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Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models
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Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We
present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models
that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using
complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct
a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact
analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with
the exact splittings obtained through numerical diagonalization.
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I. INTRODUCTION

In quantum theory, the term tunneling defines classically
forbidden processes, i.e., which cannot be described by
real solutions of Hamilton’s equations of motion, and was
originally employed to characterize transitions which were
forbidden by energy barriers. It has been thereafter extended
to dynamical tunneling, which refers to any quantum transition
between two classically distinct regions in phase space [1,2]
where the inhibition of a classical transition between these
two regions is not necessarily restricted to the constraint
of energy conservation. Indeed, focusing first on the simple
case of integrable systems with one degree of freedom, the
development of semiclassical techniques [3] have permitted a
deeper qualitative and quantitative understanding of tunneling
in terms of classical trajectories. In particular, its complete
semiclassical description requires, in addition to real orbits,
to take into account also complex classical trajectories [4,5].
For instance, studying scattering phenomena involved in
chemical reactions, Freed [6] and George and Miller [7,8]
incorporated complex orbits, evolving along suitable paths
in the complex time domain, in order to compute the Green
function G(qf ,qi,E), giving rise to the tunneling transmission
with an energy E below the top of a potential barrier.

A few years later, Coleman [9] (see also Ref. [10]) devel-
oped an approach suited for the simplest bounded systems,
where tunneling is generally identified in the spectrum as
small splittings between doublets of nearly degenerate discrete
eigenenergies. In the context of field theories, he introduced the
notion of instantons which corresponds to classical solutions
of the Hamilton dynamics once a Wick rotation t → −it has
been performed. For systems with the standard form of the
Hamiltonian

H (p,q) = p2

2
+ V (q), (1)

where p and q are the canonical variables, this transformation
on the time leads to an inversion of the potential V (q) →
−V (q). The classical trajectories in the new potential allow
to evaluate quantum observables associated with the lowest
energies (ground-state doublet or multiplet), such as the

frequency of oscillation between an arbitrary number of
identical minima or the decay rate of a metastable state that
is initially defined in a local minimum of the potential and
decays via the coupling to a continuum of unbounded states.

The method has been recently generalized [11], using again
the idea of a suitably parametrized complex time path, in
order to embrace more general situations involving, e.g., an
arbitrary energy and/or Hamiltonians not necessary of the
form (1). For instance, resonant tunneling, which has been
widely investigated in one-dimensional (1D) open systems
with two consecutive barriers [12–14], is thus explained in
terms of constructively interfering repetitions of complex
orbits. This is shown for the simple case of a triple-well
potential where the presence of a deeper middle well (which
prevents the application of the standard instanton techniques
based on the complete Wick rotation recalled above) can create
giant fluctuations of the tunneling period between the two
symmetric outer wells [15], namely whenever a third energy
level, associated with a state that is localized in this middle
well, comes close to a doublet that is associated with the two
outer wells.

If the number of the degrees of freedom exceeds 1, we
generically deal with nonintegrable Hamiltonians whose phase
space contains regular islands foliated with Kolmogorov-
Arnold-Moser (KAM) tori and surrounded by chaotic seas. In
that case, tunneling is drastically modified and yields erratic
fluctuations (by several orders of magnitude) of the associated
rates and time scales when varying a parameter of the system
[16,17]. These fluctuations have the same origin in the quantum
spectrum as the ones observed in the one-dimensional resonant
case. However, the appearance of natural boundaries [18]
prevents the analytical continuation of the invariant classical
KAM tori into the complex plane of the classical phase space,
and the methods at work for one-dimensional systems fail.
Despite some important breakthroughs in that direction during
the past few decades [19–21], a full semiclassical description
in terms of complex classical structures is still missing. On the
other hand, a considerable effort has been made to combine,
within a perturbative framework, statistical descriptions of
chaos-assisted tunneling due to the influence of the classical
chaotic sea [21–23] with the theory of resonance-assisted
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tunneling (RAT) [24–29] that is based on the presence of
nonlinear resonances within the regular regions. This approach
has been shown to provide rather accurate semiclassical
predictions of quantum tunnelling rates in kicked model
systems [29].

In this paper, we present and discuss a semiclassical formula
for resonance-assisted tunneling splittings in one dimensional
integrable systems that exhibit a pair of symmetric regions of
bounded motion in the classical phase space, each of them
being surrounded by a resonant island chain. The study of
such models is clearly inspired by the recent idea to mimic
regular regions of mixed systems with a fictitious integrable
approximation in order to predict regular-to-chaotic tunnelling
[30,31], although we are not aiming here at approximating
a given nonintegrable system by such a model. Instead, our
motivation is to obtain a fully semiclassical (and nonpertur-
bative) description of resonance-assisted tunneling through
the analytical continuation of invariant classical manifolds to
the complex domain, which is permitted by the integrability
of the Hamiltonian. This will allow us to understand how
the island chains in the phase space are at work to create
fluctuations in the tunneling-induced level splittings when
varying a parameter of the system and what the semiclassical
conditions are for resonant tunneling.

The paper is organized as follows. In Sec. II, we construct
a class of models that fulfill the classical properties men-
tioned above using the theory of Hamiltonian normal forms.
Section III is dedicated to the computation of tunnelling split-
tings. In Sec. III B, we shall investigate the complex manifold
of our integrable model and identify the relevant complex
classical trajectories, defined along well-suited complex time
paths, that give rise to a semiclassical formula [Eq. (21) below]
for resonance-enhanced level splittings. The perturbative RAT
method is then applied to our system in Sec. III C and compared
with the complex paths approach. We discuss the validity of
the two methods in both limits of small and large sizes of the
island chains.

II. THE MODEL

A. Normal form theory

The Hamiltonian normal forms in classical mechanics
[32,33] have been originally developed by Birkhoff [34] and
extended by Gustavson [35] with the aim to classify the
classical dynamics in the neighborhood of the periodic orbits
in nonintegrable systems with several degrees of freedom. This
classification relies on canonical equivalence and provides
the simplest (local) form of the Hamiltonian where the only
terms that are kept are those that are sufficient to supply the
intrinsic “skeleton” of the dynamics, i.e., those terms that
cannot be eliminated by a canonical transformation because
they genuinely encapsulate the geometrical features of the
dynamics. Hamiltonian normal forms have helped to predict
the quantum energy spectra of such systems [36,37].

Normal form approaches are based on the combination of
Fourier and Taylor expansions of the nonintegrable Hamil-
tonian in the neighbourhood of a periodic orbit. Order by
order, beyond the quadratic terms, a sequence of canonical
transformations can be explicitly built to eliminate all terms

but the resonant ones. The latter may give rise to divergencies
manifesting in the above construction procedure, which is
well known as the problem of small denominators. Those
resonant terms inhibit the integration of systems of ordinary
differential equations, and generally the procedure to obtain
an accurate approximation of the dynamics does not converge,
which is a signature of the nonintegrability of the system.
Nevertheless, this procedure enables one to extract some
essential information about the fine structure of the phase space
as it provides a description not only of the regular part but also
of the resonant layout where chaos emerges from, thereby
leading to the simplest local integrable approximation of the
system.

Specifically, let us consider an autonomous system with
two degrees of freedom (or a periodically time-dependent
system with one degree of freedom) depending on one control
parameter ε. In the neighborhood of a nondegenerate stable
orbit, a transverse coordinate system (p,q) in the so-called
Poincaré surface of section can be chosen [38] such that
the transverse dynamics is governed by a Hamiltonian whose
normal form is given by (see Ref. [38] for an exhaustive and
systematic study on this matter)

h(�)(p,q; ε) = ω(ε)

2
(p2 + q2) +

��/2�∑
k=2

ak(ε)(p2 + q2)k

+ b�(ε) Re[(p + iq)�] + higher-order terms,

(2)

where ω, {ak} and b� are real parameters, �·� denotes the
integer part, and the index � � 3 represents the order of the
first angle-dependent resonant term occurring in the expansion.
It can be rewritten in terms of the action-angle variables
I = (p2 + q2)/2 and θ = tan−1(q/p) associated with the
one-dimensional harmonic oscillator,

h̃(�)(I,θ ; ε) = ω(ε)I +
��/2�∑
k=2

ak(ε)(2I )k

+ b�(ε)(2I )�/2 cos (�θ ) + higher-order terms.

(3)

It is straightforward to see that the resonant term creates, for
appropriate values of the parameters, an island chain of �

islands in the transverse dynamics around the origin (p,q) =
(0,0) where the periodic orbit of the 2D system intersects the
Poincaré surface of section.

B. The Hamiltonian

Let us rewrite the normal form (2) as

h(�)(p,q)
def= h

(�)
0 (p2 + q2) + v(�)(p,q) (4)

with

h
(�)
0 (I )

def= a1I +
��/2�∑
k=2

ak(2I )k, (5a)

v(�)(p,q)
def= Re [b(p + iq)�], (5b)

where the {ak} are real parameters and b ≡ |b| exp (iφ) is
a complex parameter. From now on, we consider h

(�)
0 to
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be the unperturbed part while v(�) has to be understood
as a perturbation. Starting from h(�), we perform the sub-
stitution (p,q) �→ (cos p, cos q) and thereby obtain the new
Hamiltonian,

H (�)(p,q)
def= h(�)(cos p, cos q), (6)

with which we shall work from now on. This construction
gives rise to a smooth periodic replication of the phase-space
structure in both position and momentum. We then restrict
H (�)(p,q) to the torus [−π,π ] × [−π,π ] by imposing 2π -
periodic boundary conditions of the wave function in both p

and q. For a suitable choice of {ak} and b, this torus encloses
four elementary cells centered at (p,q) = (±π/2, ± π/2) and
surrounded by a (� : 1) resonance chain, as illustrated in Fig. 2.
While the modulus |b| controls the size of the island chains,
we can tune the relative orientation of the main islands by
smoothly rotating the (� : 1) resonances via the phase φ (see
Fig. 2).

Focusing now on the simplest case � = 4 [39], we obtain a
model with (4:1) resonances:

h(p,q)
def= h(4)(p,q),

= a1

2
(p2 + q2) + a2(p2 + q2)2 + Re [b(p + iq)4].

(7)

The Hamiltonian that we shall work with is given by

H (p,q)
def= H (4)(p,q) = H0(p,q) + V (p,q), (8a)

with

H0(p,q) = a1

2
(cos2 p + cos2 q) + a2(cos2 p + cos2 q)2,

(8b)

V (p,q) = |b|{(cos4 p + cos4 q − 6 cos2 p cos2 q) cos φ

− 4(cos3 p cos q − cos3 q cos p) sin φ}. (8c)

Choosing a1 > 0 and a2 < 0, the energy profile (p,q) �→
H (p,q) exhibits four symmetric volcano-like patterns within
the torus [−π,π ] × [−π,π ], each one having a local minimum
located at the center (±π/2, ± π/2) of the corresponding
elementary cell and four identical maxima situated along the
crown of the volcanos (see Fig. 1).

FIG. 1. (Color online) Graph of (p,q) �→ H (p,q) on the funda-
mental domain [−π,π ] × [−π,π ], where H is given by Eq. (8) with
a1 = 1, a2 = −0.55, φ = 0 and (a) b = 0; (b) |b| = 0.05.

III. TUNNELLING SPLITTINGS

A. Quantum mechanics

For bounded Hamiltonians H (p,q) with a twofold symme-
try, the spectrum is made of discrete energies E±

n which can be
classified according to their parity (±). They are determined
from the stationary Schrödinger equation

H (p̂,q̂) |φ±
n 〉 = E±

n |φ±
n 〉 , (9)

(with p̂ and q̂ denoting the momentum and position operator,
respectively) where the natural integer n sorts the correspond-
ing eigenstates |φ±

n 〉 which form an orthonormal basis. In
the limit h̄ → 0 (when Planck’s constant is much smaller
than the classical phase-space areas), the association of the
quantum states |φ±

n 〉 with classical phase-space structures
can be visualized using the semiclassical Wigner or Husimi
distributions [40–42]. In the case of regular classical dynamics,
the states are sharply localized [up to order O(h̄)] along
invariant tori in the classical phase space.

For instance, in the simple case of a 1D Hamiltonian of
the standard form (1) with a potential V (q) that exhibits two
symmetric local minima, the eigenstates |φ±

n 〉 with energies
E±

n below the top of the barrier between the minima are
mainly localized on symmetric tori in the wells characterized
by the classical energy En � E+

n � E−
n . A quantum state that

is given by the symmetric or antisymmetric linear combination
of the eigenstates |φ±

n 〉 is no longer stationary but gives rise
to oscillations from one well to the other with the period

τ = 2πh̄/	En, where 	En
def= |E−

n − E+
n | is the splitting

of the levels E±
n in the spectrum. This splitting represents,

for both integrable and nonintegrable bounded systems, a
characteristic signature of tunnelling between two classically
separated regions in the phase space.

The Hamiltonian Ĥ of our quantum model is derived from
a straightforward quantization of the classical model (8) with

q

π−π
−π

(c) (d)
π

φ=π p

(a) (b) φ=π/2φ=0

φ=3π/4

FIG. 2. (Color online) Phase space of the Hamiltonian (8) with
a1 = 1, a2 = −0.55, |b| = 0.05 for different values of the phase (a)
φ = 0, (b) φ = π/4, (c) φ = π/2, (d) φ = π .
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the simple symmetrization rule

f (p)g(q) �→ 1
2 [f (p̂)g(q̂) + g(q̂)f (p̂)] (10)

for the product of two functions f (p) and g(q) [43,44]. From
the quantization of (8), the periodicity of the Hamiltonian
allows us to use the Floquet-Bloch theorem and to restrict, for
integer values of 2π/h̄, the analysis to the finite-dimensional
Hilbert space H spanned by strictly periodic eigenstates in
both position and momentum on the torus [−π,π ] × [−π,π ].

As we see in Fig. 2, two independent twofold symmetries
are relevant in our model. It is natural to associate these two
symmetries with the antiunitary operators 
̂q and 
̂p that
perform mirror operations with respect to the p and q axes,
respectively, and that are defined through 
̂qf (p̂,q̂)
̂q =
f (p̂, − q̂) and 
̂pf (p̂,q̂)
̂p = f (−p̂,q̂) for any function f

of the canonical operators p̂ and q̂. Obviously, 
̂p is the
standard time-reversal operator, while 
̂q is the time-reversal
operator composed with the usual unitary parity operator.
By construction, 
̂q , 
̂p, and Ĥ mutually commute with
each other. However, the time-reversal invariance of the
Hamiltonian cannot be exploited to discriminate among its
eigenstates; it only allows one to choose the latter to be entirely
real. This particular phase convention fixes the spectrum of 
̂q

to be identical to the spectrum of the parity operator, such that
we can classify the eigenstates of the Hamiltonian according
to their parity: 
̂q |φ±

n 〉 = ± |φ±
n 〉.

In contrast to conventional double-well systems, however,
the eigenenergies associated with the four main islands within
the unit cell are organized in quartets, and the parity alone
is not sufficient to unambiguously specify the doublet whose
level splitting is determined by tunnelling along, say, the q

direction. To lift this ambiguity, we numerically construct
four states |±,±〉 from the local n-th excited harmonic
oscillator eigenstates |R or L, U or D〉 that are centered at
(q,p) = (±π/2, ± π/2) [with L (R) referring to the left (right)
column and U (D) to the upper (lower) row within the unit cell
depicted in Fig. 2], namely through

|++〉 def= 1

2
(|RU〉 + |LU〉 + |LD〉 + |RD〉), (11a)

|−+〉 def= 1

2
(|RU〉 − |LU〉 − |LD〉 + |RD〉), (11b)

|+−〉 def= i

2
(|RU〉 + |LU〉 − |LD〉 − |RD〉), (11c)

|−−〉 def= i

2
(|RU〉 − |LU〉 + |LD〉 − |RD〉). (11d)

Being eigenstates of the parity operator (with the eigenvalues
1 for |++〉 and |−−〉 and −1 for |+−〉 and |−+〉) [45],
these states closely mimic the quartet of eigenstates of the
Hamiltonian that are localized within the centers of the four
islands. In order to focus on tunneling along the q direction,
we therefore select those two eigenstates of Ĥ that have a
maximal numerical overlap with |++〉 and |−+〉.

Because of the invariance of H (p̂,q̂) under the canonical
transformation (p̂,q̂) �→ (q̂, − p̂), tunnelling along the mo-
mentum direction will give rise to the same splittings as for
the position direction. This equivalence is reflected by an
exact degeneracy between two energies among the four of
the quartet: For even N/4 the two states having a maximal

overlap with |+−〉 and |−+〉 have exactly the same energies,
while for odd N/4 the levels corresponding to |++〉 and |−−〉
are exactly degenerate.

B. Semiclassical theory

By construction of the Hamiltonian (8a), the unperturbed
case b = 0 gives rise to a tunneling problem that is equivalent
to the one of a symmetric 1D double-well system. This scenario
has been intensively investigated using JWKB analysis in
order to connect two approximated eigenstates, the so-called
quasimodes, each of them being localized on a distinct real
torus [46,47]. Up to a prefactor of order 1, the level splitting
	En associated with the doublet at energy En is essentially
determined as [48,49]

	En ∼
h̄→0

h̄ωne
−�(En)/(2h̄), (12)

where ωn is the frequency of classical oscillation on the torus
with energy En within the left or right well, and �(En) is the
imaginary action of a closed complex path that connects the
two symmetric tori.

The simplest bounded model inducing quantum resonances
can be obtained [15] for a Hamiltonian of the form (1) with a
potential V that has three wells, two symmetric outer ones, say,
that are separated by a deeper central well. In such a system,
resonant tunneling arises due to the constructive interference
of classical paths that are bouncing back and forth between
the two tunneling barriers. It was shown in Ref. [11] that
these relevant orbits can be obtained from a suitable complex
time path s �→ Re t(s) + i Im t(s) where, unlike for a pure
Wick rotation, both the real and the imaginary part of the
complex time are necessary to concatenate the primitive orbits
that constitute the complex trajectories. For the resonance-
assisted tunneling problem presented by the model (8) with
b 
= 0, we shall, in the same spirit, introduce a generic type of
concatenated complex paths that connect two real symmetric
tori inside the main island of each cell. This set of orbits will
be used to predict tunneling splittings between states that are
localized within these islands. For a given real parametrization
s �→ t(s) of a complex time path, it can be easily shown [11],
III.A], using the analyticity of the Hamiltonian H with respect
to (p,q,t), that the complex Hamiltonian equations

dp

ds
= −∂H

∂q

dt

ds
, (13a)

dq

ds
= ∂H

∂p

dt

ds
, (13b)

are equivalent to the set of real Hamiltonian equations

d(Re q)

ds
= ∂

∂(Re p)

[
Re

(
H

dt

ds

)]
, (14a)

d(Im q)

ds
= ∂

∂(− Im p)

[
Re

(
H

dt

ds

)]
, (14b)

d(Re p)

ds
= − ∂

∂(Re q)

[
Re

(
H

dt

ds

)]
, (14c)

d(− Im p)

ds
= − ∂

∂(Im q)

[
Re

(
H

dt

ds

)]
, (14d)
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0
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T

FIG. 3. (Color online) Phase space of the Hamiltonian (8) (thin
black lines) for a1 = 1, a2 = −0.55, |b| = 0.05, and φ = π/4, plotted
together with two different complex trajectories at energy E � 0.035
that connect an arbitrarily chosen initial point ρi ≡ (pi,qi) on the
real torus �in with an arbitrarily chosen final point ρf ≡ (pf ,qf ) on
the symmetric counterpart �′

in [both tori are plotted in (light) green].
The (red and orange) arcs are half of the complex orbits (ii) C, C ′,
and (iv) C̃ described in the text. Together with the connecting pieces
of �out and �′

out, they constitute a complex trajectory that results
from the time path depicted in the upper right inset. The (dark) blue
line is a complex orbit lying on a part of the complex manifold that
directly connects the symmetric tori �in and �′

in (see Fig. 4). These
two trajectories are plotted in a reduced three-dimensional complex
phase space spanned by (Re p, Re q, Im p).

that describes the evolution of a system with the four real
canonical variables (Re p, − Im p) and (Re q, Im q) under the
Hamiltonian Re[H (dt/ds)].

In our case of resonance-assisted tunneling, we start from an
initial point (pi,qi) ≡ (p(si),q(si)) at time ti ≡ t(si) on a real
inner torus �in inside the eye of one of the two main islands
and choose a time path t(s) with the shape of a descending
staircase as sketched in Fig. 3. This time path is not restricted
to lie all along the imaginary axis as imposed by the theory of
instantons. Instead, it successively evolves along the real and
imaginary directions (characterized by a real and imaginary
dt/ds, respectively), such that the complex trajectory ends,
after a time T , at the final point (pf ,qf ) on the real torus �′

in
that corresponds to the counterpart of �in in the symmetric
island. The freedom in the choice of t(s) can be justified from
the fact that the semiclassical contributions to tunneling, as
obtained through the stationary phase approximation of the
time propagator G(qf ,qi,T ), arise from action integrals along
complex classical trajectories that join qi and qf in a time T and
fulfill Eqs. (14). McLaughlin showed [50] that these integrals
are independent of the time path t(s) as long as no bifurcations
of trajectories are encountered while deforming the path and
as long as Im t(s) does not increase with s in order to guarantee
the boundedness of any intermediate evolution operator.

Tuning properly the length of the stairs as we depict in
Fig. 3, complex trajectories then can be described as a contin-
uous concatenation of pieces of the following distinct orbits:

(i) the two symmetric real periodic orbits lying on the inner
tori �in and �′

in with the real energy E, the real period Tin(E) =
T ′

in(E), and the real action Sin(E) = S ′
in(E);

(ii) the two symmetric complex periodic orbits C and C ′
with the imaginary period iTc(E) = iT ′

c(E) and the imaginary
action iσc(E) = iσ ′

c(E) with σc(E) > 0, which connect the
real inner tori �in and �′

in with the outer ones �out and �′
out,

respectively;
(iii) the two symmetric real periodic orbits lying on the outer

tori �out and �′
out with the real period Tout(E) = T ′

out(E) and
the real action Sout(E) = S ′

out(E) > 0;
(iv) a complex periodic orbit C̃ defined on the complex

manifold that connects the outer tori �out and �′
out, with the

imaginary action iσ̃c(E) with σ̃c(E) > 0 and the imaginary
period iT̃c(E).

The closed orbits (i)–(iv) are geometrical objects with the
property that the values of the associated actions do not depend
on the choice of the canonical coordinates. Those actions are
given in the (p,q) representation by

Sin(E) =
∮

�in

Re p d(Re q), (15a)

Sout(E) =
∮

�out

Re p d(Re q), (15b)

σc(E) =
∮
C
[Re p d(Im q) + Im p d(Re q)], (15c)

σ̃c(E) =
∮
C̃
[Re p d(Im q) + Im p d(Re q)]. (15d)

For the two last actions, the contours can be continuously
deformed according to Cauchy’s theorem as long as no
singularities of the transformation q �→ p(q,E) are crossed
(see Fig. 4).

Starting first with a portion of real time (dt/ds > 0), the
trajectory evolves from the initial point ρi ≡ (pi,qi) along the
torus �in until it reaches a certain point ρin. Then the time
varies along the imaginary direction (idt/ds > 0), driving the
trajectory into the complex domain until it reaches again the
real phase space, namely at the point ρout on the outer torus
�out. The length of this time step is equal to |Tc(E)/2| such that
only a half of the closed orbit C is followed in order to reach
the outer torus. Another portion of real time is again spent
to evolve on the real torus �out and reach the real point ρ̃out.
Then again, thanks to an imaginary time step with the length
|T̃c(E)/2|, the trajectory evolves on the complex manifold
and joins, after a half of a loop C̃, the torus �′

out at a point
ρ̃ ′

out on the other side of the main separatix delimiting the
two main islands. By symmetry, this procedure is repeated to
connect consecutively the real phase-space points ρ ′

out and ρ ′
in

(for simplicity they can be taken as the symmetric partners of
ρout and ρin, respectively, though this is not necessary) and,
finally, ρf ≡ (pf ,qf ). Invoking again Cauchy’s theorem, the
exact location of ρin, ρout, ρ ′

in, and ρ ′
out on the real plane is

not important as long as no singularity is encountered when
moving them along the corresponding real tori (see Fig. 4) [51].

We now use the different parts of the generic complex
trajectory we have just described in order to split the tunneling
process up into two main steps, namely (I) to cross the
separatrices that delimit the resonant chains and (II) to pass
over the separatrix structure that divides the two main islands.

(I) From its very construction, the global Hamiltonian (8a)
can be approximated by the normal form (7) in the
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FIG. 4. (Color online) Visualization of the complex manifold
associated with a pair of inner real tori �in, �′

in and the corresponding
outer real tori �out, �′

out at energy E � 0.035 (all the four are
plotted with thick green lines) for the Hamiltonian (8) with a1 = 1,
a2 = −0.55, and (a) |b| = 0.05, φ = π/2; (b) |b| = 0.05, φ = 3π/4;
(c) |b| = 0.001, φ = π/4. An exemplary set of complex orbits starting
from different initial points on �in and �out is projected onto the real
phase space (using the same color code as in Fig. 3) in order to
illustrate the topology of this complex manifold. While there are
two distinct families of (orange) complex orbits that connect the
outer real tori of the two islands in (b), only the lower family (at
p < π/2) contributes to the tunneling process as its imaginary action
is significantly smaller than the one of the upper family (at p > π/2).

neighborhood of (q,p) = (±π/2,π/2) and rewritten in
action-angle coordinates using the canonical transformation
(p = π/2 + √

2I cos θ,q = ±π/2 + √
2I sin θ ) with I > 0

and θ ∈ [0,2π ]. This finally yields a modified mathematical
pendulum

Hloc(I,θ ) = K0 + (I − I�:1)2

2m�:1
+ 2V (I ) cos (�θ + φ�:1), (16)

which is parametrized by coefficients that are given by the
parameters of the exact global Hamiltonian:

K0 = −a2
1/(16a2), I�:1 = −a1/(8a2), (17a)

φ�:1 = φ, m�:1 = 1/(8a2), V (I ) = 2|b|I 2. (17b)

This pendulum structure provides a dynamical tunnel coupling
between the inner torus �in and the outer torus �out.

To describe this tunneling process by means of the JWKB
theory, we represent the global quasimode |�〉 localized on
the quantized torus �in, which is characterized by the energy
En and the oscillation period Tin(En) in angle representation
as ([25], Appendix C)

�(θ ) � 1√
Tin(En)|θ̇ |

[eiSin(θ,En)/h̄ + AT ei[Sout(θ,En)/h̄+μ]],

(18)

where θ̇ denotes the time derivative of the angle coordinate.
The additional phase μ comes from the consistency with
Langer connection formulas [52] and is related to the Maslov
index counting the number of caustics encountered along
the classical trajectory with the corresponding real action
Sin(θ,En) = ∫ θ

0 I (θ ′,En)dθ ′, where I (θ ′,En) indicates the
action coordinate along the torus �in. By construction, the
action over a period, which is given by Eq. (15a), is quantized
according to Sin(En) ≡ Sin(2π,En) = 2πh̄(n + 1/2). On the
other hand, the torus �out on the outer side of the resonance
chain, with the action Sout(En) given by Eq. (15b), is not a pri-
ori quantized and thus Sout(En)/(2πh̄) − 1/2 is not an integer
in general. The coupling amplitude AT , which characterizes
the tunneling-induced admixture of the component associated
with �out to the quasimode on the inner torus �in, then can be
evaluated as [25]

AT = e−σc(En)/(2h̄)

2 sin [(Sin(En) − Sout(En))/(2�h̄)]
, (19)

where the half of the imaginary action iσc(En) of the closed
loop C defined by (15c) is involved.

(II) We now make use of the part of the trajectory that
connects the outer torus �out, which has the same energy E =
En as �in, to its symmetric counterpart �′

out in the other cell.
Replacing within Eq. (12) � by the action of the closed orbit C̃
and ωn by the frequency ωout of the outer tori, and taking into
account the periodicity of our system (which gives rise to an
additional factor two in the splitting formula as compared to
simple double-well tunneling), we evaluate the level splitting
associated with the tori �out and �′

out at the energy E due to
direct tunneling across the main separatrix as

δE(E) = 2h̄ωout

π
e−σ̃c(E)/(2h̄). (20)

Collecting the results (19) and (20), we obtain as a key
statement of our paper the semiclassical prediction

	En = |AT |2δE(En) (21)

for the level splitting associated with the states |φ±
n 〉 [25]. By

symmetry, one needs to take into account twice the first step,
leading to the square of the transmitted amplitude AT .

C. Comparison and discussion

A comparison of the formula (21) with the exact splittings,
which are obtained through numerical diagonalization, yields
a very good agreement, as shown in Figs. 5 and 6. Peaks appear
in the splitting whenever the denominator of AT vanishes, that
is to say, when �out is a EBK quantized torus with a quantum
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FIG. 5. (Color online) Quantum and semiclassical level splittings
	En plotted in a semilogarithmic scale versus the integer N ≡ π/(2h̄)
for the Hamiltonian (8) with a1 = 1, a2 = −0.55, |b| = 0.05 for the
following phases and levels (a) φ = 0, n = 0; (b) φ = π/2, n = 0;
(c) φ = 3π/4, n = 0; (d) φ = π , n = 0; (e) φ = 3π/4, n = 1; (f)
φ = 3π/4, n = 2. The (black) dots represent the exact numerical
results while the (blue) solid lines show the predictions obtained
by the semiclassical formula (21) [53]. The (red) dashed line is the
perturbative RAT prediction obtained with the expression (22) which
does not depend on φ. The diagonal straight lines (plotted in magenta)
correspond to the unperturbed semiclassical prediction (12) while the
(magenta) dots on top show the exact splittings for the case b = 0. The
dips in the unperturbed splittings around N � 3,9,15, respectively,
for n = 0,1,2 arise when the unperturbed quantized torus is located
right on the crown of the volcanos. In that case, the classical frequency
of the torus vanishes and, as a consequence, Eq. (12) predicts a
vanishing level splitting.

number ñ that satisfies ñ = n + ν� with integer ν. In that case,
the area Sout(En) − Sin(En) enclosed by the two tori �in and
�out corresponds to exactly ν� Planck cells of size 2πh̄.

For finite values of the perturbation strength |b|, the rotation
angle φ of the classical resonant chains clearly influences
the splittings, which exhibit a symmetry axis at φ = π as
shown in Fig. 6. Indeed, this behavior can be explained in
terms of complex paths. Keeping in mind the local pendulum
approximation (16), the real tori and the complex orbits C,C ′
that cross the resonance chains are not appreciably affected by
a variation of φ which essentially corresponds to a rotation of
the resonance structures in the phase space. Correspondingly,
the peaks observed in the splittings remain globally at the
same position when φ is varied (although they may be shifted
a bit, see the upper right panel of Fig. 6). On the other
hand, the imaginary action of the orbit C̃ that crosses the
main separatrix between the islands is significantly modified
under variation of φ. As one can indeed see in Fig. 4, the
complex “bridge” (plotted in orange) that connects the two
outer symmetric tori of the main islands is shifted farther away
from the horizontal symmetry axis as φ is increased, which is
naturally accompanied by an increase of the corresponding
imaginary action. This is responsible for the drastic decrease
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FIG. 6. (Color online) Quantum and semiclassical level splittings
	E0 associated with the eigenstates that are most strongly localized
on the centers of the four symmetric islands, for the Hamiltonian (8)
with a1 = 1, a2 = −0.55, |b| = 0.05. The splittings are plotted versus
the phase φ for different values of N ≡ π/(2h̄) = 22 (upper left
panel), 23 (upper right panel), 24 (lower left panel), and 27 (lower
right panel). The (black) dots represent the exact numerical results
while the (blue) solid lines are the semiclassical predictions obtained
from Eq. (21).

of the splitting (by three orders of magnitude for N ∼ 25 as is
seen in Fig. 6) as φ is varied from 0 to π .

It is instructive to compare the exact splittings and their
semiclassical prediction also with the perturbative theory
of resonance-assisted tunnelling (RAT), which was first
introduced for 1D time-periodic Hamiltonians in the quasi-
integrable regime [24,25] and later extended to mixed regular-
chaotic systems [26,28,54]. Following the derivation described
in the Appendix, the level splitting associated with the
eigenstates |φ±

n 〉 of the Hamiltonian is given by

	En = 	E(0)
n +

kc∑
k>0

|Bn,k�|2	E
(0)
n+k�, (22)

with � ≡ 4 and

Bn,k� =
k∏

p=1

An+p�,n+(p−1)�

E
(0)
n − E

(0)
n+p�

, (23)

An+p�,n+(p−1)� = 2|b|eiφh̄p�/2

√
(n + p�)!

[n + (p − 1)�]!
, (24)

where the E
(0)
n+p� denote the unperturbed energies (i.e., for

b = 0) and

	E
(0)
n+k� � 2h̄ω

(0)
n+k�

π
e−σ

(0)
n+k�/2h̄ (25)

the unperturbed splittings. The latter are determined through a
numerical evaluation of the oscillation frequencies ω

(0)
n+k� and

the imaginary actions σ
(0)
n+k� associated with the unperturbed

invariant tori at energy E0. Using the quadratic approxima-
tion (A3), one notices that the denominators of the coeffi-
cients (23) are proportional to the quantized action variables of
the unperturbed system: (E(0)

n − E
(0)
n+p�) ∝ (In − In+p�)(In +

In+p� − 2I�:s). The coupling between the unperturbed states
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|n〉 and |n + p�〉 is therefore maximized when the quantized
tori In and In+p� are symmetrically located with respect to
the resonant island chain which is approximately localized at
I�:s . This then leads to significant local enhancements of the
splittings.

However, the above formulation of the perturbative RAT
theory does not account for a modification of the imaginary
actions σ

(0)
n+k� due to the presence of the resonance chain.

While this modification can be safely neglected in generic
near-integrable systems which generally exhibit perturbatively
small resonance chains [24,25], it does matter in our special
case of integrable resonance-assisted tunneling with macro-
scopically large resonance islands as we pointed out above.
We are therefore already beyond the perturbative regime. This
is clearly seen in Fig. 5: Even though the perturbative RAT
predictions are, by coincidence, still in approximate agreement
with the exact splittings for φ = 0 [55], they drastically
overestimate the latter for φ = π .

Let us finally discuss the interplay of resonance-assisted
tunneling with direct tunneling in the deep perturbative regime.
With decreasing |b|, the splittings are less and less sensitive to
a variation of the phase φ and the resonance peaks become
less and less pronounced. Direct tunneling becomes the
dominant mechanism in the limit |b| → 0, and the splittings
display a purely exponential decrease with 1/h̄, which can be
evaluated as

δE(d)
n = 2h̄ωin

π
e−�(En)/(2h̄), (26)

where i�(En) [with �(En) > 0] is the imaginary action of
the complex manifold (plotted in blue in Fig. 4) that directly
connects the real tori �in and �′

in, and ωin is the frequency
of those two tori. In the limit |b| → 0, the action i�(En)
coincides with the unpertubed one i�(0)(En) and, hence, δE(d)

n

approaches the unperturbed splittings 	E(0)
n .

In the context of the RAT theory, Löck et al. [28] developed
a quantitative criterion providing, for a given strength of the
perturbation, the characteristic value h̄res of Planck’s constant

0 10 20 30 4010-15
10-12
10-9
10-6
10-3
100

0 10 20 30 40

ΔE

N = π/(2 )

φ = 3π/4φ = π/4

FIG. 7. (Color online) Quantum and semiclassical level splittings
	E0 associated with the eigenstates that are most strongly localized
on the centers of the four symmetric islands, for the Hamiltonian (8a)
with the parameters a1 = 1, a2 = −0.55 and |b| = 0.001, plotted
versus N ≡ π/(2h̄) for φ = π/4 (left panel) and φ = 3π/4 (right
panel). The (black) dots represent the exact results, the dark
(blue) solid lines correspond to the resonance-assisted semiclassical
splittings obtained with the semiclassical formula (21), and the light
(green) straight lines show the direct splittings given by Eq. (26).
The effect of the resonance is significantly reduced as compared to
Fig. 5, and the splittings no longer display systematic variations as a
function of the rotation angle φ.

that separates the “direct” regime (h̄ > h̄res) in which direct
tunneling dominates from the “resonance-assisted” regime
(h̄ < h̄res) in which the relevant mechanism is resonance-
assisted tunneling. This criterion is given by the equality

(	A�:s)2

�h̄resA�:s

√
	E

(0)
n+�(h̄res)

	E
(0)
n (h̄res)

1

(h̄res/h̄peak) − 1
= 256

π
, (27)

where 	A�:s = 16
√

2m�:sV�:s is the area covered by the
island chain [26] as derived from the pendulum approx-
imation (16), A�:s = 2πI�:s is the area enclosed by the
approximate resonant torus of the unperturbed system, and
h̄peak is the value of Planck’s constant at which the first peak
in the splittings 	En appears. Using h̄peak ≡ π/(2Npeak) with
Npeak � 13.5(,20,26.25) for the level n = 0(,1,2), as extracted
from Figs. 5 and 7, we obtain Nres ≡ π/(2h̄res) � 9(,12,14) for
|b| = 0.05 and Nres ≡ π/(2h̄res) � 13 for |b| = 0.001, which
is in rather good agreement with Figs. 5 and 7, respectively.

IV. CONCLUSIONS

In summary, we discussed a semiclassical theory of
resonance-assisted tunneling in integrable systems, which is
based on the analytic continuation of the invariant classical tori
of the system to the complex domain. To this end, we showed
how to construct a class of 1D integrable Hamiltonians, based
on the normal form theory, that exhibit islands of bounded mo-
tion surrounded by chains that mimic the resonance structures
arising in Poincaré sections of nonintegrable systems. We then
studied tunneling between two symmetric islands in such inte-
grable systems. Our semiclassical theory, which is essentially
expressed by Eqs. (19) and (21), is found to reproduce the
numerically computed tunneling splittings with rather good
accuracy. In contrast to the standard implementation of the
RAT theory which is based on quantum perturbation theory,
Eqs. (19) and (21) provide reliable predictions of level split-
tings also in the nonperturbative regime characterized by rather
well-developed resonance island chains. In that case, a rotation
of the resonance chain with respect to the main separatrix of
the system may have a significant impact on the tunnelling
rates of the system, due to the associated displacement of the
invariant manifolds that cross the separatrix and govern direct
tunneling outside the resonance chain.

Even though a full derivation of our semiclassical theory is
not presented here, the similarity of Eqs. (19) and (21) with
the analytical expression for the level splittings in a triple-well
potential derived in Ref. [11] [see Eq. (66) there] suggests
that our main result (21) could eventually be derived by
adapting the semiclassical framework developed in Ref. [11]
[see Eq. (40) there] to our case of resonance-assisted tunneling
through island chains (although this latter case topologically
differs markedly from the triple-well system). Indeed, we
expect that the resonance peaks observed in the splittings arise
due to constructive Fabry-Pérot type interferences between
topologically distinct complex trajectories that connect the two
islands via the periodic orbits introduced in Sec. III B, which
are frequented with distinct repetitions. The main difficulty in
establishing such a semiclassical framework in the spirit of
Ref. [11] comes from the selection of the class of complex
orbits that brings the main contribution. For a Hamiltonian of
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the form (1), the restriction to complex periodic orbits along
which one canonical variable remains purely real provides
a useful help. However, an analogous restrictive criterion is
not known to us for the resonance-assisted tunneling problem
under consideration.

Through recursive application of the basic principle of
resonance-assisted tunneling, one may expect to derive a gen-
eralized semiclassical expression for level splittings between
islands that contain R > 1 different (�r : sr ) island chains for
r = 1, . . . ,R. Such a semiclassical expression is expected to
be of the form

	En =
[

R∏
r=1

∣∣A(�r :sr )
T (h̄)

∣∣2

]
δE(En), (28)

where δE(En) is the direct splitting (20) associated with the
outermost torus involved in this multiresonance transition
process. In the perturbative regime, the individual coupling
amplitudes A(�r :sr )

T (h̄) can be approximately evaluated using
a local pendulum approximation for each (�r :sr ) resonance
chain (see also Eq. (76) in Ref. [25]). However, there is no
guarantee that this approach remains valid in the presence of
nonperturbatively large resonance chains. A careful investiga-
tion of the complex manifolds will be required in that case in
order to determine which type of complex paths are relevant
depending on the relative size of the chains with respect to
Planck’s constant.

Finally, our theory may provide a useful starting point for
developing a quantitative semiclassical description of tunnel-
ing also in nonintegrable systems that exhibit a mixed regular-
chaotic phase-space structure. In analogy with the perturbative
RAT study of Ref. [28], resonance-assisted transitions will, in
that case, have to be combined with direct regular-to-chaotic
tunneling [30] for which a fully semiclassical theory in terms
of complex paths was recently presented in Ref. [56]. It
seems straightforward to incorporate the effect of nonlinear
resonances into this latter semiclassical framework of Ref. [56]
in order to extend its applicability to the deep semiclassical
regime in which resonances generically play a role.
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APPENDIX: THEORY OF RESONANCE-ASSISTED
TUNNELING FOR 1D INTEGRABLE SYSTEMS

In this appendix, we review the main steps of the per-
turbative approach to describe resonance-assisted tunneling
(RAT) applied to the simple case of one-dimensional integrable
Hamiltonians. In analogy with the procedure described in
Ref. [29] (see also Refs. [24,25,28]), we start with a 1D

time-independent Hamiltonian H (p,q) (which is assumed
to be an analytical function in p and q) that exhibits in
the phase space two main symmetric regions, each of them
surrounded by one �:s resonant island chain. Approximate
action-angle variables (I,θ ), which result from (p,q) via a
canonical transformation, can be defined locally within each
of the two regions. Their time evolution is governed by a
Hamiltonian of the form

H (I,θ ) = H0(I ) + V (I,θ ) (A1)

[for the sake of simplicity, we shall keep the same notation
H (·,·) for both the (p,q) and the (I,θ ) representations], where
the angle-dependent perturbation V (I,θ ) is responsible for
the generation of the resonant chain. We now expand the
perturbation as a Fourier series,

V (I,θ ) =
∞∑

j=1

2Vj (I ) cos (j�θ + φj ), (A2)

and perform a harmonic approximation of the angle-
independent part of the Hamiltonian near the resonant chain,

H0(I ) � H0(I�:s) + (I − I�:s)2

2m�:s
+ O[(I − I�:s)

3], (A3)

where I�:s is the action variable at the resonance and 1/m�:s ≡
d2H0/dI 2 at I = I�:s . By definition, the frequency of oscil-
lations � ≡ dH0/dI vanishes at the resonance. Combining
Eqs. (A2) and (A3) [and omitting the constant H0(I�:s)],
H (I,θ ) is reduced to a modified generalized pendulum of the
form

Hpend(I,θ )
def= (I − I�:s)2

2m�:s
+

∞∑
j=1

2Vj (I ) cos (j�θ + φj ).

(A4)

Treating V (I,θ ) as a small perturbation, one can now apply
the time-independent quantum perturbation theory. Using the
eigenstates |n〉 (with n ∈ N0) of the operator Î = −ih̄∂/∂θ̂

which fulfill

Î |n〉 = In |n〉 = h̄(n + 1/2) |n〉 , (A5)

H0(Î ) |n〉 = E(0)
n |n〉 , (A6)

one can notice that V̂ (Î ,θ̂ ) induces only couplings between
the unperturbed states |n〉 and |n + j�〉 through the matrix
elements

An+j�,n
def= 〈n + j�| Hpend(Î ,θ̂ ) |n〉 . (A7)

In this basis, the true eigenstates of Hpend(Î ,θ̂ ) can be
approximated by the following expression:

|�n〉 � |n〉 +
∑

k

An+k�,n

E
(0)
n − E

(0)
n+k�

|n + k�〉

+
∑
k,k′

An+k�,n+k′�

E
(0)
n − E

(0)
n+k�

An+k′�,n

E
(0)
n − E

(0)
n+k′�

|n + k�〉 + · · · .

(A8)

As the perturbation is analytic, one can safely assume that
the coefficients Vj (I ) decrease exponentially with j [25].
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This property is used in Ref. [25] to show that the coupling
between |n〉 and |n + k�〉 via the k-steps process involving
the matrix elements An+�,n, An+�,n+2�, ..., An+(k−1)�,n+k� is
generally much stronger than the direct coupling via the matrix
element An+k�,n. This allows us thus to retain only the first term
j = 1 in Eq. (A4) and to reduce the Hamiltonian to a modified
mathematical pendulum

H (I,θ ) � (I − I�:s)2

2m�:s
+ 2V1(I ) cos (�θ + φ1). (A9)

The perturbed eigenstates thus can be expressed as

|�n〉 � |n〉 +
∑
k>0

Bn,k� |n + k�〉, (A10)

with

Bn,k� =
k∏

p=1

An+p�,n+(p−1)�

E
(0)
n − E

(0)
n+p�

. (A11)

The next step is to evaluate the coefficients Vj (I ). Using
the analyticity of H (p,q), one can define a local canonical
transformation (p,q) �→ (P,Q) such that exp (±ijθ ) = [(Q ∓
iP )/

√
2I ]j . In the new coordinates, the perturbation (A2)

reads

V (P,Q) =
∞∑

j=1

Vj (I )

(2I )j�/2
[(Q−iP )j�eiφj + (Q+ iP )j�e−iφj ],

(A12)

where the Vj (I ) must be at least of order I j�/2 to be consistent
with the normal form theory described in Sec. II A. Making
the assumption that Vj (I ) = vj I

j�/2, we obtain

V (P,Q) =
∞∑

j=1

vj

2j�/2
[(Q − iP )j�eiφj + (Q + iP )j�e−iφj ].

(A13)

The corresponding quantum operators (P̂ ,Q̂) can be expressed
in terms of the ladder operators (â,â†) that are associated with
the eigenstates |n〉 through the relations

â = 1√
2

(Q̂ + iP̂ ), (A14)

â† = 1√
2

(Q̂ − iP̂ ). (A15)

Using these relations in the quantization of the perturba-
tion (A13), the matrix elements (A7) become finally

An+j�,n = vjh̄
j�/2eiφj

√
(n + j�)!

n!
. (A16)

In our case, this expression does not represent an approxi-
mation since the action dependence Vj (I ) = vj I

j�/2 of the
perturbation is, as shown Sec. II B, imposed by the construction
procedure of the Hamiltonian through the framework of
normal forms.

Coming back to the original Hamiltonian H (p̂,q̂), one
can define in each symmetric well two distinct quasimodes
|�L

n 〉 and |�R
n 〉 that are constructed on the symmetric tori

with the energy En. This energetic degeneracy is lifted due
to tunneling between the wells, and the level splitting 	En is
evaluated as the coupling matrix element between the quasi-
modes: 	En = 〈�L

n | H (p̂,q̂) |�R
n 〉. Using Eqs. (A10), (A11),

and (A16), the splitting for an arbitrary level can finally be
written as

	En = 	E(0)
n +

kc∑
k=1

|Bn,k�|2	E
(0)
n+k�. (A17)

For a standard double-well system, we would have

	E
(0)
n+k� � h̄ω

(0)
n+k�

π
e−σ

(0)
n+k�/h̄ (A18)

as the splitting for the (n + k�)-th doublet of the unperturbed
system H0(p̂,q̂), while an additional factor 2 arises on the
right-hand side of Eq. (A18) in our case of a periodic
array of wells. σ

(0)
n+k� is the action of the instanton-like

trajectory connecting the two symmetric tori with energy
E

(0)
n+k�, and ω

(0)
n+k� is the corresponding oscillation frequency.

By construction, the RAT process may only couple quasimodes
that are localized within the same region of regular oscillations.
The index kc� labels the most highly excited state that can
be involved in a perturbative coupling scheme starting from
the n-th excited state. Defining by A the area one of those
regions (which in Fig. 2 corresponds to the area enclosed by
the separatrices within each cell), we have

kc =
⌊

1

�

( A
2πh̄

− 2n + 1

2

)⌋
, (A19)

where �·� stands for the integer part of a real number.

[1] M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981).
[2] N. T. Maitra and E. J. Heller, Phys. Rev. A 54, 4763 (1996).
[3] M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).
[4] R. Balian and C. Bloch, Ann. Phys. 85, 514 (1974).
[5] N. T. Maitra and E. J. Heller, Phys. Rev. Lett. 78, 3035 (1997).
[6] K. F. Freed, J. Chem. Phys. 56, 692 (1972).
[7] T. F. George and W. H. Miller, J. Chem. Phys. 56, 5722 (1972).
[8] W. H. Miller, J. Chem. Phys. 61, 1823 (1974).
[9] S. Coleman, Aspects of Symmetry (selected Erice lectures)

(Cambridge University Press, Cambridge, 1985).
[10] Instantons in Gauge Theories, Advanced Series in Mathematical

Physics, Vol. 5, edited by M. A. Shifman (World Scientific,
Singapore, 1994).

[11] J. Le Deunff and A. Mouchet, Phys. Rev. E 81, 046205 (2010).
[12] D. Bohm, Quantum Theory (Prentice Hall, Englewood Cliffs,

NJ, 1951).
[13] H. Cruz, A. Hernandez-Cabrera, and A. Munoz, Semicond. Sci.

Technol. 6, 218 (1991).
[14] Y. Zohta, Phys. Rev. B 41, 7879 (1990).
[15] J. Le Deunff, O. Brodier, and A. Mouchet, Eur. J. Phys. 33, 1771

(2012).
[16] W. A. Lin and L. E. Ballentine, Phys. Rev. A 45, 3637 (1992).
[17] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43

(1993).
[18] J. M. Greene and I. C. Percival, Physica D 3, 530 (1981).
[19] A. Shudo and K. S. Ikeda, Phys. Rev. Lett. 74, 682 (1995).

042927-10

http://dx.doi.org/10.1063/1.441832
http://dx.doi.org/10.1103/PhysRevA.54.4763
http://dx.doi.org/10.1088/0034-4885/35/1/306
http://dx.doi.org/10.1016/0003-4916(74)90421-7
http://dx.doi.org/10.1103/PhysRevLett.78.3035
http://dx.doi.org/10.1063/1.1677217
http://dx.doi.org/10.1063/1.1677094
http://dx.doi.org/10.1063/1.1682181
http://dx.doi.org/10.1103/PhysRevE.81.046205
http://dx.doi.org/10.1088/0268-1242/6/3/013
http://dx.doi.org/10.1088/0268-1242/6/3/013
http://dx.doi.org/10.1103/PhysRevB.41.7879
http://dx.doi.org/10.1088/0143-0807/33/6/1771
http://dx.doi.org/10.1088/0143-0807/33/6/1771
http://dx.doi.org/10.1103/PhysRevA.45.3637
http://dx.doi.org/10.1016/0370-1573(93)90109-Q
http://dx.doi.org/10.1016/0370-1573(93)90109-Q
http://dx.doi.org/10.1016/0167-2789(81)90038-5
http://dx.doi.org/10.1103/PhysRevLett.74.682


SEMICLASSICAL DESCRIPTION OF RESONANCE- . . . PHYSICAL REVIEW E 88, 042927 (2013)

[20] A. Shudo, Y. Ishii, and K. S. Ikeda, J. Phys. A: Math. Gen. 42,
265101 (2009).

[21] S. C. Creagh and N. D. Whelan, Phys. Rev. Lett. 77, 4975
(1996).

[22] S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).
[23] F. Leyvraz and D. Ullmo, J. Phys. A: Math. Gen. 29, 2529

(1996).
[24] O. Brodier, P. Schlagheck, and D. Ullmo, Phys. Rev. Lett. 87,

064101 (2001).
[25] O. Brodier, P. Schlagheck, and D. Ullmo, Ann. Phys. 300, 88

(2002).
[26] C. Eltschka and P. Schlagheck, Phys. Rev. Lett. 94, 014101

(2005).
[27] A. Mouchet, C. Eltschka, and P. Schlagheck, Phys. Rev. E 74,

026211 (2006).
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