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Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet
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Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism
in a direct numerical simulation of a turbulent plane jet at Re, & 110. The particles (tracers) are initially
seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are
drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of
the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The
use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment
mechanism than in previous works since the statistics in relation to the TNTI position involve data from
the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence
of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude
greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The
particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes
“active” only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI
differ substantially from inside the turbulent region. Only about 1% of all particles find their way into
pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that “engulfment”
is not significant for the present flow, indirectly suggesting that the entrainment is largely due to “nibbling”
small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions
suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent

region, consistent with the particles moving tangent to the interface around the time they cross it.
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I. INTRODUCTION

Turbulent entrainment designates a mechanism existing
in many turbulent flows such as mixing layers, jets, wakes,
and boundary layers and governs many key aspects of the
flow development. The growth of shear layers, the speed of
contaminants dispersion, and the mixing and reaction rates
in turbulent combustion are some examples of processes
largely governed by turbulent entrainment [1]. Turbulent
entrainment is therefore of central importance to many natural
and engineering flows.

In these flows a sharp and convoluted layer or interface—
the turbulent-to-nonturbulent interface (TNTI)—separates the
flow into two regions: (i) the shear layer region where the
flow is turbulent and (ii) an irrotational or nonturbulent flow
region [2]. Turbulent entrainment is the mechanism by which
fluid parcels at the irrotational flow region acquire vorticity and
become part of the turbulent region. The exchanges of mass,
momentum and heat characterizing the entrainment take place
across the TNTI, hence its importance in the context of the
study of turbulent entrainment. It has been reported that some
quantities display sharp jumps at the TNTI, e.g., the vorticity
and mean streamwise velocity [3].

Despite its importance, many aspects of the turbulent
entrainment are presently poorly understood. In particular, two
different models have been advanced to explain the turbulent
entrainment mechanism. According to the engulfment model
[4], the entrainment proceeds in two stages: (i) an inviscid
first stage, where large-scale eddy motions drag (by induced
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velocity) pockets of irrotational flow from the irrotational
region into the core of the turbulent region, and (ii) a (viscous)
diffusion second stage whereby these islands of irrotational
flow slowly acquire vorticity. According to the nibbling model
the entrainment happens by vorticity diffusion across the
entire TNTI caused by nearby small-scale eddy motions [2].
Some recent experimental and numerical works suggest that
“nibbling” is the dominating mechanism at least for jets [5,6];
however, there is yet no definitive answer for the question of
whether “nibbling” or “engulfment” are the most important for
the turbulent entrainment. Philip and Marusic [7] discuss how
differences in large-scale eddies from jets, wakes, and shear
free turbulence (i.e., turbulence without mean shear) imply a
different relative importance of “nibbling” and “engulfing” in
these flows.

The most distinctive feature between the flow regions
separated by the TNTI consists in the strong contrast between
the total absence of vorticity in the irrotational zone and the
high vorticity content of the turbulent zone. It seems therefore
natural to address the mechanisms behind the turbulent
entrainment by analyzing the mechanisms by which the
enstrophy is communicated to the irrotational flow region and
several previous works have addressed this problem. Holzner
et al. [8] analyzed the dynamics of the enstrophy transport
equation in an experimental turbulent front generated by an
oscillating grid at low Reynolds numbers. They observed the
existence of positive viscous vorticity effects at the TNTI,
promoting an increase in the local enstrophy. Subsequently,
da Silva and Pereira [9] and Holzner et al. [10] observed that
this enstrophy increase is caused by viscous diffusion effects,
while viscous dissipation remains negative throughout the
whole turbulent region. Da Silva and Reis [11] analyzed the
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role of coherent vortices near the TNTI and observed that
large vorticity structures near the TNTI are responsible for
the existence of positive enstrophy diffusion along this layer,
linking the results of Holzner et al. [8,10] to the large-scale
vorticity structures. Moreover da Silva et al. [12] analyzed
the dynamics of the small-scale intense vorticity structures
at the TNTIL. The results suggest that the “nibbling” eddy
motions are linked with the diffusion of vorticity from these
small-scale vortices at the TNTI. However, the large-scale
eddies definitively play an important role on the dynamics of
the entrainment, as shown in, e.g., Cortesi et al. [13], where the
effects of stratification and thermal conductivity were assessed.

The goal of the present work is to study the enstrophy
dynamics across the TNTI in order to shed light on the
dynamics of the turbulent entrainment mechanism. For this
purpose a direct numerical simulation (DNS) of temporally
evolving planar jet was used. In addition to the Navier-Stokes
simulation, millions of particles (tracers) were tracked during
the simulation. The particles were initially placed in the
irrotational region near the TNTI and Lagrangian statistics
were computed for the particles that crossed the TNTI into
the turbulent region, allowing for a detailed study of the
buildup of vorticity for the entrained particles. The tracked
particle trajectories were used also to assess the relative
importance of the “nibbling” or “engulfment” mechanisms
in the jet. Compared to previous studies, the use of Lagrangian
statistics reported in the present work gives a more correct
description of the entrainment mechanism since these statistics
use trajectories of particles in the process of being entrained
into the jet.

This article is organized as follows. In Sec. II we describe
the temporal turbulent planar jets DNS used in the present
work, along with the procedure employed to compute the
statistics. Section III analyzes evolution of the enstrophy for
the entrained particles during the simulation, and Sec. IV uses
the particle trajectories to assess the relative importance of the
“engulfment” mechanism for the present simulation. The work
ends with an overview of the main results and a summary of
the main conclusions (Sec. V).

II. DIRECT NUMERICAL SIMULATION
OF A TURBULENT PLANE JET

A DNS of a turbulent plane jet is used in the present
work. The simulation is one of the simulations used before
and described in detail in da Silva and Taveira [14] (labelled
PJET han.) and therefore only a short description will be give
here.

A. Numerical method

The Navier-Stokes solver employs pseudospectral methods
for spatial discretization and a three-step Runge-Kutta scheme
for temporal advancement. The initial conditions consist of
interpolated velocity fields from a DNS of a turbulent channel
flow and the initial Reynolds number is equal to Rey =
UH/v = 3200, where U; is the maximum initial (mean)
stream-wise velocity. The simulations were halted before any
effect of the boundary conditions could be observed in the jet
statistics, e.g., the Reynolds stresses.
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B. Physical and computational parameters

The computational domain extends to (L,,L,,L;)=
(6.3H,6H,4.2H) along the streamwise (x), normal (y), and
spanwise (z) jet directions, respectively, and the simulation
uses (Ny x Ny x N;) = (384 x 486 x 384) grid points. The
simulation was fully dealiased using the 2/3 rule.

One point statistics and spectra showed that the present
DNS is accurate at the large and small scales of motion
and representative of a fully developed turbulent plane jet
[14]. Specifically, the mean streamwise velocity profile and
Reynolds stresses profiles agree well with the data available
and the computational box is big enough and does not constrain
the jet in its development. For this DNS the self-similar regime
is obtained at ¢/t & 20, where t.s = H/(2U;) and at this
stage the Reynolds number based on the Taylor microscale
A, and the root-mean-square of the streamwise velocity u’ is
equal to Re; = u’A/v ~ 110 across the jet shear layer.

In addition to the Eulerian velocity field, the simulation
involves the temporal advancement (time tracking) of a total
of 2.5 x 10° particles (tracers). The numerical integration of
the trajectory of each particle employs the same temporal
advancement scheme used for the Eulerian velocity fields
(third-order Runge-Kutta scheme). At each time step the
particle velocities are obtained from the three-dimensional
(3D) Eulerian grid using a 13-point (TS13) interpolating
scheme [15]. Other interpolation schemes were implemented
and assessed, including linear, tricubic, and spectral (“exact”)
interpolation. The algorithm for computing the particle trajec-
tories during the simulation was carefully assessed in several
different flows and the TS13 interpolation scheme was chosen
due to its balance between accuracy and computational cost,
as discussed in Yeung and Pope [15]. More details of the
validation procedure can be found in Diogo [16].

C. Conditional Lagrangian statistics

Lagrangian statistics were obtained for the particles as
function of the time since they crossed the TNTI. The TNTI
was detected using the vorticity norm w = (w;w;)'/?, where
w; is the vorticity field as in Bisset e al. [17]. The detection
threshold was w = 0. 7L, where U, is the centerline mean
velocity and &g 5 is the Jet half—w1dth respectively. The chosen
threshold is the same used by Bisset et al. [17] and Mathew and
Basu [5] but this fact alone does not justify the use of the same
threshold in a different simulation. Indeed, the exact value
of the threshold has to be assessed for each new simulation
or experimental data and for this purpose we used the same
procedure described in Bisset et al. [17], which led to the
threshold chosen. Appendix A describes a new ‘“automatic”
procedure that can be used to detect this threshold.

To illustrate the shape of the TNTI, Fig. 1 shows a zoom of
the TNTIregion from the far-field, self-similar region of the jet,
defined as an isosurface of constant vorticity norm equal to the
detection threshold. The interface exhibits structures shaped
as “hills,” associated with higher vertical values of the local
interface location Y;, which are separated by “valleys” and
trenches (smaller Y;). In the present simulation the average
lateral size of these hills is roughly equal to the Taylor
microscale.
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FIG. 1. (Color online) Partial (top) view of the isosurface of the
vorticity magnitude defining the TNTI, taken from the self-similar
region of the jet.

An innovative aspect of the present work consists in using
particles from the irrotational region near the TNTI region and
to observe them entering the turbulent region. This approach is
more suited to study the entrainment process since the statistics
involve the particle trajectories, thus reflecting the distances of
the fluid elements to the TNTI during the entrainment process,
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in contrast with conditional Eulerian statistics used in, e.g.,
Westerweel et al. [6] and da Silva and Pereira [9], where the
distances from the TNTI used in the conditional statistics are
not the actual distances traveled by the particles during the
entrainment process.

The procedure to obtain the Lagrangian statistics starts with
the initial seeding of the particles (tracers) once the jet has
reached the self-similar turbulent regime. The particles are
randomly placed both at the upper and lower irrotational flow
region of the jet, at a distance of up to 0.5H from the TNTI
location. To visualize the evolution of the particle positions
as well as their vorticity Figs. 2(a)-2(f) show the position of
some particles and their vorticity norm at different instants
of the simulation (¢/t.s = 24.6, 28.4, 33.2, 37.9, 42.7, and
47.5, respectively) in a (x,y) plane placed at the middle of the
computational domain. Figure 2(a) shows the particles at the
(initial) time when the particles are seeded in the simulation,
while Figs. 2(b)-2(f) show several successive instants from
the simulation.

One can see that the majority of particles move towards
the center of the jet, although some move away from it, as
a consequence of the jet growth. Also, towards the end of
the simulation, several particles entrained by the jet display a
vorticity magnitude lower than the threshold defining the TNTI
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FIG. 2. (Color online) Visualisation of fluid particles location during the simulation in the central plane of the jet (dots) and the TNTI
(dark solid line). Each particle corresponds to a dot while the color represents the vorticity norm associated to the particle. Low (high) vorticity
corresponds to darker (medium) gray (blue and red), respectively. (a) Initial particle location at the time particles were seeded in the irrotational
region of the flow adjacent to the TNTI (¢/tf = 24.6); [(b)—(f)] several consecutive instants during the simulation (from ¢/t = 28.4 to

t/ter = 47.5).
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FIG. 3. (Color online) Temporal signals of the vorticity norm,
normalized by the velocity of the center line U, and the jet half-width
8o.5, of four different particles. (a) The “original” signals, and (b) the
signals “centered” at the time the particles cross the TNTIL.

(0.76[;—"5), which means that they are trapped inside irrotational

fluid “bubbles” which were entrained into the jet by large-scale
engulfing.

For instance, the particles located at (x/H,y/H) = (1,1) in
Fig. 2(b) seem to be “engulfed” into the turbulent region of the
jet in the subsequent images [Figs. 2(c)-2(f)]. Nevertheless,
the amount of particles entrained through this process seems to
be low compared with the global amount of particles entering
the jet. This agrees with Basu [5] in the sense that this process
provides a relatively small contribution to the total entrainment
in the jet. One can also observe that these particles move
increasingly faster in the streamwise direction as they acquire
significant velocity still in the irrotational region.

For the Lagrangian statistics only particles that cross the
TNTI and become part of the turbulent flow region are selected
for the analysis. For this purpose one has to compute the
exact location of the TNTI along the entire simulation. As
stated before we define the instantaneous TNTI location using
a vorticity magnitude isosurface with a threshold given by
w= 0'75% [5,17], which is computed during the simulation
using the instantaneous values of U, and 4y 5. For each particle
trajectory we define 1° as the time when a particle crosses the
computed TNTT location, the time series of a given quantity
is centred at t = 0 using this reference time, i.e., ¢ becomes
t—1Y. Figures 3(a) and 3(b) illustrate the procedure for four
individual particles showing their vorticity temporal signals
(normalized by the centerline velocity and jet half-width)
before [Fig. 3(a)] and after [Fig. 3(b)] being reset by the
“reference” time, i.e., the time ¢ becomes ¢ — ¢°, where °
is the time when each particle crosses the TNTI.

In the present work the total simulation time since the
initial placement of the particles in the vicinity of the jet
is about 527,, where 1, is the Kolmogorov time. The final
averaged conditional Lagrangian enstrophy profile is obtained
by averaging the conditional enstrophy time series from the
individual particles. Figures 4(a) and 4(b) show the conditional
mean Lagrangean enstrophy and streamwise velocity profiles
for the present simulation at the far-field (self-similar) region.
The TNTI is located at t+ = 0, while the irrotational and
turbulent regions correspond to t < 0 and ¢ > 0, respectively.
We label these Lagrangian statistics by (); to differentiate
them from the classical statistics. The conditional mean
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FIG. 4. (Color online) Conditional (a) vorticity and (b) stream-
wise velocity profile across the turbulent-nonturbulent interface in
the planar turbulent jet using Lagrangian statistics. The interface is at
t = 0, and the irrotational and turbulent regions correspond to t < 0
and ¢t > 0, respectively.

enstrophy displays a characteristic sharp jump at the TNTI
and is roughly constant inside the turbulent region. A similar
behavior is observed in conditional Eulerian vorticity statistics
e.g., Westerweel et al. [6]. The mean thickness of the observed
vorticity jump is roughly equal to 20t,, consistent with the
10-15 n observed for the same simulation using Eulerian
conditional statistics [14]. The mean conditional Lagrangian
streamwise velocity also resembles the corresponding mean
conditional Eulerian profile [18]. Specifically, the velocity
mean is already important at the TNTI (reaching roughly
1/3 the value inside the turbulent region) and displays a
characteristic velocity jump inside the turbulent region, as
discussed in, e.g., Westerweel et al. [6].

III. LAGRANGIAN ENSTROPHY STATISTICS NEAR
THE TURBULENT-NONTURBULENT INTERFACE

A. Enstrophy governing equation

The enstrophy is w;w;/2, where the vorticity field w;
is given as the curl of the velocity vector u;, i.e., w;, =
€ijk0u j/0xy. Its transport equation is written as

D [1 S+ 92 1
— | TWiWw; | = W;W;djj V——— | - w;w;
Dt \2 T T axax; \2
—v— (1)

where v is the molecular viscosity and % stands for the total

derivative. The terms on the right-hand side represent enstro-
phy production, viscous diffusion, and viscous dissipation,
respectively.

B. Lagrangian mean enstrophy budget near the TNTI

The mean profiles of the terms governing the evolution of
the enstrophy across the TNTI are shown in Fig. 5. In the
irrotational region ¢ < O all the terms are negligible while
in the turbulent region far away from the TNTI (¢ /7, > 20) a
balance between enstrophy production and viscous dissipation
is observed. The most interesting feature appears close to the
TNTI, where, as one approaches the turbulent region from the
irrotational flow region, the mean enstrophy viscous diffusion
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FIG. 5. (Color online) Conditional Lagrangian enstrophy budgets
across the turbulent-nonturbulent interface in the planar turbulent jet.
The TNTI is at t+ = 0, while the irrotational and turbulent regions
correspond to t < 0 and ¢ > 0, respectively.

is positive and the dominating term, i.e., there exists a small
layer at the edge of the irrotational region where (viscous)
diffusion is important, whereas enstrophy production and
viscous dissipation remain negligible.

This means that this term or mechanism, although inte-
grating to zero for the whole computational domain, drives
the growth of the total enstrophy near the TNTI. This agrees
with the classical ideas about the mechanisms behind turbulent
entrainment as described in Corrsin and Kistler [2], i.e., the
entrainment process is indeed triggered by viscous diffusion of
enstrophy from the turbulent region. A similar result has been
observed in experimental data from an oscillating grid [10]
and direct numerical simulations of a turbulent planar jet
[11] where conditional mean (Eulerian) profiles of enstrophy
diffusion exhibit a similar positive or negative contribution
near the TNTIL. Also in agreement with this, it has been
observed in experimental data from a turbulent jet that the
probability density function of the enstrophy transport near
the jet edge is symmetrical and yields a zero mean value for
enstrophy flux [6].
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FIG. 6. (Color online) Lagrangian probability density functions
(PDFs) of the enstrophy viscous diffusion (a) and enstrophy produc-
tion (b), taken at several instants from the reference time where the
particles cross the TNTI (¢ = 0).
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C. Lagrangian probability density functions near the TNTI

Figures 6(a) and 6(b) show the probability density functions
(PDFs) of the enstrophy viscous diffusion and enstrophy
production, respectively, normalized by their variance and cen-
tered at their mean value, at several instants from the reference
time they cross the TNTIL. Inspection of the figures shows that
the diffusion is roughly symmetric inside the turbulent region
(for t/t, > 5) and positively skewed near the TNTI due to
the positive contribution to the growth of enstrophy described
before. On the other hand, the production is positively skewed
inside the turbulent region and slightly negatively skewed at the
TNTI. This suggests a predominance of enstrophy production
by vortex stretching versus compression inside the core of the
jet and the slight predominance of vortex compression at the
TNTI as documented in da Silva and Pereira [9]. For ¢ /7, > 10
the PDFs of each term collapse, indicating that the influence
of the TNTI is no longer felt, i.e., the terms already display
their “turbulent” behavior.

D. Lagrangian joint probability density functions
across the TNTI

A deeper look into the mechanisms responsible for the
transport of enstrophy from the turbulent into the nonturbulent
(irrotational) region can be achieved by analyzing the joint
probability density functions (JPDFs) of enstrophy variation
and the terms responsible for the main enstrophy increase
near the TNTI: viscous enstrophy diffusion and enstrophy
production.

Figures 7(a)-7(d) show the JPDFs of the enstrophy vari-
ation and enstrophy production at several instants. In the
irrotational region [t/t, = —5; Fig. 7(a)] and at the TNTI
[/7, = 0; Fig. 7(b)] no correlation can be observed between
the two quantities. The enstrophy production seems to have
no role on the enstrophy increase at these locations. On the
other hand, inside the turbulent region [t/7, > 5; Figs. 7(c)
and 7(d)] the two quantities are clearly correlated: Fort /7, > 5
it is evident that the enstrophy production causes the enstrophy
local value to increase.

Figures 8(a)-8(d) show the JPDF of the enstrophy variation
and the enstrophy viscous diffusion. In contrast with the ob-
served enstrophy production, (viscous) diffusion is already felt
outside the turbulent region as attested by Fig. 8(a) from¢ /1, =
—5 showing already some degree of correlation between
the diffusion and temporal variation. The correlation level
increases significantly at the TNTI [Fig. 8(b) from /1, = 0],
particularly for positive values of both quantities (not for
negative values), clearly demonstrating that the enstrophy
growth is caused by the viscous diffusion, while inside the
turbulent region the correlation between these quantities is
less clear [Figs. 8(c) and 8(d) from ¢ /7, > 5].

E. Densities in the (R, Q) plane across the TNTI

Since the work of Chong et al. [19] and Cantwell [20]
considerable attention has been given to the invariants of
the velocity gradient tensor A;; = du;/0x;. In incompressible
flows this tensor has only two nonzero invariants, the second
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FIG. 7. Lagrangian joint probability density functions (JPDFs) of enstrophy total variation and enstrophy production taken at several
instants from the reference time where the particles cross the TNTI (¢ = 0). The irrotational and turbulent regions correspond to t < 0 and
t > 0, respectively: (a) t/t, = =5, (b) t/7, =0, (¢) t /T, = +5, and (d) ¢ /7, = +10.

Q and third R, defined by
Q = —34ijAji = j(wiw; —25,;5;)) 2
and
R=—1A;jAjAw = —5(SiSjeSki + 30i0;S;;),  (3)

respectively.

It is important to recall the physical meaning of these
invariants (see Davidson [21], Ooi et al. [22], Blackburn
et al. [23], and Soria et al. [24]). If QO > 0, enstrophy is more
important than strain product, whereas if O < 0 the opposite
occurs. In a Burgers vortex flow, for instance, the center of the
vortex is characterized by Q > 0, while in the region around
it O < 0, implying that strain product (and, hence, the viscous
dissipation of the kinetic energy) dominates.

The meaning of R depends on the sign of Q. If QO > 0,
then R ~ —1/4w;w;S;; and R < 0 implies a predominance of
vortex stretching over vortex compression, while if Q0 < 0,
then R ~ _1/3SiijkSki = —3agBsys, where ag > Bs = vs
are the three eigenvalues of S§;; arranged in descending
order. Due to incompressibility, as + Bs + ys = 0, therefore

R > 0 implies that ag,Bs > 0;ys <0, and the associated
flow structure is sheetlike, whereas R < 0 implies a tube like
structure.

In order to assess at which locations in the (R, Q) invariant
phase space, the enstrophy governing mechanisms take place
it is interesting to analyze density functions of the enstrophy
viscous diffusion and enstrophy production in the (R, Q) map
across the TNTI. As in Chertkov et al. [25], van der Bos
et al. [26], and Wang et al. [27], we define the density function
(DF) of a given flow quantity ® by

@(R,Q>=fd>P<R,Q,<I>>d<I>= P(R.O)®IR.Q), (&)

where P(R,Q,®) is the joint PDF of the R and Q invariants
and the variable @, while (®|R, Q) is the conditional average
of ®. The enstrophy production density, for instance, is defined
by

w;w;S;j(R,0) = /wia)jSijP(R»Qywiijij)dwiijij
= P(R,Q){w;w;S;;|R,Q). (5)
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FIG. 8. Lagrangian joint probability density functions (JPDFs) of enstrophy total variation and enstrophy viscous diffusion taken at several
instants from the reference time where the particles cross the TNTI (¢ = 0). The irrotational and turbulent regions correspond to ¢ < 0 and

t > 0, respectively: (a) t/7, = =5, (b) t/7, =0, (c) t /1, = 45, and (d) ¢ /7, = +10.

Enstrophy production due to vortex stretching takes place
ie., P(R,Q){wiw;S;j|R,Q) at several instants. The figures either in regions where enstrophy is more important than strain
show no appreciable difference for ¢/1, = 0 (TNTI), t/1, = product and where vortex stretching is more important than
10, and /1, = 20, being also very similar to the figures in vortex compression (R < 0,0 > 0) and also in regions of
Chertkov et al. [25] and van der Bos et al. [26]. biaxial strain (R > 0,0 < 0). Negative enstrophy production,

Figures 9(a)-9(c) show DF plots of enstrophy production,

PAAR Q)<00S,[R.Q>

PAfR,Q)<0,5,R.Q>

PAfR,Q)<0,5,R.Q>

FIG. 9. (Color online) Enstrophy production density P(R, Q)(w;w;S;;|R, Q) at several instants in relation to the time when particles cross
the TNTI (¢ = 0) for the present simulation: (a) t/7, = 0, (b) /7, = 10, and (c) #/7,, = 20. Negative contours are represented by dotted lines

and darker (stronger colors) represent higher magnitudes.
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FIG. 10. (Color online) Enstrophy viscous diffusion density P(R, Q)(va)(?—;(%wi w;)|R, Q) at several instants in relation to the time when
I
particles cross the TNTI (# = 0) for the present simulation: (a) /7, = 0, (b) /7, = 10, and (c) #/7, = 20. Negative contours are represented

by dotted lines and darker (stronger colors) represent higher magnitudes.

on the other hand, occurs in regions of vortex compression
(R > 0,0 > 0). At the TNTI positive enstrophy production,
which as we saw before is negligible at this location, occurs
preferentially in regions of biaxial strain (R > 0,0 < 0),
whereas enstrophy attenuation due to vortex compression
occurs in regions of axial compression (R < 0,0 < 0).

The DFs of enstrophy viscous diffusion P(R,Q)

<vag;l_ (3wi®)|R,Q) are displayed in Figs. 10(a)-10(c).
Inside the turbulent region for /7, > 10 [Figs. 10(b)
and 10(c)] positive values of enstrophy viscous diffusion
are obtained mainly in flow regions where strain product is
more important than enstrophy (Q < 0), whereas negative
values of the diffusion term occur in flow regions where
enstrophy is more important than strain (Q > 0). This result
is not surprising since it is known that enstrophy is mainly
concentrated in long-lived vortex tubes which are surrounded
by regions where strain product and kinetic energy dissipation
dominate. This seems to imply that the enstrophy viscous
diffusion tends to decrease the level of enstrophy at the core of
the vortex tubes and to transport this enstrophy towards regions
surrounding the tubes. At the TNTI (¢/7, = 0), on the other
hand, the density of the enstrophy viscous diffusion exhibits
a very different behavior [Fig. 10(a)]. Here enstrophy viscous
diffusion is positive both above and below the “Vieillefosse”
lines. Indeed, it is difficult to see where the very small negative
values of this term lie in the (R, Q) map. This shows that the
enstrophy viscous diffusion is a source of enstrophy where
fluid particles are entrained at the TNTI for all possible
topologies within the R, Q map.

IV. ANALYSIS OF THE PARTICLE TRAJECTORIES
DURING THE ENTRAINMENT

A. Number of particles trapped inside ‘““irrotational bubbles”

In this section we analyze the amount of particles that find
their way into the shear layer ending up inside irrotational
bubbles that exist in the turbulent region. The existence of
these bubbles is a consequence of the “engulfment” flow
mechanism and several of these bubbles can be observed
in two-dimensional cuts of the shear layer, e.g., one of such
bubbles is located at (x/H,y/H) ~ (0,—0.8) in Fig. 2(c). The
number of particles entrained into irrotational bubbles can be

used to estimate the relative importance between “nibbling”
and “engulfing” in the planar turbulent jet. Engulfing is a
large-scale process that proceeds into two stages: (i) an inviscid
first stage, where regions of irrotational flow are drawn into the
core of the shear layer, which is followed by (ii) the swallowing
of these pockets (or bubbles) by a viscous-dominated process
acting at their edges. The existence of an appreciable number
of particles (initially seeded at the vicinity of the TNTI) inside
these bubbles would clearly indicate that “engulfing” plays a
major role in the turbulent entrainment process. Conversely,
if this number is small, “engulfing” is not important for the
present flow.

In the present simulation and using the vorticity magnitude
threshold the flow field was divided into three different regions.
Regions where the vorticity exceeded the threshold were
deemed as being part of the turbulent region, whereas the
ones below the threshold were defined as being irrotational.
A distinction was made between the irrotational fluid region
outside the TNTI and the pockets of irrotational fluid impris-
oned inside the turbulent envelope. For the latter, the label of
irrotational bubbles was given.

The procedure to detect these irrotational bubbles uses com-
mon connectivity algorithms (see Shapiro and Accman [28])
to analyze whether a flow point below the defined vorticity
magnitude threshold is surrounded by points labeled as
“turbulent,” i.e., whether they are inside an irrotational bubble
or outside the shear layer. Details of this procedure are given in
Appendix B. Notice that some flow regions appear to be also
irrotational bubbles when depicted from a two-dimensional
cut through the shear layer but turn out to be connected to the
irrotational flow region. We label these “apparent” irrotational
bubbles as irrotational 2D bubbles.

Figure 11(a) shows the total number of points labeled as
irrotational bubbles defined using the procedure described in
Appendix B during the simulation (since the time the particles
were inserted outside the turbulent region). The total number
of points labeled as irrotational bubbles seems to be slowly
oscillating during the simulation but is always quite small,
e.g., always less than ~1.5% of the flow points inside the
turbulent region are termed “irrotational.”

To analyze how many particles are trapped into these
small regions of irrotational fluid we tracked the position of
individual particles randomly placed both at the upper and
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FIG. 11. (Color online) (a) Total number of points labeled as irrotational found inside the turbulent region (Bubbl.) divided by the total
number of points of the computational domain (Tot.) and by the total number of points labeled as turbulent (Turb.). (b) Number of particles
found inside the irrotational bubbles (Partic. bubbl.) divided by the total number of particles (Partic. Tot.) (“2D bubbl.” stands for 2D irrotational
bubbles). (c) Total number of particles that were once inside an irrotational bubble (Accum. irrot. partic.) and the total number of particles that
are inside the turbulent region (Turb. partic.); both numbers are normalized by the number of instantaneous particles inside the turbulent region.

lower shear layers of the jet, up to a distance of 0.5H from the
TNTIlocation in asingle (x, y) plane placed at the middle of the
computational domain [Figs. 2(a)-2(f), described previously,
show the position of these particles at several snapshots during
the simulation].

Figure 11(b) shows the total number of particles that end up
inside the irrotational bubbles during the simulation divided
by the total number of particles. “2D bubbl.” represents the
2D irrotational bubbles. The number of particles captured
inside an irrotational bubble oscillates strongly during the
simulation but is always quite small, e.g., less than 1% of
the total number of particles. The fraction of particles trapped
inside the “apparent” (irrotational 2D bubbles) is a bit higher
but remains also quite small (less than ~3.0%).

Figure 11(c) shows the total number of particles that
are inside the turbulent region excluding particles inside the
irrotational bubbles (Turb. partic.) and the total number of
particles that were once inside irrotational bubbles (Accum.
irrot. partic.). Both numbers are normalized by the total number
of particles inside the turbulent region. As can be seen the
total number of particles trapped inside the bubbles is small
compared to the total number of particles in the turbulent
region.

These results suggest that “engulfing” is not important for
the present flow. A more detailed study of the geometry and
evolution of these bubbles should be the subject of another
study, e.g., it would be interesting to make a similar study
in different flows to see whether, as suggested by Phillip and
Marusic [7], engulfment is more important in jets than in
wakes.

B. Particle motion in relation to the TNTI location

In order to analyze the dispersion of the particles during
the entrainment process, Figs. 12(a) and 12(b) show statistics
of the vertical distance of each particle to the TNTI during
the simulation dy,. For each instant of the simulation this
distance was taken both for the particles entering at the upper
and lower shear layers. When the distance is zero the particles
are at the TNTI location while negative and positive values of
8y, represent distances to the TNTI taken for particles in the
turbulent or irrotational region, respectively. Given the small
amount of particles that end up in the irrotational bubbles,

no effort was made to separate these particles from particles
inside the shear layer in regions of turbulent motions.

The mean distance to the TNTI is displayed in Fig. 12(b) and
decreases in time as the particles are drawn into the turbulent

0.2r
i <8y, >/H
O_
-0.2F
0.4
-0.6
-Iw\\\Iw\\\Iw\\\l\\\\l\\\wl\\ww
25 30 40 45 50
t/tref
(a)
1 —
A
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0.8F - ——-- 28.4
[ —mmmem 33.2
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FIG. 12. (Color online) (a) Mean vertical distance of the particles
to the location of the TNTI 8y, . (b) Probability density function (PDF)
of the vertical distance of the particles to the location of the TNTI §y,,.
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region. Itis interesting to see that the particles continue to move
into the jet center long time after they have been entrained. A
mean velocity could be computed from the slope of dy, and
the figures shows that this speed is a bit slower near the TNTI
than far away from it.

The PDFs of 8y, for several instants are displayed in
Fig. 12(b). Initially, for ¢ /t,.f = 24.6, the particles are equally
distributed with the distance from the TNTI, as expected.
After some time, however, the particles tend to accumulate
near the TNTI as observed by the shape of the PDF of &y,
at t/ter = 33.2. This suggests that the entrainment velocity
and the entrainment process itself near the TNTI proceeds at
a slower pace compared to away from the TNTI. For later
instants (¢/tr = 42.7), most of the particles have already
been entrained inside the shear layer and one observes that the
PDFs of §y, become “flat” again, indicating that the entrained
particles disperse at several distances from the interface some
time after the entrainment has taken place, suggesting a
comparatively free motion of the particles inside the turbulent
region.

The results suggest that the entrainment of particles involves
a relatively slow motion near the TNTI than elsewhere.
This is consistent with the existence of a entrainment phase
associated with viscous processes at the TNTL. Alternatively,
this may imply that the particles move in a direction which is
approximately tangent to the TNTI position once this interface
has been crossed. The shape of the streamlines of the flow near
the TNTT as displayed in, e.g., Bisset et al. [17] is consistent
with this hypothesis. By moving tangent to the TNTI the fluid
elements have enough time to build up their vorticity content
before they are pushed further into the interior of the shear
layer.

V. CONCLUSIONS

A DNS of a temporal plane jet at Re, =~ 110 was used
to study the dynamics of the enstrophy during the turbulent
entrainment process which is present in many free shear
flows such as mixing layers, wakes, and jets. Specifically, 2.5
millions of particles (tracers) initially seeded outside the jet
(in the irrotational region) near the TNTI were tracked along
the simulation, allowing the detailed study of the enstrophy
generation during their entrainment into the turbulent shear
layer. The innovative aspect of this study consists in analyzing
the entrainment using Lagrangian statistics, where the dis-
tances from the TNTI location express the trajectories of fluid
elements in the vincinity of the TNTI, which is not the case
when using Eulerian conditional statistics.

Lagrangian statistics show the existence of a vorticity jump
associated with a length scale which is one order of magnitude
greater than the Kolmogorov microscale, in agreement with
previous results for Eulerian statistics, e.g., da Silva and
Taveira [ 14]. Moreover, the existence of a streamwise velocity
jump described by Westerweel et al. [6] is also detected in the
Lagrangian statistics.

Analysis of the enstrophy transport terms for the particles
along the simulation showed that the turbulent entrainment
mechanism starts with a growth of enstrophy in the irrotational
near the TNTI caused by the viscous diffusion and is followed
by an increase due to enstrophy production that dominates the
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flow inside the turbulent region. Probability density functions
of the enstrophy diffusion and production show that these
mechanism change substantially from the TNTI to inside
the core of the turbulent region, e.g., enstrophy diffusion is
negatively skewed at the TNTI and not inside the turbulent
region, where it leads to no net increase of the enstrophy,
whereas enstrophy production is only perceived by fluid
particles after the TNTI region has been crossed into the
turbulent region. Density functions of the enstrophy governing
terms in the (R, Q) map allowed the detailed study of the
topology of the terms acting on the particles during the
entrainment.

Finally, we analyzed the importance of the “engulfment”
mechanism for the present jet, using information from the
tracked particles and their relation to the “irrotational bubbles”
originated from the engulfment motions. The analysis showed
that the volume from these “irrotational bubbles” accounts for
less than 1.5% of the turbulent volume of the jet and that only
less than 1% of the particles initially placed outside the shear
layer end up inside these bubbles. Probability density functions
of particle position in relation to the TNTI position show that
the particles spend more time crossing the region near the
TNTI than traveling inside the turbulent region, consistent
with the particles moving tangent to the interface around the
time they cross it. The results suggests that the “engulfment”
mechanism is not important for the entrainment for the present
jet, in agreement with previous numerical and experimental
works [3,5].

APPENDIX A: DETECTION OF THE TNTI

The TNTI can be seen as a (zero-thickness) surface
separating turbulent from irrotational flow and can be defined
in terms of vorticity versus no-vorticity content of the flow.
Several methods have been used to detect the TNTI in
several different flows, e.g., Bisset ef al. [17] and Westerweel
et al. [6]. Many of these methods consist in looking for
a low vorticity-magnitude threshold wy;, below which flow
regions can be considered to be (approximately) irrotational. A
difficulty arises due to the existence of perturbations within the
irrotational flow (in experimental data) or numerical noise (in
numerical simulations) that prevent the use of a straightforward
approach to detect this threshold. A useful observation is that
there is a vorticity magnitude range where statistics of the
interface layer, e.g., conditional vorticity profiles in relation to
the distance from the TNTI, as well as the geometric shape of
the interface layer itself, are weakly dependent on the vorticity
magnitude threshold.

Bisset et al. [17] computed conditional vorticity profiles
from a numerically simulated wake and found that for vorticity
magnitude thresholds near wy = 0.7Uy/8, where U, and &
are the velocity deficit and shear layer thickness, respectively,
the conditional vorticity magnitude and the TNTI geometry
changes little. Therefore, this threshold could be used to define
the location of the TNTI for the simulated wake.

Figures 13(a) and 13(b) show the volume of the turbulent
region for the present jet, as function of the vorticity magnitude
threshold used to detect it Vol = Vol(w > wy). For a range
of vorticity magnitudes there is a plateau of turbulent volume
between wy ~ 0.08(U;/H) to w, = 0.30(U,/H), and using
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FIG. 13. (Color online) (a) Volume of the vorticity region as function of the vorticity magnitude for an instantaneous vorticity field. There
is a plateau between w, = 0.08U,/H and w, = 0.30U,/H, where the volume of the vorticity (or turbulent) region changes very slowly with
the vorticity magnitude (threshold). Any value within this plateaulike region could be used to define the TNTI (or, alternatively, the vorticity
magnitude threshold defining the TNTI is within this plateau). (b) Same as (a) but in linear-log coordinates and zoomed over the region of interest.
(c) Second derivative of the turbulent volume with the identification of the detected threshold (point where second derivative intersects zero).

any value of vorticity magnitude comprised within this plateau
to detect or define the location of the TNTI leads to similar
geometry of the TNTI and similar conditional statistics.

In the present work we employ an automatic method to
determine a vorticity magnitude threshold within this plateau.
The method is inspired by the observed change in the curvature
of Vol; = Volr(wy), from convex to concave, displayed in
Fig. 13(a). The vorticity threshold used to locate the TNTT wy;
is defined by the inflexional point, i.e., the point where the
second derivative of the volume of the turbulent region is zero,

82VolT
Wy - =

Al
b2 (AL)

In the present case this value is wy &~ 0.25(U,/H). Fig-
ure 13(c) shows the location of the detected threshold in the
curve for the second derivative of the turbulent volume.

(a)

Figures 14 show the influence of the vorticity magnitude
threshold in the location of the TNTI used for its detection
for the two values delimiting the plateau of turbulent volume
[wy = 0.08(U;/H) and wy = 0.30(U;/H)]. As can be seen
the TNTI location varies weakly for vorticity magnitudes
located within this plateaulike region and therefore in practice
any value within this range could be used to detect the TNTL

APPENDIX B: DETECTION OF POCKETS
OF IRROTATIONAL FLUID INSIDE THE
SHEAR LAYER (IRROTATIONAL BUBBLES)

In order to detect irrotational bubbles, a common
connectivity algorithm was used (see Shapiro and
Accman [28]). Irrotational bubbles consist of pockets
of fluid where the local vorticity magnitude is below the
threshold defined as “turbulent” that are surrounded by

FIG. 14. (Color online) Contours of vorticity magnitude in a side view of the planar jet with lines defining particular vorticity values used
to detect the TNTI. The dark (black) lines represent values delimiting the turbulent volume plateau (@, = 0.08U,/H and w, = 0.30U,/H),
and the gray (red) line the particular threshold detected by the automatic method (w, = 0.25U,/H). (a) Side view showing the full domain;

(b) zoom showing a region near the jet edge.
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flow points labeled as “turbulent,” i.e., they consist of fluid
pockets that are irrotational while being inside the shear
layer.

The employed algorithm [28] starts by applying a simple
logical filter to select either irrotational or turbulent regions,
i.e., whose enstrophy levels exceed the previously determined
threshold. Subsequently, the 3D flow field is partitioned in
the spanwise direction into a set of blocks to be treated
in parallel. To each block a common two-stage connected
neighborhood procedure is used. (i) In the first stage, the
algorithm covers each pixel of the box, where a stencil
containing the binary test results is interrogated in order to
look for the lowest label of each pixel vicinity. If a lower label
is found, this is attributed to the pixel or a new incremental
label is assigned. For the case of turbulent regions a simple
4-connected neighborhood search is made, using a 7-point
stencil, whereas consistency requirements enforce irrotational
regions to be built using an 8-connected neighborhood, with
a 27-point stencil. (ii) The second stage of the algorithm
consists in a reverse bottom-up sweep, where the stencils use
the updated first-stage labeled results in order to construct a
local equivalence table that contains the information about all
connected labels within each individual box. After finishing
the construction of all local equivalence tables, the boundaries
between the contiguous partitions are evaluated in order to
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assemble a global equivalence table that conciliates the labels
from the entire 3D flow field. Finally, the global equivalence
table is used to assign the correct label to each flow region.
Furthermore, for the case of the irrotational regions, the blob
size and its location serve as an automatic criteria to distinguish
the internal nonturbulent bubbles from the external irrotational
regions that involve the shear layer.

Some flow regions appear to be also irrotational bubbles
when depicted from a 2D cut through the shear layer but
turn out to be connected to the irrotational flow region. To
analyse these bubbles, an algorithm similar to the one applied
to the 3D field is applied to each spanwise 2D slice, planes
(x,¥). The 2D labels are then compared to the 3D which
were previously obtained in order to determine if a given
nonturbulent region is part of a 3D irrotational bubble or if it is
part of the external irrotational regions that is perceived as an
irrotational bubble from a 2D slice of the flow. To the latter one
attributes the symbolic classification of 2D irrotational bubble.
Experimental works using 2D cuts through the turbulent region
may consider these regions as contributing to the “engulfment”
mechanism and arguably some of these bubbles will eventually
end up as a closed irrotational region inside the turbulent
region. Nevertheless, the number of these events (and their
volume) must be taken only as an upper bound for the number
of “engulfing” events.
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