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Turing pattern formation in the Brusselator system with nonlinear diffusion
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In this work we investigate the effect of density-dependent nonlinear diffusion on pattern formation in the
Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the
oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion
favors the occurrence of Turing pattern formation. We study the process of pattern formation both in one-
dimensional and two-dimensional spatial domains. Through a weakly nonlinear multiple scales analysis we
derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows
the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns
with multiple branches of stable solutions leading to hysteresis. Moreover, we consider traveling patterning waves:
When the domain size is large, the pattern forms sequentially and traveling wave fronts are the precursors to
patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which
invades the domain. We show the emergence of radially symmetric target patterns, and, through a matching
procedure, we construct the outer amplitude equation and the inner core solution.
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I. INTRODUCTION

The aim of this work is to describe the Turing pattern for-
mation for the following reaction-diffusion system, introduced
in Ref. [1]:

∂U

∂τ
= Du

∂

∂ζ

((
U

u0

)m
∂U

∂ζ

)
+ �(a − (b + 1)U + U 2V ),

(1.1)
∂V

∂τ
= Dv

∂

∂ζ

((
V

v0

)n
∂V

∂ζ

)
+ �(bU − U 2V ).

Here U (ζ,τ ) and V (ζ,τ ), with ζ ∈ [0,l], represent the concen-
trations of two chemical species, the activator and the inhibitor,
respectively; a and b are positive constants; the constant � > 0
represents the strength of the reaction terms or, alternatively,
modulates the size of the domain.

Equations (1.1) belong to the class of reaction-diffusion
systems with nonlinear diffusion. The nonlinear density-
dependent diffusion present in (1.1) is such that, when
m,n > 0, the species tend to diffuse faster (when U > u0 and
V > v0) or slower (when U < u0 and V < v0) than predicted
by the linear classical diffusion. The coefficients Du,Dv > 0
are the classical diffusion coefficients and the non-negative
u0 and v0 are threshold concentrations which measure the
strength of the interactions between the individuals of the same
species. At microscopic level this kind of diffusion term can
be interpreted as the result of the interaction between random
walkers representing the individuals of the system, whereas
classical diffusion corresponds to the case of independent
random walks. In particular, the dynamics is subdiffusive as
the mean-square displacement of the particles 〈(�ζ )2〉 ∼ τα ,
with α = 1/(2 + m) < 1 [for the V species α = 1/(2 + n)];
see the discussion in Ref. [2].
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The reaction mechanism is chosen as in the Brusselator
autocatalytic system. This system is a model used to capture
the qualitative behavior of cross-activator-inhibitor chemical
reactions: To this class belong some autocatalytic reactions
such as the ferrocyanide-iodate-sulfite reaction, the chlorite-
iodide-malonic acid (CIMA) reaction, the arsenite-iodate
reaction, and many enzyme catalytic reactions. For a review
on the rich spatial and temporal dynamics shown by cubic-
autocatalytic reaction-diffusion systems, see, e.g., Ref. [3,4].

Usually pattern-forming chemical systems have been in-
vestigated considering constant diffusion coefficients; this is
a simplifying assumption, not suitable for many reaction-
diffusion systems, especially in the realm of biological or
geological systems with heterogeneity. Even the first exper-
imental demonstration of the formation of Turing structures
[5], obtained for the CIMA reaction with hydrogel, was
subsequently revealed to be strongly affected by the binding
of the activator (iodide) with a slowly diffusing substrate
(starch). This phenomenon, effectively reducing the diffusion
coefficient of the activator, was in fact the ultimate cause of
the Turing instability; see Ref. [6]. It was later shown [7] that
the whole system can be appropriately modeled introducing
concentration-dependent diffusion coefficients.

In general, one can say that models like (1.1) are believed to
be relevant for autocatalytic chemical reactions occurring (a)
on a binding hydrogel substrate [8,9]; (b) on surfaces [7,10,11],
like cellular membranes, or in phenomena of industrial interest,
like surface electrodeposition [12] or metal catalysis [13,14];
or (c) on porous media [15–17].

Recently reaction-diffusion models with concentration-
dependent diffusion coefficients have attracted considerable
attention in many different fields [18–29]; however, the effect
of the anomalous diffusivity on Turing pattern of chemical and
biochemical systems is not yet fully investigated, due to the
presence of complicated reaction terms and related difficulties
even in the linear stability analysis. As exceptions here we
mention Ref. [30], where it was shown that the introduction of
concentration dependence of the diffusion coefficient, due to

042925-11539-3755/2013/88(4)/042925(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.042925


GAMBINO, LOMBARDO, SAMMARTINO, AND SCIACCA PHYSICAL REVIEW E 88, 042925 (2013)

the ionic character of the reactants, sharpens the features of the
pattern, resulting in an increase of the chemical gradients of the
chemicals, and Ref. [11], where pattern formation in the Gray-
Scott model of excitable media with the diffusion coefficient
linearly dependent on the concentration was studied. However,
the mechanism responsible for the formation of the pattern
differed from Turing bifurcation. An additional exception
includes the recent Ref. [31], where the authors consider
and explore, numerically, the Lengyel-Epstein model with
local concentration-dependent diffusivity. With regard to the
Brusselator system specifically, recently there have appeared
several papers considering pattern formation in the presence
of cross-diffusion [32–34] and superdiffusion due to the
fractional Laplacian [35–37].

Regarding the system (1.1), in Ref. [1] the authors derived
the conditions for Turing instability and showed that, differing
from the standard linear diffusion case, the destabilization of
the constant steady state occurs even if the diffusion constant
Dv of the inhibitor is smaller or equal to the diffusion constant
Du of the activator. In this paper we reconsider the linear stabil-
ity analysis of the system (1.1), taking into account the fact that
the Brusselator kinetics also supports Hopf bifurcation: Even
though the steady state is Turing unstable, whether Turing pat-
terns form depends on the mutual location of the Hopf and the
Turing instability boundaries. This will be analyzed in Sec. II,
where the Turing and Hopf stability boundaries will be ob-
tained in terms of three key system parameters. This will clarify
the role of nonlinear diffusion in the formation of the pattern. In
Sec. III we shall perform the weakly nonlinear analysis near
the onset of the Turing instability. The amplitude equation
will be derived both for stationary pattern (Stuart-Landau
amplitude equation) and spatially modulated pattern (real
Ginzburg-Landau amplitude equation). Moreover, we shall
derive the quintic Stuart-Landau equation which describes the
phenomenon of hysteresis occurring in the case when the bifur-
cation is subcritical. Numerical simulations are performed to
corroborate the predictions coming from the weakly nonlinear
analysis. In Sec. IV we shall focus on pattern formation in a 2D
domain. Rolls and squares, which arise when the homogeneous
steady state bifurcates at a simple eigenvalue, and mixed-mode
patterns, which emerge when the eigenvalue is double and
different modes interact, will be shown. Particular mixed-mode
patterns are the hexagonal patterns, which appear when a
resonance condition holds. The evolution system for the
amplitudes of the patterns in each case will be given and
discussed. The emergence of axisymmetric target patterns
will then be shown and an asymptotic matching proce-
dure will be employed to derive the appropriate amplitude
equation.

We finally believe that, in the context of the previously
mentioned phenomena of surface chemical reactions and
chemical instabilities in porous media, the model (1.1) and
the mathematical analysis presented in this paper could be
of support for the quantitative prediction of the observed
dynamics and for the design of more focused experiments. For
example, as discussed in Ref. [1], the analysis presented here
(and in Ref. [1]) should motivate and solicit the realization
of experiments devoted to the investigation of dissipative
structures in open chemical reactors where porous media are
employed.

II. LINEAR STABILITY ANALYSIS

Analogously with Ref. [35], we rescale (1.1), using U =
u∗u, V = v∗v, τ = t, ζ = x∗x, where

u∗ =
(

(m + 1)Dvu
m
o

(n + 1)Duv
n
0

) 1
m+n+2

, v∗ = 1

u∗ ,

(2.1)

x∗ =
√

Dv

(n + 1)vn
0u∗(n+2)

,

to obtain

∂u

∂t
= ∂2

∂x2
um+1 + �(Q − (b + 1)u + u2v),

(2.2)
∂v

∂t
= 1

η2

∂2

∂x2
vn+1 + �

η2
(bu − u2v),

having defined

Q = aη and η = 1/u∗. (2.3)

The system (2.2) is supplemented with initial data and
Neumann boundary conditions. The only nontrivial homo-
geneous stationary solution admitted by the system (2.2) is
(ū,v̄) ≡ (Q,b/Q). Through linear stability analysis one gets
the following dispersion relation, which gives the growth rate
σ as a function of the wave number k:

σ 2 + g(k2)σ + h(k2) = 0, (2.4)

where

g(k2) = k2 tr(D) − � tr(K),

h(k2) = det(D)k4 + �qk2 + �2det(K),

with

K =
(

b − 1 Q2

− b
η2 −(

Q

η

)2

)
,

(2.5)

D =
(

(m + 1)Qm 0

0 n+1
η2

(
b
Q

)n

)
,

and q = −K11D22 − K22D11 is given by

q = 1

η2

[
(1 − b)(n + 1)

(
b

Q

)n

+ (m + 1)Qm+2

]
.

The steady state (ū,v̄) can lose its stability both via Hopf
and Turing bifurcation. Oscillatory instability occurs when
g(k2) = 0 and h(k2) > 0. The minimum values of b and k for
which g(k2) = 0 are as follows:

bH
c = 1 + Q2

η2
k = 0, (2.6)

and for b > bH
c a spatially homogeneous oscillatory mode

emerges. The neutral stability Turing boundary corresponds to
h(k2) = 0, which has a single minimum (k2

c ,b
c) attained when

k2
c = − �q

2 det(D)
; (2.7)

the above expression, requiring q < 0, implies that b > 1 is
a necessary condition for Turing instability. Therefore, using
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FIG. 1. Hopf (dash-dotted line) and Turing (solid line) stability
boundaries in the two-dimensional slice {b = const}, with b > bc.
The instability Turing region is in gray: the supercritical region is in
light gray and the subcritical region is in dark gray (see Secs. III A
and III B below). The pure Hopf region, the pure Turing region,
and the region in which both Turing and Hopf instability occur are
labeled with H, T, and T-H, respectively. The parameters are chosen
as m = n = 1 and b = 11 > bc = 10.74.

(2.7) in h(k2
c ) = 0, one gets that the Turing bifurcation value

b = bc is obtained by imposing q2 − 4 det(D)det(K) = 0,
under the condition q < 0. This leads to

(
(n + 1)

(
b

Q

)n

(1 − b) + (m + 1)Qm+2
)2

− 4(m + 1)(n + 1)Qm−n+2bn = 0, (2.8)

Qm+n+2 <
(n + 1)

(m + 1)
bn(b − 1).

From (2.7) and (2.8) one can easily see that the first mode
to lose stability, which we shall denote with kc, and the
bifurcation value bc do not depend explicitly on η. However,
as it is impossible to give an explicit expression, we have
evaluated kc and bc numerically.

In Fig. 1 we show the Turing and Hopf instability
regions in the parameter space (η2,Q2) for a fixed value
b > bc. In the region marked with TH there is a compe-
tition between the two instabilities; which one develops,
the Turing or the Hopf instability, depends on the locations
of the respective instability boundaries: As b increases, if
bH

c > bc, Turing instability occurs prior to the oscillatory
instability.

In Figs. 2(a)–2(c) we report the Hopf and Turing instability
boundaries for different values of η and different values of
the coefficients m and n expressing the nonlinearity of the
diffusion. We observe that, while the Turing instability region
does not depend on η, the Turing pattern region decreases
by increasing η due to the fact that bH

c decreases with η.
Comparing the three Figs. 2(a)–2(c) it is interesting to notice
that, taking larger values of m with respect to n, the shape of
the Turing boundaries changes concavity; which leads to the
fact that Turing patterns develop for large-enough values of Q

when m is smaller than n [see Fig. 2(a)] and for small-enough
values of Q when m is larger than n [see Fig. 2(c)].
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FIG. 2. In (a), (b), and (c) we represent the Hopf and Turing
stability boundaries for different values of η. The instability regions
stay above the lines.

The effect of nonlinear diffusion is to make easier the
formation of Turing pattern with respect to the case of classical
diffusion (i.e., when m = n = 0). This is apparent from Fig. 3,
where we have reported the stability boundaries for different
values of m and n and keeping η = 1.

042925-3



GAMBINO, LOMBARDO, SAMMARTINO, AND SCIACCA PHYSICAL REVIEW E 88, 042925 (2013)

0 0.5 1 1.5 2 2.5

1

1.5

2

2.5

3

3.5

Q2

Hopf
m=0, n=1
m=1, n=2
m=1, n=4
m=1, n=6
m=1, n=8

b

η = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

1.5

2

2.5

3

Q2

Hopf
m=2, n=1
m=4, n=1
m=6, n=1
m=8, n=1

b

η = 1

(a)

(b)

FIG. 3. Hopf and Turing stability boundaries varying m and n.
The instability regions stay above the lines.

III. WEAKLY NONLINEAR ANALYSIS

We introduce the control parameter ε, representing the
dimensionless distance from the threshold and defined as
ε2 = (b − bc)/bc; we then recast the original system (1.1) in
the following form:

∂tw = Lbw + NLbw, w ≡
(

u − ū

v − v̄

)
, (3.1)

where the linear operator Lb = � Kb + Db∇2 results from
the linearization of the kinetics and of the diffusion term
around the steady state (ū,v̄), with the matrix Kb and Db

being given in (2.5); here the dependence on the bifurcation
parameter b is made explicit for notational convenience. The
nonlinear operator NLb represents the nonlinear remaining
terms. Moreover, we expand w, the time t , and the bifurcation

parameter b as

w = ε w1 + ε2 w2 + . . . t = t + ε T1 + ε2 T2 + . . .
(3.2)

b = bc + εb(1) + ε2b(2) + . . . .

Substituting the above expansions into (3.1) and collecting the
terms at each order in ε, we obtain the following sequence of
equations for the wi :

O(ε):

Lbc

w1 = 0, (3.3)

O(ε2):

Lbc

w2 = F, (3.4)

O(ε3):

Lbc

w3 = G, (3.5)

where

F = ∂w1

∂T1
− D(1)∇2

(
u2

1(
v1 + b(1)

Q

)2

)
+

(−b(1) 0
b(1) 0

)
w1

+
(

2Qu1v1 + bc

Q
u2

1

)
1,

G = ∂w1

∂T2
+ ∂w2

∂T1
− D(2)∇2

(
u3

1(
v1 + b(1)

Q

)3

)

− 2D(1)∇2

(
u1u2(

v1 + b(1)

Q

)(
v2 + b(2)

Q

)
)

+ 2
(

Q(u1v2 + u2v1) + bcu1u2

Q
+ u2

1

2

(
v1 + b(1)

Q

))
1

+
(−b(1) 0

b(1) 0

)
w2 +

(−b(2) 0

b(2) 0

)
w1,

and

1 =
(−1

1

)
,

D(1) =
(

m(m+1)
2 Qm−1 0

0 n(n+1)
2η2

(
bc

Q

)n−1

)
,

D(2) =
(

m(m2−1)
6 Qm−2 0

0 n(n2−1)
6η2

(
bc

Q

)n−2

)
.

The solution to the linear problem (3.3), satisfying the
Neumann boundary conditions, is given by

w1 = A(T1,T2)ρ cos(k̄cx), (3.6)

with ρ ∈ Ker(�Kbc − k̄2
cD

bc

) and k̄c is the first admissible
unstable mode. Once the solution (3.6) is substituted into (3.4),
the vector F is made orthogonal to the kernel of the adjoint
of Lbc

simply by imposing T1 = 0 and b(1) = 0. The solution
of (3.4) can therefore be obtained right away and substituted
into the linear problem (3.5) at order ε3. The vector G has the
following expression:

G =
(

dA

dT
ρ + AG(1)

1 + A3G(3)
1

)
cos(k̄cx) + G∗, (3.7)
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FIG. 4. (Color online) (a) The Turing instability (solid line) occurs prior to oscillatory instability (dashed line). (b) Comparison between
the weakly nonlinear solution (dotted line) and the numerical solution of (1.1) (solid line). (c) Pattern evolution in the space-time plane. The
parameters are chosen in the supercritical region � = 80, m = n = 1, Q2 = 3, η2 = 0.36, ε = 0.1, corresponding to the point marked with the
dark circle in both Fig. 1 and Fig. 4(a). With these parameters one has bc ≈ 5.3028, while k̄c = 5.5.

where T = T2, Gj

1,j = 1,3, and G∗ (which contains auto-
matically orthogonal terms) depend on the parameters of the
original system (1.1) and their explicit expression is omitted
here as it is too cumbersome. The elimination of secular terms
in Eq. (3.5) results in the following Stuart-Landau equation for
the amplitude A(T ):

dA

dT
= σA − LA3, (3.8)

where σ and L are explicitly computed in terms of the system
parameters,

σ = −
〈
G(1)

1 ,ψ
〉

〈ρ,ψ〉 , L =
〈
G(3)

1 ,ψ
〉

〈ρ,ψ〉 (3.9)

and ψ ∈ Ker{(�Kbc − k̄2
cD

bc

)†}.
Experimental evidence shows that, when the domain size is

large, the pattern sequentially forms and travelling wave fronts
are the precursors to patterning. Therefore the amplitude of
the pattern is also modulated in space. The slow spatial scale
X = εx can be easily obtained from the linear analysis. At
O(ε) we still recover the linear problem Lbc

w1 = 0 and the
solution is as in (3.1), but A ≡ A(X,T ) also depends on the
slow spatial scale X. Dealing with the equations at O(ε2) and
O(ε3) as before, we obtain the following Ginzburg-Landau
equation for the amplitude A(X,T ):

∂A

∂T
= ν

∂2A

∂X2
+ σA − LA3, (3.10)

where

ν = −〈2k̄cD
bc

w21 + Dbc

ρ.ψ〉
〈ρ,ψ〉 . (3.11)

Here w21 is the solution of the following linear system:(
�Kbc − k̄2

cD
bc)

w21 = −2k̄cD
bc

ρ, (3.12)

and σ and L are the same as in formulas (3.9).

A. The supercritical case

In the pattern-forming region, the growth rate coefficient
σ is always positive. Therefore two different qualitative
dynamics of the Stuart-Landau equation (3.8) can be identified
based on the sign of the coefficient L: L > 0 corresponds to
the supercritical case and L < 0 to the subcritical case (see
Fig. 1). In the supercritical case the Stuart-Landau equation
admits the stable equilibrium solution A∞ = √

σ/L, which
corresponds to the asymptotic value of the amplitude A of the
pattern. In Fig. 4(b), we show the comparison between the
stationary solution predicted by the weakly nonlinear analysis
up to O(ε2) and the pattern solution computed solving
numerically the system (1.1) starting from a random periodic
perturbation of the constant state. In all the tests we have
performed we have verified that the distance, evaluated in the
L1 norm, between the weakly nonlinear approximation and
the numerical solution of the system is O(ε3). Let us consider
the same parameter set as in Fig. 4, except for the parameter
� whose value is set to be 800, which is larger by a factor
10, which is equivalent to having a spatial domain larger by
a factor

√
10. Once one perturbs the equilibrium solution at

the center of the spatial domain, the pattern propagating as
a wave is observed. In Sec. III, without loss of generality,
we choose to perform all the numerical simulations in the
domain [0,2π ]. The effect of varying the domain size is taken
into account by changing the value of �. Figure 5 shows how
the Ginzburg-Landau equation (3.10) is able to capture the
envelope evolution and the progression of the pattern as a wave.

B. The subcritical case

In the subcritical region shadowed in dark gray in Fig. 1,
the Stuart-Landau equation (3.8) does not admit any stable
equilibrium and it is not able to capture the amplitude of
the pattern. We therefore need to push the weakly nonlinear
analysis at a higher order (see Ref. [38] and references therein).
The compatibility condition imposed at O(ε5) leads to the
following quintic Stuart-Landau equation for the amplitude A:

dA

dT
= σ̄A − L̄A3 + R̄A5, (3.13)
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FIG. 5. The equilibrium solution is perturbed at the center of the spatial interval. The pattern forms as a modulated wave (solid line).
The dashed line is a numerical solution of the Ginzburg-Landau equation (3.10). The parameters are chosen as in Fig. 4, with � = 800. Here
ε = 10−3.

where the coefficients σ̄ , L̄, and R̄ appearing in (3.13) are
obtained in terms of the parameters of the original system (1.1).
Some details of the derivation of Eq. (3.13) can be found in
Appendix A. We notice in Eqs. (A5) that σ̄ and L̄ are the O(ε2)
perturbation of the coefficients of the cubic Stuart-Landau
equation, while R̄ = O(ε2); this leads to A = O(ε−1), which
is consistent with the reported bifurcation diagram. When
σ̄ > 0, L̄ < 0, and R̄ < 0, the Eq. (3.13) admits two symmetric
real stable equilibria, corresponding to the asymptotic values
of the amplitude A. On the left of Fig. 6, the bifurcation
diagram is shown for the values of the parameters chosen in the
subcritical region. When bs < b < bc, both the origin and two
large amplitude branches are stable, indicating the possibility
of hysteresis as b is varied. The right-hand side of Fig. 6
shows how the pattern forms starting with a value of b > bc

as the solution of Eq. (3.13) jumps to the large-amplitude
stable branch. Moreover, decreasing b, with bs < b < bc this
pattern solution persists; it disappears, reaching the constant
steady state, only with a further decrease of b below bs , as the
solution of (3.13) jumps to the origin. The pattern forms again
by increasing the parameter b above bc. Finally, we notice that
in the subcritical case the amplitude of the pattern is relatively
insensitive to the size of the bifurcation parameter.

IV. TWO-DIMENSIONAL DOMAIN

In this section we shall investigate the pattern appearance
for the reaction-diffusion system (1.1) in a two-dimensional
domain (here ζ ∈ 
 ⊆ R2). Notice that the critical value
for the bifurcation parameter and the critical wave num-
ber do not depend on the geometry of the domain and
they are still computed via linear stability analysis as in
Sec. II.

A. Rectangular domain

Let ζ ≡ (x,y) ∈ 
, with 
 = [0,Lx] × [0,Ly]. The solu-
tions to the linearized system associated to (1.1) with Neumann

boundary conditions are as follows:

w =
∑

p,q∈N
fpq eσ (k2

pq ) t cos (φ x) cos (ψ y) , (4.1)

k2
pq = φ2 + ψ2, where φ ≡ pπ

Lx

, ψ ≡ qπ

Ly

, (4.2)

where fpq are the Fourier coefficients of the initial conditions
and σ (k2

pq) are computed via the dispersion relation (2.4).
The range of the unstable wave numbers of allowable patterns
strictly depends on the domain geometry and the boundary
conditions. The domain being finite, to see a pattern emerging
as t increases, there should exist at least a mode pair (p,q)
such that

k2
1 < k2 ≡ φ2 + ψ2 < k2

2 and σ (k2) > 0, (4.3)

i.e., for b > bc and � sufficiently large (as the unstable wave
numbers k2

1 and k2
2 are proportional to �). Our analysis

will be restricted to the case when only one admissible
unstable eigenvalue, here denoted with k̄c, falls within the
band (k1,k2). Given k̄c ∈ [k1,k2], the degeneracy phenomenon
can occur: One, two, or more pairs (p,q) may exist such that
k̄2
c = φ2 + ψ2 and the corresponding eigenvalue σ will have

single, double, or higher multiplicity, giving rise to different
types of linear patterns.

The weakly nonlinear analysis can be once again carried
out to obtain the equations which rule the evolution of the
pattern amplitude near the threshold. The solution of the
linear problem as in (3.3), satisfying the Neumann boundary
conditions, is given by

w1 =
r∑

i=1

Ai(T1,T2)ρ cos(φix) cos(ψiy), (4.4)

where r is the multiplicity of the eigenvalue, Ai are the
slowly varying amplitudes (still arbitrary at this level), and
ρ ∈ Ker(�Kbc − k̄2

cD
bc

). We shall show the types of supported
patterns when the multiplicity is r = 1 or r = 2.
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FIG. 6. (a) The bifurcation diagram in the subcritical case. The equilibria of the quintic Stuart-Landau equation (3.13) have been explicitly
computed in terms of the bifurcation parameter as, other than the trivial one, they are the solutions of a biquadratic algebraic equation. (b) A
hysteresis cycle and the corresponding pattern evolution in the subcritical case. The simulation was run to steady state and the final state of
that simulation was then used as the initial condition of the new simulation after b was changed. The bifurcation value b varies following the
order given into the legend. The parameters are � = 150, Q2 = 0.14, and η2 = 0.36, chosen in the subcritical region, at the point marked with
an asterisk both in Fig. 1 and in Fig. 4(a). In this case, bc ≈ 1.2645, bs = 1.2634.

1. Simple eigenvalue r = 1

When r = 1 the multiple scales method strictly follows
the analysis given in Sec. III. The amplitude equation, still
recovered at O(ε3), is the Stuart-Landau equation (3.8) and
the emerging solution of the reaction-diffusion system (1.1) in
the supercritical case is given by

w = ερA∞ cos(φx) cos(ψy) + O(ε2), (4.5)

where A∞ is the stable stationary state of the Stuart-Landau
equation (3.8). These solutions are rhombic spatial patterns
(see Ref. [39]), whose special cases are the rolls (when φ or ψ

is zero) or the squares (when φ = ψ). The numerical solution,
obtained via spectral methods, of the system (1.1), starting
from an initial datum which is a random periodic perturbation
about the steady state (ū,v̄), stabilizes to the roll pattern shown
in Fig. 7. The system parameters are chosen in such a way that,
in the rectangular domain Lx = π and Ly = √

3π , only the
most unstable mode k̄2

c = 3 satisfies the condition (4.3) and the
corresponding eigenvalue is single, as the uniform steady state
is linearly unstable to the unique mode pair (p,q) = (0,3). For
a better presentation of the results the amplitude of the zero
mode (corresponding to the equilibrium solution) has been
set equal to zero in the figures representing the spectrum of
the solution. We have verified that the error in predicting the
amplitude of the pattern using (4.5) is O(ε2) [see the presence
of the subharmonic (0,6) in Fig. 7(b) which can be estimated
including into the approximated solution (4.5) also the terms
at O(ε2)].

In the square domain with Lx = Ly = π , we have picked
the parameters values as in the caption of Fig. 8, such that the
conditions in (4.3) are satisfied by the unique discrete unstable
mode k̄2

c = 8 and the mode pair (p,q) = (2,2).
From an initial condition which is a random periodic

perturbation about (ū,v̄), the numerical solution of the system
(1.1) stabilizes to the square pattern given in Fig. 8, in
agreement with the expected solution (4.5). The subharmonics

FIG. 7. (Color online) (a) The species u. (b) Spectrum of the
numerical solution. The parameters are � = 8, m = n = 1, Q2 = 3,
η2 = 0.36, and b = bc(1 + ε2), where bc = 5.3028 and ε = 0.05.
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FIG. 8. (Color online) (a) The species u. (b) Spectrum of the
numerical solution. The parameters are � = 30.3, m = 1, n = 2,
Q2 = 3.5, η2 = 0.81, and b = bc(1 + ε2), where bc = 3.9542 and
ε = 0.02.

(4,0), (0,4), and (4,4) in Fig. 8(b) can be predicted via the
weakly nonlinear approximation (4.5) up to O(ε2).

2. Double eigenvalue r = 2, no-resonance condition holds

Let us assume that the multiplicity of the eigenvalue is
r = 2 and the following no-resonance condition holds:

φi + φj 
= φj or ψi − ψj 
= ψj

and (4.6)

φi − φj 
= φj or ψi + ψj 
= ψj

with i,j = 1,2 and i 
= j . Also in this case, the weakly
nonlinear analysis is performed up to O(ε3) and the solvability
condition for Eq. (3.5) leads to the following two coupled
Landau equations for the amplitudes A1 and A2:

dA1

dT
= σA1 − L1A

3
1 + R1A1A

2
2, (4.7a)

dA2

dT
= σA2 − L2A

3
2 + R2A

2
1 A2. (4.7b)

FIG. 9. (Color online) (a) The species u. (b) Spectrum of the
numerical solution. The parameters are � = 11.93, m = n = 1,
Q2 = 8, η2 = 0.36, and b = bc(1 + ε2), where bc = 11.3722 and
ε = 0.03.

In the supercritical case, when the system (4.7) admits at least
one stable equilibrium (A1∞,A2∞), the emerging asymptotic
solution of the reaction-diffusion system (1.1) at the leading
order is approximated by

w = ερ

2∑
i=1

Ai∞ cos(φix) cos(ψiy) + O(ε2). (4.8)

When A1∞ or A2∞ is zero, the solutions in (4.8) are the rhom-
bic spatial patterns described in Sec. IV A1. When both Ai∞ 
=
0, i = 1,2, more complex structures arise due to the interaction
of different modes φi,ψi , the so-called mixed-mode patterns.
The complete classification of the equilibrium points of the
system (4.7) via linear stability analysis is given in Ref. [40].

Let us consider a domain with dimensions Lx = Ly = 2π

and choose the parameter values as in the caption of Fig. 9
in such a way that only the most unstable discrete mode
k̄2
c = 5 falls within the band of unstable modes allowed

by the boundary conditions. In this case the eigenvalue
is double, as the uniform steady state is linearly unstable
to the two mode pairs (2,4) and (4,2). With this choice
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FIG. 10. (Color online) (a) The species u. (b) Spectrum of the numerical solution. (c) The bifurcation diagram. The parameters are
� = 23.054, m = n = 1, Q2 = 4, η2 = 0.3025, and b = bc(1 + ε2), where bc = 6.5615 and ε = 0.01.

of the parameters the system (4.7) admits only one stable
equilibrium (A1∞,A2∞) with both nonzero coordinates and the
expected solution in (4.8) agrees with the numerical asymptotic
solution of the system (1.1), having as initial datum a random
periodic perturbation about the steady state (ū,v̄), shown in
Fig. 9.

3. Double eigenvalue r = 2, resonance condition holds

Let the multiplicity of the eigenvalue be r = 2 and the
resonance condition be satisfied as follows:

φi + φj = φj and ψi − ψj = ψj

or (4.9)

φi − φj = φj and ψi + ψj = ψj

with i,j = 1,2 and i 
= j . Assuming, without loss of gen-
erality, that the second condition in (4.9) holds with i = 2
and j = 1, and taking into account the relation in (4.3), it
follows that φ2 = 2φ1, ψ2 = 0, ψ1 = √

3φ1, φ1 = k̄c/2, and
Ly = √

3Lx . In this case the secular terms appear at O(ε2) in
(3.4); however, the amplitude equations one derives imposing
the solvability condition do not admit stable equilibrium in any
parameter regimes. Therefore the asymptotic analysis has to
be pushed to higher order; see Refs. [38,40]. By the Fredholm
alternative for Eq. (3.5), at O(ε3) one finds the following
system for the amplitudes A1 and A2:

dA1

dT
= σ1A1 − L1A1A2 + R1A1A

2
2 + S1A

3
1,

(4.10)
dA2

dT
= σ2A2 − L2A

2
1 + R2A

2
1 A2 + S2A

3
2,

where σi and Li are O(ε2) perturbation of the coefficients of
the amplitude equations found at O(ε2), while Ri and Si are
O(ε2). At the leading order, the emerging asymptotic solution
of the system (1.1) is approximated by

w = ερ(A1∞ cos(φ1x) cos(ψ1y)

+A2∞ cos(φ2x) cos(ψ2y)) + O(ε2), (4.11)

where (A1∞,A2∞) is a stable state of the system (4.10). The
possible stationary states of the system (4.10) are R± ≡ (0, ±

√−σ2/S2) and the six roots H±
i ≡ (A±

1i ,A2i), i = 1,2,3, of
the following system:

A3
2(S1S2 − R1R2) + A2

2(L1R2 + L2R1)

+A2 (S1σ2 − L1L2 − R2σ1) + L2σ1 = 0,

A2
1 = 1

S1

( − R1A
2
2 + L1A2 − σ1

)
.

When R± or H±
i exist as real and stable, the corresponding

solution (4.11) is, respectively, a roll or a hexagonal pattern.
In Fig. 10 we show the hexagonal pattern which forms

starting from an initial datum which is a random periodic
perturbation about the steady state (ū,v̄). For the parameters
chosen as in the caption of Fig. 10, only the mode k̄2

c = 9 is
admitted by the boundary conditions in the rectangular domain
with Lx = 2π and Ly = 2

√
3π . The eigenvalue predicted by

the linear analysis is double as both the two pairs (3,9) and
(6,0) satisfy the conditions in (4.3). The weakly nonlinear
analysis predicts that only the states H±

1 are stable [as shown in
the bifurcation diagram in Fig. 10(c)]. The form of the pattern
emerging from a numerical simulation of the full system, see
Fig. 10(a), is qualitatively well captured by the hexagonal
pattern (4.11) predicted by the weakly nonlinear analysis,
which, however, underestimates the subharmonics shown in
Fig. 10(b), as it is usual for subcritical cases.

B. Target pattern with radial symmetry

Giving a small radially symmetric perturbation of the
uniform equilibrium at the center of a square domain, the
emerging solution of the system (1.1) is the axisymmetric
pattern shown in Fig. 11.

It is a typical target pattern showing a larger amplitude
at the center; see Fig. 11(b). The weakly nonlinear analysis
can be performed to recover the Ginzburg-Landau equation
which captures the amplitude of the fluctuations of the target
pattern close to the threshold [41,42]. Let r be the spatial
radial coordinate, the amplitude of the pattern depends on the
slow spatial scale R = εr . Away from the core the curvature
effects can be neglected and the following Ginzburg-Landau
equation is easily derived following the procedure as in

042925-9



GAMBINO, LOMBARDO, SAMMARTINO, AND SCIACCA PHYSICAL REVIEW E 88, 042925 (2013)

0
1.8695

1.8705

1.8715

1.8725

1.8735

r

u

−π π

(a)

(b)

FIG. 11. (Color online) (a) Target pattern. (b) The cross section.

Sec. III:

∂A

∂T
= ν

(
∂2A

∂R2
+ 1

R

∂A

∂R
− A

4R2

)
+ σA − LA3 . (4.12)

The envelope evolution of the outer solution w is therefore
approximated by

wO = ε A(R,T ) w21cos (kcr̄) + O(ε2), (4.13)

where r̄ = r − π/4 and w21 is the solution of a linear system as
in (3.12). Let us rewrite the amplitude equation (4.12) in terms
of the variable A = AR1/2 as it simplifies to the following
form:

∂A
∂T

= ∂RRA + σA − L
A3

R
. (4.14)

The amplitude equation (4.14) does not hold close to the center
of the target pattern where the curvature terms cannot be
neglected. Taking into account the curvature terms, through
a linear analysis as in Ref. [43], we get the following inner
solution (close to the core of the pattern) depending on the

spatial radial coordinate r:

wI = Cw21J0(kcr), (4.15)

where J0 is the zeroth-order Bessel function of first kind and
C is a constant.

The solution of Eq. (4.14) when R → 0 should match with
the solution (4.15) when r → ∞. The behavior of the solution
of Eq. (4.14) when R → 0 is the following:

A ≈ a + bR + a|a|2R log R, (4.16)

where a and b are constants; see Ref. [44]. Using the well-
known asymptotic formula for the Bessel function J0, one
finds that, when r → ∞, the inner solution behaves as

wI ≈ Cw21√
πkcr̄

cos (kcr̄). (4.17)

The matching between the two solutions leads to the constant
C being O(ε1/2). Therefore, the solution in the core wI =
ε1/2 w21 J0(kcr) is larger than in the outer region [45]. This
explains the larger amplitude at the center of the axisymmetric
solution of the system (1.1) observed in Fig. 11(b).

V. CONCLUSIONS

In this paper we have analyzed a two-species reaction-
diffusion system which models the Brusselator dynamics with
nonlinear density-dependent diffusion. We have first derived
the conditions both for Turing and oscillatory instabilities,
showing that the presence of nonlinear diffusion extends the
range of diffusion coefficients over which Turing patterns can
occur, in particular even when the diffusion coefficient of the
activator exceeds that one of the inhibitor.

In the one-dimensional domain the supercritical or the
subcritical character of the Turing bifurcation has been
determined by deriving the amplitude equation for patterns
near the instability threshold via weakly nonlinear analysis. In
the subcritical case we have also shown that the system exhibits
hysteresis, as the amplitude equation supports bistability.
Moreover, when the domain is large, we have observed the
pattern forming sequentially and invading the whole domain
as a traveling wave front, whose evolution is governed by the
Ginzburg-Landau equation.

In a two-dimensional rectangular domain we have observed
a rich scenario of diverse patterns, such as rolls, squares,
and mixed-mode patterns emerging due to the interaction
of different modes. Among mixed-mode patterns we have
also shown the hexagonal patterns, arising when a resonance
condition holds. We have employed the weakly nonlinear
analysis to obtain the amplitude equations in each case
and numerical simulations of the reaction-diffusion system
exhibit the features predicted by these amplitude equations.
Finally, the analysis has been moved to target pattern with
radial symmetry. Since this wave pattern shows a larger
amplitude near the center of its circular profile than in its
traveling fluctuations, we have applied a matching procedure
to appropriately approximate the amplitude solution.

Some aspects of the problem remain to be examined.
As the homogeneous state can lose its stability via a Hopf
bifurcation, nonstationary patterns should also develop. The
weakly nonlinear analysis can be employed to obtain the
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amplitude equations both near the Hopf bifurcation point [46]
and next to the codimension-2 Turing-Hopf point determined
here [37]. This will be the subject of a forthcoming paper.
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APPENDIX: DERIVATION OF THE QUINTIC
STUART-LANDAU EQUATION

In this Appendix we give some details of the derivation of
the quintic Stuart-Landau equation (3.13).

Substituting the expansions (3.2) into (3.1), the resulting
equations, up to O(ε3), have been given in (3.3)–(3.5).
Taking into account that (3.8) still holds for the amplitude
A(T ,T4, . . . ) (although now the derivative with respect to T is
a partial derivative), the solvability condition 〈G,ψ〉 = 0 for
(3.5) is satisfied and the solution is found.

The resulting equations at O(ε4) and O(ε5) are obtained,
respectively, as in the following equations (A1) and (A2):

Lbc

w4 = H, (A1)

where

H = 2A
∂A

∂T
H(0)

0 + A2H(2)
0 + A4H(4)

0 + A4H4 cos(4kcx)

×
(

2A
∂A

∂T
H(0)

2 + A2H(2)
2 + A4H(4)

2

)
cos(2kcx)

and

Lbc

w5 = P , (A2)

where

P =
(

∂A

∂T1
ρ + ∂A

∂T
P(0)

1 + 3A2 ∂A

∂T
P(2)

1 + AP(1)
1

+A3P(3)
1 + A5P(5)

1

)
cos(kcx) + P∗

and P∗ contains automatically orthogonal terms. The explicit
expression of the vectors H(j )

i and P(j )
i is here omitted as

it is too cumbersome. The solvability condition for (A1) is
automatically satisfied and the solution is straightforwardly
found.

The solvability condition for (A2) is

∂A

∂T4
= σ̃A − L̃A3 + R̃A5, (A3)

where the coefficients are given by

σ̃ = −
〈
σP(0)

1 + P(1)
1 ,ψ

〉
〈ρ,ψ〉 ,

L̃ =
〈
3σP(2)

1 − LP(0)
1 + P(3)

1 ,ψ
〉

〈ρ,ψ〉 , (A4)

R̃ =
〈
3LP(2)

1 − P(5)
1 ,ψ

〉
〈ρ,ψ〉 .

Adding up (A3) to (3.8) one gets the quintic Stuart-Landau
equation (3.13) with

σ̄ = σ + ε2σ̃ , L̄ = L + ε2L̃ , R̄ = R̃ε2 . (A5)
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2010), pp. 397–425.

[23] G. Galiano, Comput. Math. Appl. 64, 1927 (2012).
[24] R. Ruiz-Baier and C. Tian, Nonlinear Anal. Real World Appl.

14, 601 (2013).
[25] J. A. Sherratt, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.

456, 2365 (2000).
[26] A. Tikhomirova and V. Volpert, Appl. Math. Lett. 20, 163 (2007).

042925-11

http://dx.doi.org/10.1016/j.physa.2009.12.052
http://dx.doi.org/10.1016/j.physa.2009.05.015
http://dx.doi.org/10.1016/j.physa.2009.05.015
http://dx.doi.org/10.1126/science.251.4994.650
http://dx.doi.org/10.1007/BF00280170
http://dx.doi.org/10.1016/j.pbiomolbio.2004.03.001
http://dx.doi.org/10.1016/j.pbiomolbio.2004.03.001
http://dx.doi.org/10.1039/ft9969202903
http://dx.doi.org/10.1016/0009-2614(93)80048-T
http://dx.doi.org/10.1016/0009-2614(93)80048-T
http://dx.doi.org/10.1021/cr00035a012
http://dx.doi.org/10.1103/PhysRevLett.87.188302
http://dx.doi.org/10.1063/1.1448807
http://dx.doi.org/10.1016/S0169-4332(03)00702-5
http://dx.doi.org/10.1016/S0169-4332(03)00702-5
http://dx.doi.org/10.1103/PhysRevLett.110.148301
http://dx.doi.org/10.1103/PhysRevLett.110.148301
http://dx.doi.org/10.1016/S0045-7825(99)00449-1
http://dx.doi.org/10.1016/S0045-7825(99)00449-1
http://dx.doi.org/10.1016/S0045-7825(02)00241-4
http://dx.doi.org/10.1016/S0045-7825(02)00241-4
http://dx.doi.org/10.1016/j.apnum.2008.05.002
http://dx.doi.org/10.1016/j.apnum.2008.05.002
http://dx.doi.org/10.1016/j.matcom.2011.11.004
http://dx.doi.org/10.1016/j.matcom.2011.11.004
http://dx.doi.org/10.1016/j.na.2011.04.055
http://dx.doi.org/10.1016/j.na.2011.04.055
http://dx.doi.org/10.1016/j.nonrwa.2009.01.043
http://dx.doi.org/10.1016/j.nonrwa.2009.01.043
http://dx.doi.org/10.1016/j.camwa.2012.03.045
http://dx.doi.org/10.1016/j.nonrwa.2012.07.020
http://dx.doi.org/10.1016/j.nonrwa.2012.07.020
http://dx.doi.org/10.1098/rspa.2000.0616
http://dx.doi.org/10.1098/rspa.2000.0616
http://dx.doi.org/10.1016/j.aml.2006.03.011


GAMBINO, LOMBARDO, SAMMARTINO, AND SCIACCA PHYSICAL REVIEW E 88, 042925 (2013)

[27] D. del Castillo-Negrete, B. A. Carreras, and V. Lynch, Physica
D 168-169, 45 (2002).
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