid.

We explore bifurcations for both a fixed Ra as a function
of the aspect ratio and at three fixed aspect ratios as a
function of the Ra. No stagnant lid regime is observed in
any of the physical conditions analyzed. Among the stationary
solutions obtained along the bifurcation branches, one of the
more interesting stable patterns consists of the nonuniformly
distributed plumes that break symmetry along their vertical
axis.

We also find that, for the higher Rayleigh numbers explored,
at a high aspect ratio several rich dynamical phenomena
appear. As already reported in classical convection problems,
we find dynamical phenomena fundamentally related to the
presence of symmetry, such as traveling waves, oscillating
solutions in the neighborhood of heteroclinic connections,
and chaotic regimes characterized by “phase” drifts along the
horizontal direction linked to the SO(2) symmetry.
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