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Electrohydrodynamic rotations of a viscous droplet
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We report a fluid system which exhibits chaotic dynamics under creeping flow conditions. A droplet in a
uniform dc electric field deforms into an ellipsoid that can undergo irregular rotational motions. The nonlinear
drop electrohydrodynamics is explained by a theoretical model which includes anisotropy in the polarization
relaxation due to drop asphericity and charge convection due to rotational drop flow.
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I. MOTIVATION

Nonlinear phenomena such as chaotic flows are not very
common in the absence of inertia. Since the Stokes equa-
tions governing the fluid flow are linear, evolving boundary
characteristics, e.g., shape, charge, and surfactant coverage,
provide a possible source of nonlinearity [1]. For example, a
single particle exhibits complex dynamics if it is deformable:
a capsule or a red blood cell in shear flow [2–6] or a drop in
oscillatory strain-dominated linear flows [7].

If the particle is rigid, a time-dependent induced surface
charge can give rise to nonlinear dynamics [8–10]. Indeed,
a sphere in a uniform electric field can undergo chaotic
rotations [11,12], but only if particle inertia is not negligible. In
the inertialess limit, anisotropic polarization relaxation (e.g.,
due to nonspherical particle shape) can become a source of
chaotic particle tumbling [13,14], but such behavior has not
been experimentally observed and remains an open question.

In this paper, we explore the effect of particle asphericity
and fluidity on the electro-rotation dynamics. Upon application
of a uniform direct current (dc) electric field, a neutral leaky-
dielectric drop initially deforms into an ellipsoid, which then
can exhibit unsteady motions, some of which are illustrated
in Figs. 1 and 2. If the drop viscosity is high, the ellipsoid
tumbles [see Fig. 1(b)], while randomly reversing its direction
of rotation [15]. A low-viscosity drop however can undergo
additional deformation while rotating [see Fig. 1(a)]. The
resulting shape variations resemble oscillations and can have
periodically modulated amplitudes [see Fig. 2(b)].

II. PHYSICAL PICTURE

When placed in an electric field, a particle polarizes because
free charges carried by conduction accumulate at boundaries
that separate media with different electric properties. It is
instructive first to discuss the simplest example of a rigid
sphere in a uniform electric field. The magnitude and orienta-
tion of the induced dipole depend on the mismatch of electric
properties between the particle (“in”) and the suspending fluid
(“ex”), R = σin/σex, S = εin/εex, where σ and ε denote the
conductivity and dielectric constant, respectively. The ratio of
R to S compares the charge relaxation times of the media
[16,17],

R/S = τc,ex

τc,in
, where τc,in = εin

σin
, τc,ex = εex

σex
. (1)

If R/S < 1 (τc,in > τc,ex), the conduction response of the
exterior fluid is faster than that of the particle material. As

a result, the induced dipole is oriented opposite to the applied
electric field direction. This configuration is unfavorable and
becomes unstable above a critical strength of the electric
field [11,18,19]. A perturbation in the dipole alignment gives
rise to a torque, which drives physical rotation of the sphere.
The induced surface-charge distribution rotates with the parti-
cle, but at the same time the exterior fluid recharges the inter-
face. The balance between charge convection by rotation and
supply by conduction from the bulk results in an oblique dipole
orientation. In the inertialess limit, the rotation rate ω is deter-
mined from the balance of electric and viscous torques acting
on the particle, P × E = A · ω, where A is the friction matrix.

The spontaneous spinning of a rigid sphere in a uniform
dc electric field is the classic Quincke electrorotation. In this
case, the friction matrix is diagonal, and a straightforward
calculation [18–20], assuming instantaneous polarization,
yields three possible solutions: no rotation, � = 0, and

� = ± 1

τmw

√
E2

0

E2
Q

− 1 , (2)

where the ± sign reflects the two possible directions of rotation
and

τmw = εin + 2εex

σin + 2σex
and E2

Q = 2σexμex(R + 2)2

3εexεin(1 − R/S)
. (3)

E0 is the magnitude of the applied electric field. τmw, the
Maxwell-Wagner polarization time, is the characteristic time
scale for polarization relaxation. Notably, in Quincke rotation
the dipole “tilt” is steady.

If sphere inertia and polarization relaxation, i.e., noninstan-
taneous charging of the interface described by ∂tP = � × P −
τ−1

mw(P − Peq), are included in the analysis, the polarization
evolution equations and the torque balance map onto the
Lorenz chaos equations [11,12]. As a result, in stronger
fields the sphere may exhibit chaotic reversal of the rotation
direction. For our experimental system, EQ = 2.7 kV/cm and
Echaos � 20EQ. The threshold for the chaotic rotations is
significantly higher than experimentally observed, suggesting
different origin of the unsteady rotations in our case.

Unlike solid particles, drops are fluid and have a free
boundary. The electric stress deforms the drop and, as a
result, the friction matrix and polarization relaxation become
anisotropic and dependent on drop orientation relative to the
applied electric field. In this paper we study the consequences
of drop deformability on its Quincke-type rotational dynamics.
Our previous work showed that at field strengths slightly above
EQ the electrorotational flow can lead to steady tilt of the
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FIG. 1. Examples of unsteady drop behavior in a uniform dc elec-
tric field. (a) Viscosity ratio λ = 1, field strength E0 = 9.9 kV/cm,
drop radius a = 1.8 mm. (b) λ = 14, E0 = 9.7 kV/cm, a = 3.0 mm.

ellipsoidal drop relative to the electric field [21]. In the present
study we explore drop behavior in stronger fields.

III. EXPERIMENTAL METHODS

A. Fluid system

Silicone oil (SO) and castor oil (CO) (Alfa Aesar) are
used as drop and suspending fluids, respectively. Both fluids

(a)

(b)

FIG. 2. Unsteady electrohydrodynamics of a droplet character-
ized by the evolution of the aspect ratio in real time (a),(b) and in
time-delay plots with 	t = 1/3 s (insets). The viscosity ratios are
λ = 1 for (a) and λ = 4 for (b).

have very low conductivity (in the order of 10−12 S/m) and
very high viscosity (100 to 1000 times that of water). CO
has μex = 961 Pa s and the SO viscosity is varied to adjust
the viscosity ratio λ = μin/μex in the range between 0.1 to
14. The total electrical resistance of the fluid-filled chamber,
measured with a sensitive Ohmmeter, is used to determine the
fluid conductivity. Similarly, the capacitance of a fluid-filled
chamber is measured to determine permittivity. The surface
tension is measured to be 4.5 mN/m using the pendant drop
method. For this system, the conductivity and permittivity
ratios are R = 0.027 and S = 0.56.

B. Experimental setup and procedure

A uniform electric field is generated in a parallel-plate
chamber constructed from transparent polymethylmethacry-
late. The electrodes are two 5 × 5 cm2 brass plates attached
to the chamber walls. Chambers with different electrode
distances, 1 and 2.5 cm, are used in order to observe a wide
range of drop sizes and field strengths. The electric field is
produced with a high-voltage dc amplifier (Ultravolt 40A-12)
powered by a two-output power supply (Agilent E3646A).
The amplifier is inside a sealed plastic box and is connected
to the chamber with a high-voltage-rated wire. The output
from the amplifier was verified using a Fluke air cleaner probe
(80K-15) connected to a Fluke 115 multimeter.

In the experiment, a millimeter-sized drop is pipetted
manually into the middle of the chamber, far away from
any boundary. The field is then turned on and the voltage is
increased stepwise in increments of approximately 300 V/cm;
at each step the system is allowed to equilibrate in order to
avoid spurious transients.

Video recordings of unsteady drop behavior are taken with a
CCD camera (ThorLabs) at 15 frames per second. The chamber
is aligned with the camera such that the electric field is oriented
from bottom to top in the image. Video is recorded until the
drop sediments to the bottom of the chamber, approximately
2–5 min, depending on the size of the drop.

The images are processed using image processing software,
IMAGEJ. A pixel intensity threshold is taken on a stack of
images to provide an outline of the drop interface. The image
is converted to binary and the shape enclosed by the interface is
converted to black. The shape is then analyzed using the built-
in IMAGEJ algorithm “fit ellipse”, which determines the major
and minor axes and angle of inclination of the fitted ellipse.
The drop deformation is determined by the ratio of the axes
parallel and perpendicular to the axis of symmetry,

β = a‖
a⊥

. (4)

Once rotation begins, the true drop shape becomes a general
ellipsoid and β is then determined from the drop contour in
the plane of observation.

Note that the observation axis does not always coincide
with the axis of drop rotation. The rotation axis can assume any
direction perpendicular to the electric field and its orientation
is not known a priori. For measurements of the drop angle,
recordings were made when the drop tilted within the viewing
plane, i.e., at an angle that is observable from the camera.
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To verify that the chamber remains at room temperature,
the amount of Ohmic heating resulting from electric current
through the chamber is estimated. The highest voltage used
is approximately 20 kV. The conductivity of the castor oil,
σex = 4.5 × 10−11 S/m, yields a resistance of approximately
100 M� for an area of 0.0025 m2 and a gap of 2 cm. This yields
a current across the chamber of 0.1 μA. This current gives a
total energy input of 1 J over an estimated time of 1000 s.
Using properties of castor oil, the mass of the chamber is
estimated to be 0.05 kg and the heat capacity is cp ∼ 1 J/kg T.
The change in temperature is estimated to be 0.01 K. The
low amount of current through the chamber makes the Ohmic
heating negligible over the duration of an experiment.

IV. TIME SCALES AND DIMENSIONLESS NUMBERS

In addition to the mismatch of electric properties R and
S, defined by Eq. (1), the drop response to an electric field
depends on the viscosity contrast between the drop and
suspending fluids (which quantifies the drop “fluidity”),

λ = μin

μex
. (5)

The accumulation of charge on the interface creates an elec-
tric stress, which drives the fluid motion. The resulting linear
flow has a straining component, with characteristic time scale

τhd = μex(1 + λ)

εexE
2
0

, (6)

and, above the threshold for Quincke rotation, a rotational
component with characteristic time scale set by Eq. (2).
Comparison of the flow time scale Eq. (6) (in the absence
of electrorortation) or Eq. (2) (in the Quincke regime) to the
inertia time scale a2ρex/μex(1 + λ), shows that the Reynolds
number for the system is of the order of 10−3 and the observed
phenomena occur in the Stokes flow regime.

Drop deformation is opposed by the interfacial tension γ ,
which acts to minimize the interfacial area of the drop. The
characteristic time scale for a deformed drop to relax to its
equilibrium spherical shape is given by

τγ = μex(1 + λ)a

γ
. (7)

Note that the strength of the straining flow, characterized
by Eq. (6), and the surface-tension-driven relaxation Eq. (7)
depend on the viscosity ratio while the rotational flow, charac-
terized by the Quincke rotation rate Eq. (2), is independent of
viscosity ratio. This suggests that the dynamics of very viscous
drops is dominated by rotation and shape variations will be
negligible. In contrast, fluid systems for which the time scales
are comparable are expected to display richer dynamics, since
the drop deforms while rotating. This is indeed the case for
drops with λ = 1, where all time scales are of the order of 1 s.

V. RESULTS

A. Experiment

Figure 3 summarizes the observed drop dynamics as a
function of field strength, drop size, and viscosity ratio between
the drop and suspending fluids.

FIG. 3. Phase diagrams for viscosity ratios λ = 1 (a), 4 (b), and
14 (c). Taylor (Ta) indicates axisymmetric straining flow and oblate
deformation, Ti a steady tilted drop orientation with rotational flow,
unsteady (Un) a time-dependent drop shape and orientation, and Br
drop breakup. The inset shows the time-dependent behavior for one
drop indicated on the chart with ◦ in terms of the variations of the
aspect ratio β (concentric circles) with the major axis orientation
relative to the applied electric field θ . EQ, given by Eq. (3), is the
critical electric field for rotation of a sphere.
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FIG. 4. Sketch of the “fluid ellipsoid” model for drop electrorota-
tion. Drop asphericity is characterized by the aspect ratio β = a‖/a⊥.
The rigid body rotation is related to the tilt angle of the deformed
shape, θ , by θ̇ = dθ/dt . In the corotating frame the interface velocity
is ν(−yβ,x/β).

In weak fields, the drop becomes an oblate spheroid, which
is axisymmetrically aligned with the applied field (the classic
Taylor regime [22]). In stronger fields, the drop assumes a
steady oblique orientation relative to the field direction [21].
Further increase in the field strength leads to a variety of
unsteady dynamics or drop breakup (for videos see [15]).
High-viscosity drops (λ = 14) tumble while reversing their
rotation direction irregularly. In contrast, low-viscosity drops
(λ = 1) undergo undamped shape oscillations with steady
amplitude. Intermediate-viscosity drops (λ = 4) exhibit a mix
of both behaviors, namely, repeated cycles consisting of shape
oscillations with increasing amplitude followed by several
tumbles in random directions. These behaviors are better
seen in the insets of Fig. 3, in which the trajectories in
the (β, θ ) phase space are plotted; θ is the angle between
the drop major axis and the applied field direction and β

is the aspect ratio; see Fig. 4 for a sketch of the geometry.
The shape variations are due to periodic drop stretching and
compression by the electric stresses (which are time dependent
in the drop corotating frame) and should not be confused with
the Rayleigh oscillations of an inviscid drop [23].

B. Model

The tumbling motion of a highly viscous drop can be
analyzed by modeling the drop as an ellipsoid with fixed shape.
Next we develop an analytical model which builds upon the one
for a rigid ellipsoid by Cebers et al. [14] modified to account
for the fluid motion inside the drop. Including shape variations
as seen in the case of lower-viscosity drops is challenging and
possible only in numerical simulations.

For simplicity, the ellipsoid is assumed to be an axisymmet-
ric oblate spheroid with aspect ratio set by the drop elongation
when rotation is initiated. The torque balance is

α⊥

(
dθ

dt
+ 2β

1 + β2
ν

)
= P‖E⊥ − P⊥E‖ + (χ∞

‖ − χ∞
⊥ )E⊥E‖,

(8)

where α⊥ is the friction coefficient [defined by Eq. (A11)],
χ∞ is the high-frequency susceptibility [given by Eq. (A13)],
and ‖,⊥ denote components parallel and perpendicular to the
axis of symmetry; see Fig. 4. The rotational fluid motion
inside the drop is characterized by a frequency ν. The latter
is determined from the balance of electrical energy input and

viscous dissipation, in a similar fashion to the analysis of drop
rotation in a magnetic field [24], or red blood cell tank treading
in shear flow [25]. Details of the calculations are provided
in the Appendix. The polarization relaxation equations in a
coordinate system rotating with θ̇ are

∂P‖
∂t

= −νP⊥β − 1

τ‖
[P‖ − (χ0

‖ − χ∞
‖ )E‖], (9a)

∂P⊥
∂t

= νP‖
β

− 1

τ⊥
[P⊥ − (χ0

⊥ − χ∞
⊥ )E⊥], (9b)

where τ‖,⊥ and χ0
‖,⊥ are the directional (β-dependent)

Maxwell-Wagner relaxation time scales and low-frequency
susceptibility respectively, defined by Eqs. (A15) and (A14).
If ν = 0, Eqs. (8) and (9) reduce to the equations of motion
for a rigid ellipsoid [14], and predict three types of behavior:
alignment of the long axis with the electric field, oscillations
around the field direction (“swinging”), and continuous flip-
ping (“tumbling”). The additional torque associated with the
fluid rotation inside the drop (characterized by ν) changes
fundamentally the response of the oblate ellipsoid to the
electric field: the long axis can be either perpendicular or tilted
to the field direction.

Thus a fluid ellipsoid exhibits more behaviors: steady
axisymmetric orientation with long axis perpendicular to
the applied field (Taylor regime), steady tilted orientation,
swinging around a nonzero tilt angle with respect to the electric
field, and tumbling. Moreover, chaotic switching between
the swinging and tumbling states is also found. The model
highlights that in all cases except for the chaotic behavior,
the motion of the dipole mirrors the motion of the ellipsoid.
Chaotic motion is associated with a lack of synchronization
between the ellipsoid and dipole orientations.

C. Comparison between theory and experiment

The model captures the dynamics of the high-viscosity
drops, as seen from Fig. 5, with no adjustable parameters. The

FIG. 5. (Color online) Delay plots for the orientation angle for
a λ = 14, 2a = 6.9 mm drop in an electric field with strength E0 =
9.1 kV/cm (3.1EQ) from the experiment [red (light gray)] and the
model (black).

043003-4



ELECTROHYDRODYNAMIC ROTATIONS OF A VISCOUS . . . PHYSICAL REVIEW E 88, 043003 (2013)

FIG. 6. Phase diagram for a fluid ellipsoid with viscosity ratio λ ≡
μin/μex = 14. The lines represent the boundaries between various
behaviors computed from the model: Taylor (Al), steady tilt (Ti),
swinging (Sw), tumbling (Tb), and chaotic rotations (Ch). The
symbols correspond to experimental data: �, Taylor regime, �, steady
tilted ellipsoid, and 	, chaotic tumbling. The lines crossing the sym-
bols reflect the variations in the aspect ratio of the drop during rotation.

phase diagram resulting from the numerical solution of Eq. (8)
and Eq. (9) is shown in Fig. 6, and compares qualitatively well
to the results of experiments.

Of course in reality the drop shape does not remain an
ellipsoid with fixed aspect ratio, as seen from Fig. 2. The
experiments show variations in the drop elongation; the range
of aspect ratios experienced by a drop during one cycle is
indicated by a line crossing the symbols in Fig. 6. The shape
oscillations are more pronounced in the case of low-viscosity
drops [see Figs. 1(a), 2(a), and 3(a)]. However, the main axis
is found to oscillate around a defined tilted angle and hence
this behavior qualitatively corresponds to the swinging mode.

Shape variations are due to comparable time scales of
rotation �−1 [which in turn depends on the Maxwell-Wagner
polarization time τmw; see Eq. (2)], deformation by elec-
tric stresses μex(1 + λ)/εexE

2
0 , and relaxation driven by the

interfacial tension γ , aμex(1 + λ)/γ ; all are about 1 s for
λ = 1. In the case of λ = 14, the rotation rate is an order
of magnitude shorter than the time scales for shape change,
which justifies the assumption of a fixed shape in our model.
Modeling the drop deformation is a challenging task which
can be accomplished only numerically in a three-dimensional
code. A recent analytical work based on a small-deformation
theory failed to predict the undamped shape oscillations of the
electrorotating drop [26].

VI. CONCLUSIONS

We report unsteady dynamics of a viscous droplet in
uniform dc electric fields. Depending on the viscosity ratio
between the drop and suspending fluid, the droplet can
chaotically tumble, undergo oscillatory deformations, or show
a mix of both behaviors. Our finding is a rare example of chaos
under creeping flow conditions and could inspire additional

approaches to small-scale fluid mixing and electromanipula-
tion of particle motion in microfluidic technologies. Intrigu-
ingly, similar electrorotation behavior has been displayed by
vesicles (closed biomimetic membranes) [27], which hints that
the findings in this work may have relevance to a broader range
of soft particles such as capsules and biological cells. Finally,
many particle interactions modify the Quincke behavior [28]
and could also give rise to interesting nonlinear dynamics.
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APPENDIX: MODEL DETAILS

The fluid inside the ellipsoidal drop undergoes rotational
flow with frequency ν; see Fig. 4. The interface velocity
us = ν(−yβ,x/β) (in the corotating frame) affects the torque
balance and the polarization relaxation equations. The torque
due to the rotational flow is identical to that developed for
the tank-treading interface on a red blood cell in shear flow
[25]. The surface flow also contributes to charge convection,
which modifies the polarization relaxation equations.

The shape-preserving fluid flow inside the ellipsoid is given
by [29]

uin = ν

(
−yβ,

x

β
,0

)
. (A1)

At distances far from the fluid drop, the the fluid undergoes
rotational motion with frequency set by the frequency of the
tumbling ellipsoid θ̇ ,

uex = −θ̇ × r = (yθ̇,−xθ̇,0). (A2)

The external field can be written in terms of the internal field
plus a disturbance field uD as

uex = uin + uD. (A3)

At r → ∞, the velocity fields must match; this gives

uD =
(

y(θ̇ + νβ),−x

(
θ̇ + ν

1

β

)
,0

)
. (A4)

The velocity-gradient tensor can be decomposed as

lim
r→∞

∂uD
i

∂xj

= γij + ωij , (A5)

with symmetric and antisymmetric components γij and ωij ,
respectively. For the case of an ellipsoid, the tensor compo-
nents are

γ12 = γ21 = ν

2

(
β − 1

β

)
,

(A6)

ω12 = −ω21 = θ̇ + ν

2

(
β + 1

β

)
.

A torque from the flow field is produced by the combined
effects of surface flow and rigid body rotation. The magnitude
of this torque is given by [30]

LTT+TB = V μex(A21 − A12), (A7)
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where μex is the external fluid viscosity, V is the volume of
the ellipsoid, and

A12 = 2
n‖γ12 + n′

3ω12

(β2n‖ + n⊥)n′
3

,

A21 = 2
n⊥γ21 + β2n′

3ω21

(β2n‖ + n⊥)n′
3

, (A8)

n′
3 = −n‖ − n⊥

β2 − 1
,

where n‖,⊥ are shape factors which for oblate ellipsoids
(β < 1) are

n‖ = 1 + e2

e3
(e − arctanh(e)), where e =

√
1/β2 − 1.

(A9)

and the second shape factor is n⊥ = (1 − n‖)/2.
Combining the expressions in Eq. (A6) into Eq. (A7), the

torque simplifies to the expression,

LTT+TB = −α⊥

(
θ̇ + 2β

1 + β2
ν

)
, (A10)

where α⊥ is the friction coefficient

α⊥ = 2μexV M⊥, M⊥ = 1 + β2

1−n‖
2 + n‖β2

. (A11)

The electric torque on an ellipsoid in a uniform electric
fields is given by

LE = PT × E. (A12)

Note that total polarization is PT = P + P∞, and P∞ = χ∞E

is the instantaneous polarization.
In the viscosity-dominated limit, where particle inertia is

negligible, the conservation of angular momentum reduces
to LTT+TB + LE = 0, i.e., Eq. (8). The polarization relaxation
equations which describe the time-dependent interfacial charg-
ing are given by Eq. (9) in a frame of reference corotating with
the ellipsoid. In these evolution equations

χ∞
‖,⊥ = εexV (εin − εex)

(εin − εex)n‖,⊥ + εex
(A13)

are the high-frequency directional susceptibilities, and E‖ =
E0 cos θ and E⊥ = −E0 sin θ .

χ0
‖,⊥ = εexV (σin − σex)

(σin − σex)n‖,⊥ + σex
(A14)

are the low-frequency susceptibilities and

τ‖,⊥ = (εin − εex)n‖,⊥ + εex

(σin − σex)n‖,⊥ + σex
(A15)

are the directional Maxwell-Wagner relaxation times.
Equations (8) and (9) are nondimensionalized before

solving. The variables are normalized by

t̃ = t

τmw
, P̃ = P

Pc

,

(A16)

L̃E = LE

PcE0
, ν̃ = ντmw,

Pc = 	χsεexE0V, 	χs = 9(R − S)

(R + 2)(S + 2)
. (A17)

In dimensionless form, the torque balance equation (8)
becomes

θ̇ = − 2β

1 + β2
ν̃ + BC1

2M⊥
[(−P̃⊥ cos θ − P̃‖ sin θ )

−C2 cos θ sin θ ], (A18)

where

B = ε2
exE

2
0

μexσex
, C1 = 9(R − S)

(R + 2)2
,

(A19)

C2 =
[

(S − 1)

(S − 1)n‖ + 1
− (S − 1)

(S − 1)n⊥ + 1

](
S + 2

R + 2

)
.

The dimensionless polarization relaxation equations are

∂P̃‖
∂t̃

= −ν̃P̃⊥β − T‖(P̃‖ − X‖ cos θ ), (A20a)

∂P̃⊥
∂t̃

= ν̃P̃‖
β

− T⊥(P̃⊥ + X⊥ sin θ ), (A20b)

where

T‖,⊥ = τmw

τ‖,⊥
=

(
S + 2

R + 2

)(
(R − 1)n‖,⊥ + 1

(S − 1)n‖,⊥ + 1

)
(A21)

and

X‖,⊥ = (R + 2)(S + 2)

9[1 + n‖,⊥(R − 1)][1 + n‖,⊥(S − 1)]
. (A22)

The final variable to be determined is the surface-flow
frequency ν, which is found by balancing the rate of electrical
energy input with viscous dissipation. The viscous dissipation,
first derived by Keller and Skalak [25], is given by

�TT+TB = (μin − μex)ν2V

(
1

β
− β

)2

+μexνV

(
βA12 − 1

β
A21

)
. (A23)

Taking into account Eq. (A10) the above equation reduces to

�TT+TB = μexν
2V (λf1 − f2) + 4νLE

M⊥
(
βn‖ + 1

β
n⊥

) , (A24)

where

f1 = (β − 1/β)2, f2 = f1

[
1 −

(
β2 − 1

(n‖ − n⊥)(β2 + 1)

)]
.

(A25)

The energy input from the electric field, �E , is determined
by the surface integral,

�E =
∫

us · (Tel · n̂)dS, (A26)

where Tel is the Maxwell stress. Using the definitions for the
surface flow and Maxwell stress, the rate of work done by the
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electric stresses is expressed as

us · (Tel · n̂) = 1

V
ν(Ed · t̂)(P · n̂), (A27)

where Ed is the electric field inside the drop. The electric field
in an ellipsoid is given by [20,31]

Ed
‖,⊥ = E∞

‖,⊥ − n‖,⊥
εexV

(P‖,⊥ + P ∞
‖,⊥), (A28)

where E∞
‖,⊥ is the electric field at infinity and P‖,⊥ + P ∞

‖,⊥ is the
total polarization in component form. The exact expressions
in the integral Eq. (A26) are

Ed · t̂ = −βEd
‖ y + 1

β
Ed

⊥x, P · n̂ = P‖n‖ + P⊥n⊥. (A29)

Equation (A26) is integrated using Eq. (A28), Eq. (A29), and
the relation

∫
dSrink = V δik , leading to

�E = ν

(
−βEd

‖ P⊥ + 1

β
Ed

⊥P‖

)
. (A30)

Nondimensionalizing using the same parameters from
Eqs. (A16) and (A17) yields

�E = εexE
2
0V ν	χs

(
−β[cos θ − n‖	χs(P̃‖ + C3 cos θ )]P̃⊥

+ 1

β
[− sin θ − n⊥	χs(P̃⊥ − C4 sin θ )]P̃‖

)
, (A31)

where

C3 = χ∞
‖

εexV 	χs

, C4 = χ∞
⊥

εexV 	χs

. (A32)

Setting this expression equal to �TT+TB and solving
for ν̃ gives a lengthy expression for the surface-flow
frequency,

ν̃ = BC1

λf1 − f2

[ −2(
βn‖ + n⊥

β

)
M⊥

× (P̃‖ sin θ + P̃⊥ cos θ + C2 cos θ sin θ )

−β[(cos θ − n‖	χs(P̃‖ + C3 cos θ )]P̃⊥

+ 1

β
[− sin θ − n⊥	χs(P̃⊥ − C4 sin θ )]P̃‖

]
. (A33)

The final equations describing the fluid ellipsoid in an electric
field are given in dimensionless form as

∂θ

∂t̃
= − 2β

1 + β2
ν̃ + B

2M⊥
[C1(−P̃⊥ cos θ − P̃‖ sin θ )

− C2 cos θ sin θ ], (A34)

∂P̃‖
∂t̃

= −ν̃P̃⊥β − T‖(P̃‖ − X‖ cos θ ), (A35a)

∂P̃⊥
∂t̃

= ν̃P̃‖
β

− T⊥(P̃⊥ + X⊥ sin θ ). (A35b)
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