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Reactivity boundaries for chemical reactions associated with higher-index and multiple saddles
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Reactivity boundaries that divide the origin and destination of trajectories are of crucial importance to reveal
the mechanism of reactions, which was recently found to exist robustly even at high energies for index 1 saddles
[Phys. Rev. Lett. 105, 048304 (2010)]. Here we revisit the concept of the reactivity boundary and propose a
more general definition that can involve a single reaction associated with a bottleneck composed of higher-index
saddles and/or several saddle points with different indices, where the normal form theory, based on expansion
around a single stationary point, does not work. We numerically demonstrate the reactivity boundary by using a
reduced model system of the H5

+ cation where the proton exchange reaction takes place through a bottleneck
composed of two index 2 saddle points and two index 1 saddle points. The cross section of the reactivity boundary
in the reactant region of the phase space reveals which initial conditions are effective in making the reaction
happen and thus sheds light on the reaction mechanism.
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I. INTRODUCTION

Studies of chemical reaction dynamics aim to understand
how and why a system proceeds from its initial state to the
final state in the process of reaction. Special interest lies in the
question concerning which initial conditions make the reaction
happen. Classically, the process of the chemical reaction can
be regarded as motion of a point in the phase space propagating
from a region corresponding to the reactant to another region
corresponding to the product. Some phase-space points in the
reactant region may go into the product region after
time propagation, whereas other phase-space points stay in
the reactant region without undergoing the reaction. Be-
tween these reactive initial conditions and nonreactive ones
lies a boundary which we simply call here the reactivity
boundary, which has previously been described as “boundary
trajectories” [1–14] asymptotic to a periodic orbit dividing
surface (pods) [7–14], a “boundary” of [1–14] reactivity
bands [15–25], a “tube” [26], a “cylindrical manifold” [26],
“impenetrable barriers” [27], a “stable or unstable manifold”
of normally hyperbolic invariant manifolds (NHIM) [27], “re-
action boundaries” [28], and also described on certain sections
as “reactivity bands” [15–25], “reactivity map” [18–25], and
“reactive island” [26]. The general definition of the reactivity
boundary is the main subject of this paper.

The reactivity boundary is often discussed in relation to
saddle points. A saddle point on a multidimensional potential
energy surface is defined as a stationary point at which the
Hessian matrix does not have zero eigenvalues and, at least,
one of the eigenvalues is negative. Saddle points are classified
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by the number of negative eigenvalues and a saddle that
has n negative eigenvalues is called an index-n saddle. In
particular, the index 1 saddle on a potential surface has long
been considered to make a bottleneck of reactions [29,30],
with the sole unstable direction corresponding to the “reaction
coordinate.” This is because the index 1 saddle is considered
to be the lowest energy stationary point connecting two
potential minima, of which one corresponds to the reactant
and the other to the product, and the trajectory must traverse
the vicinity of the index 1 saddle from the reactant to the
product [31–33].

Such reactivity boundaries have been investigated from
early period of the study of reaction dynamics. Especially re-
activity boundaries of atom-diatom reactions were extensively
studied by Wright et al. [18–23] and Pechukas et al. [1–14].
Wigner introduced the asymptotic reactant and product regions
to calculate the reaction rate in his transition state theory [34].
Independently, Wright et al. showed reactive bands, which had
been found by Wall et al. [15–17], in the reactivity maps of
H + H2 and its isotopic variants [18–23] that consist of bands
of nonreactive regions and reactive regions of each product.
The approach was initiated by Ref. [18] to see the origin of
continuous shift of peak in graph of initial relative translational
(kinetic) energy versus time spent in “reaction shell” for given
initial vibrational phase angles. After Ref. [18], a series of
studies was reported for collinear (1D) [19], isotope [20], and
coplanar (2D) [22] reactions and a 3D [23] reaction and also on
an improved potential energy surface [21] with initial relative
translational energy versus initial phase angle θ . Chesnavich
et al. observed boundary trajectories of the collision-induced
dissociation of the H + H2 reaction [24,25] that divide reactive
(H2 + H), nonreactive (H + H2) and dissociative (H + H + H)
regions in phase space.

Pechukas et al. revealed the role of a periodic orbit dividing
surface in two-dimensional collinear atom-diatom reaction
systems [1–14]. The importance of a periodic orbit around the
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interaction region was first recognized by Pechukas [1]. This
series of research can be described by his words as follows:

Somewhere between these two trajectories is
a “dividing” trajectory that falls away, neither
to reactant nor to product; this is the required
“vibration,” across the saddle point region but not
necessarily through the saddle point, and the curve
executed on the plane by the vibration is the best
transition state at that energy.

Pechukas and Pollak [2] and Sverdlik and Koeppl [3]
observed such trajectories in the region of index 1 saddles of
two-dimensional systems and recognized them as an “unstable
invariant classical manifold” [11] and called them a periodic
orbit dividing surface (pods) [8]. The pods can be identified
as the best transition state [5] when there is only one pods at a
given energy. Pechukas and Pollak investigated the advantage
of pods against variational transition-state (TS) theory [4] and
unified statistical theory [6]. They also revealed its role in
the application of statistical theories to reaction dynamics
[6,7,9] and provided an iterative method to calculate reaction
probability [10]. After the series of classical investigation
they started to look at adiabatic motion perpendicular to
pods [13] and quantum correspondence [12] and experimental
correspondence [14] were elucidated. Those studies were
mostly done on two degrees of freedom (DOF) systems. The
problem of high dimensionality in the region of index 1 saddles
was later overcome [26–28,35–54].

The dynamics around the saddle point have been recently
investigated extensively in terms of nonlinear dynamics
[26–28,35,38–54] in the context of TS theory [29,30] in
molecular science. Among them, particularly relevant to the
present work, is the finding of the “tube” [26] structures
in phase space to conduct the reacting trajectories from the
reactant to the product across an index 1 saddle. These studies
revealed the firm theoretical ground for the robust existence
of the reactivity boundaries emanating from the saddle region
as well as the no-return TS in the phase space [50,51]. The
scope of the dynamical reaction theory [51] is not limited
to only chemical reactions but also includes, for example,
ionization of a hydrogen atom under electromagnetic fields
[27,40], isomerization of clusters [38,39], orbit designs in solar
systems [55], and so forth. Recently, these approaches have
been generalized to dissipative multidimensional Langevin
equations [41,43,44] based on a seminal work by Martens
[53], laser-controlled chemical reactions with quantum effects
[45,46], and systems with rovibrational couplings [47,48] and
showed the robust existence of reactivity boundaries even
while a no-return TS ceases to exist [28].

For complex systems, the potential energy surface becomes
more complicated, and transitions from a potential basin to
another involve not only index 1 saddles but also higher-index
saddles [56–64]. Recently, the role of index 2 saddles revealed
several dynamical aspects. For example, a simulation study
on “phase transitions” from solidlike phase to liquidlike phase
in a seven-atomic cluster [56] showed that trajectories spend
more time in the region of higher-index saddles as the total
energy of the system increases. Under the onset of “melting,”

its occupation ratio around the index 2 saddles correlates
to Lindemann’s δ and the configuration entropy that are
well-known indices of phase transition. Another example is
a systematical survey of global stability of the triangular
Lagrange points L4 and L5 under the condition that the
secondary mass μ is larger than the Gascheau’s value μG (also
known as the Routh value) in the restricted planar circular
three-body problem [57]. Those Lagrange points become
index 2 saddle points when the condition μ > μG is met,
and the range of μ was identified where the Lagrange points
have global stability and periodic stable orbits around them.

Chemical reactions associated with index 2 saddles were
also reported in several molecular systems [58–64] by using
several searching algorithms (section 6.3, p. 298, of Ref. [65]
and references therein). However, index 2 saddles have
received much less attention than index 1 saddles. This may
be because of the Murrell-Laidler theorem [66] that states the
minimum energy path does not pass through any index higher
than 1 saddle points if the second derivative of the Hamiltonian
has nonzero eigenvalue at the saddle. Note, however, that it is
not necessary for the highest energy point on the minimum
energy path between two potential minima to be an index 1
saddle [67]. Moreover, one can still find many studies such
as aminoborane [58], PF3 [58], NH5 [59], NF2H3 [60], water
dimer [61,62], H5

+ [63], and H2CO [64] that identify a variety
of index 2 saddles in molecular isomerization reactions.

A significant difference between reactions associated with
a bottleneck made of an index 1 saddle and those through
a higher-index saddle is that a single higher-index saddle
does not necessarily serve as a bottleneck from one potential
basin to another since index-n (>1) saddles are almost always
accompanied with saddles of an index less than n. Therefore,
reactions associated with higher-index saddle(s) are dominated
by a bottleneck composed of multiple saddles, as are its phase-
space structures. This nonlocal property of the bottleneck is
an essential difficulty in treating a reaction associated with
higher-index saddles.

To reveal the fundamental mechanism of the passage
through a saddle with an index greater than 1, the phase-space
structure was recently studied on the basis of normal form
(NF) theory [68–71]. For example, the pioneering studies
to extend the dynamical reaction theory into higher-index
saddles were reported [68] for concerted reactions. A dividing
surface to separate the reactant and the product was proposed
for higher-index saddles [69] and the associated phase-space
structure was also discussed [70,71]. Those studies are based
on NF theory and therefore rely on two assumptions. One
is that no linear “resonance” is postulated between more
than one reactive modes and the other is that the local
dynamics around the index 2 or higher-index saddle plays a
dominant role in determining the destinations and the origins
of the trajectories. For the former assumption, Toda [72]
addressed that linear resonance between two reactive modes
may introduce a breakdown of the reactivity boundary. As for
the latter assumption, Nagahata et al. [73] reported recently
that the reactivity boundary extracted by use of the normal form
does not necessarily give the barrier separating the reactivity
in the original coordinate space for higher-index saddles.

Moreover, as described above, an index 2 saddle often
coexists with index 1 saddles and therefore the reaction
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dynamics or the “bottleneck” should be determined through
interplay among multiple saddle points. Additionally, the
current theory for invariant manifolds that may dominate
reactions associated with an index 2 saddle and a higher-index
saddle are only for the largest repulsive direction [70,71].
However, Minyaev et al. [58], for example, showed that
aminoborane has internal rotation associated with an index
2 saddle and index 1 saddles and that the weaker repulsive
direction around the index 2 saddle, corresponding to the
hindered internal rotation, connects the two minima.

Most studies for a reaction associated with higher-index
saddles are based on NF, a perturbation theory around a
single stationary point, and assume that NF can capture those
reaction dynamics. To validate those studies, however, it is
necessary, first, to clarify the concept of reactivity boundaries
in reactions associated with a bottleneck composed of
multiple saddles. The reactivity map [18–25] and Pechukas’
foresight [1] are still important to generalize the concept
to make it applicable when the reaction dynamics is not
dominated by a single saddle point.

In the present paper, we first review the concept of reactivity
boundaries for the linear system in Sec. II A. Then we
generalize the concept to the reactions associated with a
bottleneck possibly composed of multiple saddle points in
Sec. II B. In Sec. III we demonstrate the numerical extraction
of reactivity boundaries in a chemical system with a bottleneck
composed of multiple saddle points, including both index 1
and index 2 saddles. The investigation reveals what initial
condition should be prepared to make the reaction happen and
why such initial conditions lead to reactions.

II. THEORY

In this section, we revisit the concept of reactivity bound-
aries developed previously (Sec. II A) and propose a more
general definition that can involve a single reaction associated
with a bottleneck composed of higher-index saddles and/or
several saddle points with different indices, where the normal
form theory, based on expansion around a single stationary
point, does not work (Sec. II B).

A. Linearized Hamiltonian

In this subsection we review the concept of reactivity
boundaries developed previously based on the theory of
dynamical systems [26–28,35,38–54]. One of the simplest
examples of reactivity boundaries can be seen in the normal
mode (NM) approximation. If the total energy of the system is
just slightly above a stationary point, the n-DOFs Hamiltonian
H can well be approximated by a NM Hamiltonian H0,

H ( p,q) ≈ H0( p,q) =
n∑

j=1

1

2

(
p2

j + kjq
2
j

)
(1)

with NM coordinates q = (q1, . . . ,qn) and their conjugate
momenta p = (p1, . . . ,pn), where kj ∈ R is the “spring
constant” or the curvature of the potential energy surface
along the j th direction. The constants kj can be positive or
negative. If kj < 0, the potential energy is maximum along
the j th direction. Then the direction exhibits an unstable
motion corresponding to “sliding down the barrier” and can

FIG. 1. (Color online) Phase-space flow of the normal mode with
negative curvature (hyperbolic degree of freedom). Reactant and
product are defined by the sign of q1. η1 = 0(or ξ1 axis) divides the
destination of trajectories; Trajectories in η1 > 0 go into the product
side (q1 > 0) as t → +∞ and those in η1 < 0 go into the reactant
side (q1 < 0). Similarly, ξ1 = 0 (or η1 axis) divides the origin of
trajectories; trajectories in ξ1 > 0 originate from the reactant side and
those in ξ1 < 0 from the product side.

be regarded as “reaction coordinate.” The index of the saddle
corresponds to the number of negative kj ’s. Phase-space flow
of the DOF with negative kj is depicted in Fig. 1. Here one
can introduce the following coordinates:

ηj = (pj + λjqj )/(λj

√
2), ξj = (pj − λjqj )/

√
2, (2)

corresponding to eigenvectors of the coefficient matrix of
the linear differential equation [Eq. (1)] with eigenvalue
λj = ±√−kj . Here one can also introduce another set of
coordinates,

Ij = ξjηj , θj = ln |λjηj/ξj |/2, (3)

called the “action” and “angle” variables. When Eq.(1) holds,
the action variable is an integral of motion, and trajectories run
along the hyperbolas given by Ij = const., shown by the gray
lines in Fig. 1. The ηj and ξj axes run along the asymptotic
lines of the hyperbolas in Fig. 1. The Hamiltonian equation of
motion can be written as

ζ̇ j ≈ −LH0ζ j = −λjLIj
ζ j =

(−λj 0
0 λj

)
ζ j , (4)

where ζ j = (ξj ,ηj )T and the Lie derivative LF is defined as

LF ζ k = {F,ζ k} = ∑n
j=1( ∂F

∂ηj

∂ζ k

∂ξj
− ∂F

∂ξj

∂ζ k

∂ηj
). One can tell the

destination region and the origin region of trajectories from
the signs of ηj and ξj as follows: If ηj > 0, the trajectory
goes into qj > 0 and, if ηj < 0, then the trajectory goes into
qj < 0. Therefore one can tell the destination of trajectories
from the sign of ηj . Similarly, the origin of trajectories can
be told from the sign of ξj . Hereafter we call the set ηj = 0
“destination-dividing set” and ξj = 0 “origin-dividing set,”
and each of these two sets constitute “reactivity boundaries.”

When the NM picture dominates the dynamics around the
stationary point, the form of Eq. (4) enables us to identify
the fate of reaction. This is also generally the case if one can
achieve a canonical transformation to turn the Hamiltonian into
the form of H = H (I), even though λj s depend on initial Ij s .

This transformation has been mostly achieved by the
normal form theory based on expansion around a single
stationary point. The theory has been applied and developed
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FIG. 2. (Color online) Blue large circles represent states S1 and
S2. Arrows represent particular sorts of trajectories; blue arrows (n1

and n2) represent nonreactive trajectories, while red ones (r12 and
r21) represent reactive trajectories. Black arrows (d1 and d2) and gray
arrows (o1 and o2) represent trajectories in the destination-dividing
set, and those in the origin-dividing set, respectively.

to elucidate the mechanism of several reaction dynamics
about a decade [27,28,38–51]. For practical applications the
Lie canonical perturbation theory, developed by a Japanese
astrophysicist, Gen-Ichiro Hori [74,75] (and equivalent theory
was independently developed by Deprit [76,77]), has been
frequently used.

B. Reactivity boundary

For complex molecular systems, the potential energy
surface becomes more complicated, and a single transition
from a potential basin to another involves not only index
1 saddles but also higher-index saddles. The normal form
theory shown in Sec. II A, based on expansion around a
single stationary point, may not work well for such complex
systems, where the fate of the reaction may not be dominated
solely by the local property of the potential around the point.
Therefore the definition of the reactivity boundaries should
not be based on perturbation theory. In this subsection, we
seek for a more general definition of reactivity boundaries,
so the definition can describe invariant objects previously
studied (such as impenetrable barriers [27] and reactive island
[26]), to analyze more complicated reactions by following the
Pechukas’ foresight [1].

A “state,” which may refer to reactant or product, forms a
certain region in the phase space �. Let us denote the states
by S1, . . . ,SN , which are disjoint subsets of � (Sj ⊂ � and
Si ∩ Sj = ∅, where i,j = 1,2, . . . ,N and i 
= j ).

Between the regions corresponding to the states, there can
be an intermediate region �0 that does not belong to any
of the states (Fig. 2): � = S1 � · · · � SN � �0. Most of the
trajectories in the intermediate region eventually go into either
of the states as time proceeds. Likewise, when propagated
backward in time, most of them turn out to originate from
either of the states. Consider a set of trajectories that originate
from state S1 and go into state S2 (r12 in Fig. 2) and another
set consisting of trajectories that originate from S1 and go
back into the same state S1 (n1 in Fig. 2). Between these two
sets of trajectories there may lie a boundary which consists of
trajectories that do not go into either of the states (d1 in Fig. 2).
In the cases discussed in Sec. II A, such trajectories were seen
to asymptotically approach into some invariant set(s) in the
intermediate region. Suppose there exists such an invariant
set �S , which is a codimension two subset of �0. We then
consider codimension one subset �OD,�DD ⊂ �0 satisfy-
ing limT →−∞ φT (�OD) = �S and limT →+∞ φT (�DD) = �S

where φT denotes time propagation, as follows:

(1) Destination-dividing set �DD (d1 and d2 in Fig. 2): A
set of trajectories whose origin belongs to a certain state but
whose destination does not belong to any state.

(2) Origin-dividing set �OD (o1 and o2 in Fig. 2): A set
of trajectories whose destination belongs to a certain state but
whose origin does not belong to any state.

The former set constitutes a boundary dividing the desti-
nation regions of trajectories, whereas the latter constitutes
a boundary dividing the origin regions of trajectories. The
set of the trajectories (invariant set) that satisfy one of
the above conditions will be called reactivity boundary in the
following. The asymptotic limit �S of the reactivity boundary,
which belongs to neither reactant nor product, will be called
the “seed” of the reactivity boundaries. The definition of the
reactivity boundary (the destination- or the origin-dividing set)
can be applied to systems with multiple states, since the
definition of the reactivity boundaries are only based on
a single state. This definition of the reactivity boundaries
and their seed is a generalization of the previous invariant
objects (the stable and unstable manifolds of NHIM, and the
NHIM, respectively) studied in the literature [27,28,38–51]
and summarized in Sec. II A.

III. NUMERICAL DEMONSTRATIONS

A. Three DOFs model of H5
+

We demonstrate here a numerical calculation of the reac-
tivity boundary defined in Sec. II with a model H5

+ system.
This cation plays an important role in interstellar chemistry,
especially because of the proton exchange reaction H3

+ +
HD � H2 + H2D+ occurring through the H4D+ intermediate.
As shown in the previous ab initio calculation [63], the most
stable structure of the H5

+ system is a weakly bound cluster
of H2 and H3

+ moieties, with the H2 standing perpendicular
to the H3

+ molecular plane. Being a multibody system, the
H5

+ cation undergoes various isomerization reactions. Taking
the four kinds of lowest stationary points (one minimum, two
index 1 saddle points, and one index 2 saddle point), we have
two reaction directions. One is a torsional isomerization where
the H2 flips 180◦ with the planar structure corresponding to
the saddle point. The other is the proton exchange between the
two moieties H2 + H3

+ � H3
+ + H2.

In the present investigation, we treat the dynamics of
H5

+ by confining it into a 3 DOF system. The dynamical
variables are the center-of-mass distance R between the two
H2 moieties, the position z of the central hydrogen atom along
the center-of-mass axis, and the torsional angle ϕ of the two
H2 as shown in Fig. 3. The coordinate z corresponds to the
proton exchange reaction between the two moieties, while
the angle ϕ corresponds to the torsional isomerization. We

FIG. 3. (Color online) The H3
+ + H2 → H2 + H3

+ reaction can
be written with the three coordinates, ϕ, R, z, depicted in the figure.
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TABLE I. Structures and energies of four kinds of lowest
stationary points of H5

+. The energies are given relative to the first
equilibrium point.

ϕ R/Å z/Å Energy/cm−1 Ref. [63]

1 π/2 2.18 0.19 (Ref.) (Ref.) Global minimum
2 π/2 2.11 0 48.6 48.4 Index 1 saddle
3 0 2.19 0.21 95.9 96.4 Index 1 saddle
4 0 2.12 0 162.7 162.8 Index 2 saddle

calculated the potential energy surface at the CCSD(T) level,
which is the same level with the previous calculation [63].
The ab initio calculations were performed at 439 points in the
range 0 � |z| � 0.4 Å and 2.09 Å � R � 2.51 Å, with the
H2 bond lengths optimized for each given value of (z,R,ϕ).
By checking the energy value, this region was confirmed to
be sufficient to describe the motion with total energy below
200 cm−1. The potential energy values were then fitted to
a cubic order polynomial in (z2,R, cos 2ϕ). The maximum
fitting error was 0.8 cm−1, sufficiently small considering the
total energy 170 cm−1 of the trajectories run in the present
investigation. The structures and energies of the four lowest
stationary points of the fitted surface are listed in Table I and
compared with the literature values [63]. The mathematical
expression of the fitted potential energy surface is available as
the supporting information to this article.

We use this three-dimensional system as an illustrative
model to demonstrate the concepts introduced in Sec. II. Note,
however, that the real H5

+ system has larger DOFs (nine
internal modes and three rotational modes). Quantum effects
must also be considered for the complete treatment of this
system. We here briefly mention that the concept of reactivity
boundaries around the index 1 saddle point has recently
been extended to incorporate ro-vibrational couplings [47,48]
and quantum effects [45,46]. It will be an important future
work to combine these studies with the generalized reactivity
boundaries proposed in the present paper. In the present
numerical calculation we confine the system configuration
into the three-dimensional subspace mentioned above for the
sake of simplicity. We still note that the global minimum, the
three lowest saddle points, and their unstable directions are all
included in this subspace, while the motions transverse to this
subspace are bath mode oscillations. This three-dimensional
model is therefore expected to capture some of the essential
properties of the isomerization and the proton exchange
processes in the real H5

+ system with low energies.
There are two kinds of index 1 saddle points, denoted as 2

and 3, that correspond to the proton exchange and the torsional
isomerization, respectively. The highest of these four kinds
of stationary points are index 2 saddle points, denoted as 4,
representing a concerted reaction of the proton exchange and
the torsion. Figure 4 depicts the two-dimensional potential
energy surface in z and ϕ, where the R is relaxed to the
minimum energy for each given value of (z,ϕ). There are four
symmetrically equivalent points corresponding to the global
minimum 1. Similarly, the saddle points 2, 3, and 4 have two,
four, and two equivalent points, respectively.

The dynamical calculations of the present three-
dimensional model of H5

+ are performed by integrating the

FIG. 4. (Color online) The potential energy surface as a function
of z and ϕ, representing the proton exchange and the torsional motion,
where the other coordinate R is optimized at each point (z,ϕ). Each
number corresponds to each stationary point listed in Table I. Blue
points, red bars, and the red cross denote the potential minima, index
1 saddles, and the index 2 saddle, respectively. Contours are spaced
with 10 cm−1. The initial condition for the calculation of the reactivity
boundaries are prepared at z = 0, where index 1 saddle points 2 and
index 2 saddle points 4 are located (pink dashed line).

equation of motion given by the following Hamiltonian:

H = 1

Iϕ

pϕ
2 + 1

2μR

pR
2 + 1

2μz

pz
2 + V (ϕ,R,z), (5)

where pϕ is the angular-momentum conjugate to the torsional
angle ϕ, and pR and pz are the linear momenta conjugate to R

and z, respectively. The reduced masses are

μz = 4
5mH, μR = mH, (6)

where mH is the mass of the hydrogen atom and Iϕ is the
moment of inertia of H2.

B. Reactivity boundary in H5
+

As described in Sec. II B, the reactivity boundary typically
consists of trajectories emanating from an invariant manifold
in the intermediate region. It is calculated by propagating
the phase-space points, either forward or backward in time,
from the close vicinity of the invariant manifold. In the
present investigation we focus on the proton exchange reaction
from H2 + H3

+ to H3
+ + H2 to demonstrate the extraction of

reactivity boundary. The configuration H2 + H3
+ corresponds

to a region with z > 0 and H3
+ + H2 with z < 0. The

intermediate region thus lies on some region around z = 0.
In this case the surface defined by z = 0 and pz = 0 serves
as an invariant manifold due to the symmetry of the system.
This means that, once the phase-space point stays on that
surface, it does perpetually irrespective of what values the
other variables take. This invariant manifold is unstable in
that any infinitesimally small deviation from the surface of
z = 0 and pz = 0 makes the phase-space point depart from
the surface and fall down into one of the four well regions
shown in Fig. 4. Therefore, the reactivity boundaries are
stable and unstable manifolds of z = 0,pz = 0 in this case.
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z (Å)

R
 (

Å
)

FIG. 5. (Color online) The reactivity boundaries of the H3
+ +

H2 → H2 + H3
+ reaction. (a) Fifty randomly sampled trajectories

from the destination-dividing set and the origin-dividing set, both
constituting the reactivity boundaries, initiated from the section of
z = 0 and pz  0 projected onto the z-R space. The normal mode co-
ordinates q̃1 and q̃2 at the potential minimum are shown by gray lines.
(b) A schematic picture of reactivity boundaries depicted as “tubes”
[26] departing from z = 0 and pz  0. Note here that the invariant
manifold of z = 0 and pz = 0 can involve multiple saddle points.

The extraction of reactivity boundary can be carried out
as follows: We first uniformly sample phase-space points
(pz = 0,pR,pϕ,z = 0,R,ϕ) at a given total energy in that
invariant manifold (see also the appendix for details). Second,
we give each phase-space point a small positive deviation in
pz and propagate it forward in time (corresponding to the
origin-dividing set o2 in Fig. 2). Those trajectories correspond
to the generalization of ξ1 = 0 with positive η1 to divide the
origin of trajectories for normal mode approximation in Fig. 1.
Likewise, the propagation of the phase-space points backward
in time results in trajectories that divide the destination of
trajectories, corresponding to the set d2 in Fig. 2 (Compare also
with η1 = 0 with negative ξ1 for the normal mode Hamiltonian
in Fig. 1). Note here again that the generalization involves two
essential differences from the normal mode picture: One is
the generalization to nonlinear Hamiltonian systems in which
normal mode approximation does not hold, and the other is
that the invariant manifold from which reactivity boundaries
emanate can be associated not only with a single saddle point
but with multiple saddle points with different indices.

Figure 5 shows 50 randomly chosen samples from the
origin-dividing set and the destination-dividing set depicted on
the R-z space. The reactivity boundaries are only drawn until
they first cross the section defined by q̃1 = 0 and p̃1 < 0 by
the normal mode coordinate q̃ and its conjugate momentum
p̃ at the potential minimum [the normal mode coordinates
are shown by the gray arrows in Fig. 5(a)]. The reactivity
boundaries are four-dimensional surfaces in an equienergy
shell which divide reactive and nonreactive trajectories as
schematically shown in Fig. 5(b).

Figures 6(a) and 6(b) show the origin-dividing set and the
destination-dividing set on the q̃1 = 0,p̃1 < 0 section depicted
by using 100 000 trajectories whose initial conditions are
uniformly sampled on the z = 0,pz  0 section (see also
Appendix for details). Let us look into how reaction selectivity
existing in the phase space can be rationalized or visualized in
these projections. In Fig. 6(a), one can find few fingerprints of

the reaction selectivity existing in the phase space with respect
to the signs of the normal mode coordinate and momentum.
The reaction path is curved in the R-z space as shown in
Fig. 5(a) and the saddle points exist on the negative side of
q̃2. Because Fig. 6(a) is the projection of the first intersections
of the reactivity boundaries across the surface of q̃1 = 0 and
p̃1 < 0 [i.e., all dots on Fig. 6(a) are moving towards the
surface of z = 0], one may expect that q̃2 < 0 or p̃2 < 0 on
that surface should enhance the reaction probability, resulting
in a nonuniform distribution of the reactivity boundaries on
the p̃2-q̃2 space. However, as seen in Fig. 6(a), the reactivity
boundaries are distributed rather uniformly in this space (e.g.,
no preference in the sign of p̃2). This implies that preparing
q̃2 < 0 or p̃2 < 0 on that surface does not increase the ability of
the system to climb the reaction barrier. As shown in Fig. 5(a),
the trajectories oscillate rapidly in the q̃2 direction and the bath
mode coordinate change its sign many times before coming
close to z = 0, where the saddle points 2 and 4 for the proton
transfer reaction are located, while they slowly adapt to the
curved reaction pathway. The dynamics near the index 1 and
index 2 saddle points, thus, seems to be insensitive to the initial
vibrational phase prepared in the well region.

Next let us turn to the pϕ-ϕ projection in Fig. 6(b). The
reactivity boundaries, both the destination-dividing set (red
points in the figure) and the origin-dividing set, are confined
in smaller values of |pϕ| compared to energetically accessible
values. This is because the energy is more distributed into
the reactive mode when the momentum in the ϕ direction is
smaller. In contrast to the p̃2-q̃2 space, the reaction selectivity
existing in the phase space manifests nonuniformity of the
distribution of these reactivity boundaries in the pϕ-ϕ space.
The confinement of the destination-dividing set in smaller
|pϕ| is more pronounced in ϕ ≈ 0 than in ϕ ≈ π/2, while
the range of |pϕ| of the origin-dividing set is more uniform in
ϕ. Note that ϕ = 0 corresponds to the planar configurations
that involve both the index 1 saddle points 3 and the index 2
saddle points 4 (see Table I) and the reaction must proceed
over the index 2 saddle when ϕ ≈ 0 (Fig. 4). The relative
barrier height through the index 2 saddle 4 for the proton
transfer with ϕ = 0 is 162.7 − 95.9 = 66.8 cm−1, which is
higher than the barrier height through the index 1 saddle 2
with ϕ = π/2, 48.6 cm−1 as seen from Table I. In order to
put sufficient energy into the reactive mode to overcome the
barrier, therefore, the momentum pϕ in the ϕ direction must
be confined into much smaller values |pϕ| for ϕ ≈ 0 than for
ϕ ≈ π/2 due to the conservation of total energy of the system.
This interpretation, done by the relative barrier height with
constant ϕ, is consistent with the plot of the sample trajectory
(ds1) for small initial |pϕ| in Fig. 7. This figure shows some
representative sample trajectories in the ϕ-z and R-z spaces,
whose locations in the p̃2-q̃2 and the pϕ-ϕ spaces are also
indicated as symbols in Figs. 6(a) and 6(b). It is seen that
the motions along the reactive direction (approximately the
z direction) take place more rapidly than those along the ϕ

direction and the value of ϕ does not change much during the
course of the reaction.

On the other hand, the trajectories approaching the surface
of z = 0 and pz < 0 with large values of |pϕ| at ϕ ≈ π/2 at the
section correspond to the motion starting from the well region
and approach to the index 2 saddle 4, as shown in the z-ϕ plane
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FIG. 6. (Color online) The reactivity of the H3
+ + H2 → H2 + H3

+ reaction on the section of q̃1 = 0,p̃1 < 0. One hundred thousand
trajectories are uniformly sampled on the surface of z = 0 with positive momentum pz  0 and evolved forward in time until they cross a
surface defined by q̃1 = 0 and p̃1 < 0 by the normal mode coordinate q̃ and its conjugate momentum p̃ at the potential minimum (see also
the appendix for details). The trajectories forming the origin-dividing set are shown by blue dots. Likewise, 100 000 trajectories are similarly
sampled on that surface with negative pz  0 and propagated backward in time until they cross the surface. The trajectories forming the
destination-dividing set are shown by red dots. [(a) and (b)] The projections of the first intersections of the destination-dividing set and the
origin-dividing set crossing the surface of q̃1 = 0 and p̃1 < 0 on the section, respectively, onto the q̃2-p̃2 space and the ϕ-pϕ space. The gray
lines denote the boundaries of energetically inaccessible region. The values are defined by the maximum and minimum of pϕ at each ϕ. The
cross symbols (dw1, dw2, etc.) represent the initial positions (on that plane) of the trajectories shown in Fig. 7. Brown (black) lines and
purple (dark gray) lines are the maximum or minimum p̃2 in (a) and the maximum or minimum pφ in (b) of the reactivity boundaries (dots)
respectively. [(c), (d), (e), and (f)] The projections of the phase-space points that are going into the product side [(c) and (d)] and those that
have come from the product side [(e) and (f)] are depicted to conform “inside” of reactivity boundaries and to check validity of the extraction
of the reactivity boundaries. Orange (gray) lines in (c) and cyan (gray) lines in (e) are the maximum or minimum p̃2 of the sets of the reactive
points. Brown (black) lines in (c) and purple (dark gray) lines in (e) are the maximum or minimum p̃2 of the reactivity boundaries. Similarly,
Orange (gray) lines in (d) and cyan (gray) lines in (f) are the maximum or minimum pϕ of the sets of the reactive points. Brown (black) lines
in (d) and purple (dark gray) lines in (f) are the maximum or minimum pϕ of the reactivity boundaries.

in Fig. 7 (dw2). This is in contrast with the trajectories starting
with small |pϕ| at ϕ ≈ π/2 and approaching the index 1 saddle
2 (dw1). If we regard (pϕ,ϕ) as roughly corresponding to the
nonreactive mode, this situation seems to be counterintuitive in
that when the nonreactive degree of freedom is more excited
(i.e., larger |pϕ|) the system is more likely to approach the
higher-index saddle with a larger barrier height. This arises
from the fact that the “reaction direction” for proton transfer
through the index 2 saddle is not simply along z but runs

diagonal in the z-ϕ plane as the system goes from the well
directly to the index 2 saddle 4. The large momentum |pϕ|
is also used for approaching the higher barrier of the index 2
saddle 4 and, therefore, the large initial value |pϕ | is favored for
the reaction over the index 2 saddle. All the above discussions
explain the nonuniformity of the range of pϕ with respect to ϕ

for the destination-dividing set in Fig. 6(b).
Compared to the destination-dividing set, the origin-

dividing set is more uniformly distributed along ϕ [see blue
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FIG. 7. (Color online) The representative sample trajectories forming the reactivity boundaries in Figs. 6(a) and 6(b) on the ϕ-z space and
the R-z space. The gray points denote the locations in these spaces when those sample trajectories intersect the section of q̃1 = 0 with p̃1 < 0.
The symbol + denotes the location of the index 1 point 2 or index 2 saddle point 4. The difference of the location of the two saddle points is
invisible in the R-z projection with this resolution. The magenta and orange trajectories are of the destination-dividing set. The blue and green
trajectories are of the origin-dividing set. The color grade represents the time course of trajectories obeying the Hamiltonian: Time goes from
the light to the dark grade, and the light and dark correspond to before and after the intersection of the section of q̃1 = 0 with p̃1 < 0. For
instance, trajectory (dw2) indicates that of the destination-dividing set in the well region with “large” |pϕ |. Trajectory (os1) indicates that of
the origin-dividing set at the index 1 saddle region with “small” |pϕ |.

dots in Fig. 6(b)]. This arises from the choice of the cross
section for observing the reactivity boundaries. We chose
the section of q̃1 = 0 with p̃1 < 0 that is located at the
potential minimum. With this choice, we are observing the
origin-dividing set after it is bounced by the potential wall
in the large-z region [Fig. 5(a)]. As seen in the sample
trajectories (os1), (os2), (ow1), and (ow2) in Fig. 7, the
value of ϕ changes during the stay in the well region. The
change of pϕ due to the energy exchange between the ϕ

mode and the others can also be seen by the direction of the
trajectories. Therefore the longer time between the preparation
(at z = 0) and the observation (q̃1 = 0 with p̃1 < 0) of the
destination-dividing set than the origin-dividing set causes
some further “mixing” in (ϕ,pϕ) and the reaction selectivity
is lost compared to the direct cross section as observed for the
destination-dividing set in Fig. 6.

Reactivity boundaries are four-dimensional objects, and we
cannot capture their full characteristics by the two-dimensional
projections. In contrast to normal mode approximation or
normal form theory locally expanded in the vicinity of a
single saddle point, for our purposes, the analytic formula
of the underlying reaction coordinate is hard to derive and the
invariant manifold locally extracted in the vicinity of a single
point or a collection of multiple saddle points with different
indices might not necessarily provide the boundary to divide
the fates of the reactions originated from the well region far
from the saddles [73].

To check the validity of our numerical extraction of
reactivity boundaries, we note the fact that both reactive
and nonreactive trajectories must exist in the vicinity of the
reactivity boundaries. We therefore check the reactivity of
trajectories in the vicinity of each sampled point (p̃2,q̃2,ϕ,pϕ)
on the reactivity boundaries on the section. Sampling was made
of phase -space points (p̃′

2,q̃
′
2,ϕ

′,p′
ϕ) that satisfy

∣∣∣∣ p̃′
2 − p̃2

0.02Åu1/2fs−1

∣∣∣∣
2

+
∣∣∣∣ q̃ ′

2 − q̃2

0.06Åu1/2

∣∣∣∣
2

+
∣∣∣∣ϕ

′ − ϕ

π

∣∣∣∣
2

+
∣∣∣∣p

′
ϕ − pϕ

0.8h̄

∣∣∣∣
2

= 10−20 (7)

for all the sampled points (p̃2,q̃2,ϕ,pϕ) of the reactivity bound-
aries. As expected, both reactive and nonreactive trajectories
were found from this sampling (data not shown).

To give more visual representation for the validity of our
numerical extraction of reactivity boundaries, we uniformly
sampled 1 000 000 points on the q̃1 = 0,p̃1 < 0 section in the
well region and propagated them forward and backward in
time. The phase-space points that turned out to go into the
other well region in the forward time propagation are shown
in Figs. 6(c) and 6(d) by projection on the q̃2-p̃2 space and
the ϕ-pϕ space. Those that turned out to have come from the
other well in the backward propagation are shown in Figs. 6(e)
and 6(f). Of the total 1 000 000 sampled points, about 100 000
were found to be reactive trajectories.
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As can be seen in Figs. 6(c)–6(f), a good coincidence was
observed in the maximum or minimum p̃2 and pϕ at each
q̃2 and ϕ between the reactive trajectories [corresponding
to the inside of “tubes” [26] in Fig. 5(b)] and the reactivity
boundaries. In any neighborhood of the reactivity boundaries
extracted from the surface of z = 0 and pz  0 apart from
the well regions, reactive trajectories exist in the projected
space. The results, therefore, also give some support (necessary
condition) to the validity of the reactivity boundaries calculated
in the present investigation.

IV. CONCLUSION AND PERSPECTIVES

In this article, the concept of reactivity boundary, which is
an invariant manifold lying between reacting and nonreacting
trajectories in the phase space, was revisited and generalized.
It is defined as a set of trajectories that converge into a seed of
reactivity boundaries. The latter is located between the reactant
and the product regions and goes neither into the reactant or
the product, in either forward or backward time propagation.
When only one saddle point controls the reaction dynamics and
the energy is not very high above the saddle point, the reactivity
boundaries are readily extracted analytically by normal form
theory. The definition given here is, however, not limited to
such cases but generalized to a single reaction passing through
multiple saddle points including higher-index saddles.

The reactivity boundaries constitute a skeleton of the phase
space of the reaction system. Observation of their locations
in certain cross sections tells us which initial conditions can
lead to chemical reactions. We applied the concept of the
reactivity boundaries to the three-dimensional model system
of the proton exchange reaction associated with a bottleneck
composed of two index 1 saddles (2) and two index 2 saddles
(4) in the H5

+ cation. The bath mode vibration represented by
the normal mode (p̃2,q̃2) was found to be almost separate from
the reactive mode, and the fast change of its vibrational phase
masked the reaction selectivity existing in the phase space.

On the other hand, the reaction selectivity in the phase
space manifested a high degree of selectivity for the torsional
motion, related to the existence of multiple types of saddle
points for different values of the torsion angle. In addition
to the reaction through the index 1 saddle 2 of the proton
exchange, two limiting behaviors of reacting trajectories were
identified. In one group, the trajectories go from the index 1
saddle 3 of the torsion isomerization to the index 2 saddle
4. Small initial values of the torsional angular momentum
|pϕ| is favored for this reaction pathway because of the high
energy difference between the index 2 saddle point 4 and
the index 1 torsion saddle point 3. The other group of the
reacting trajectories is those going directly from the well
region to the index 2 saddle 4. For this group, high initial
values of |pϕ| are favored because the reaction pathway
runs diagonal in the z-ϕ plane rather than parallel to the
z direction. These pictures of the reaction dynamics were
obtained with the help of the concept of reactivity boundaries
stated in the present paper.

In this article we have focused on the first intersection of the
reactivity boundaries across the section of q̃1 = 0 with p̃1 < 0
located in the well region. This corresponds to the fast stage of
the reaction process, that is, “before leaving from that well” and

“after entering with one reflection back by the potential wall in
that well.” Reactivity boundaries also enable us to quantify the
slow stage of the process by the projection of the second, third,
and fourth intersections of the boundaries onto, e.g., the ϕ-pϕ

space. Distributions of such intersections on some projected
spaces can trace how statistical properties may emerge for
slower time scales (yielding a more uniform distribution),
making conventional statistical rate theories applicable. Note
that, as demonstrated in this article, the first intersection
corresponding to the reactive initial conditions are distributed
in a nonuniform manner, to which conventional statistical rate
theories are not applicable. The essential understanding of
the reactions requires reactivity boundaries that enable us to
predict the fate of reactions independent of which time scale
is to be considered.

In the extraction scheme of reactivity boundaries presented
in Sec. II B, we have not restricted the definition of states
to a local equilibrium state in which highly developed chaos
is implicitly postulated. As known, at least for the 2-DOF
systems in Refs. [78,79], there may exist several dynamic states
within a single potential well whose number and reaction rate
constants among them are energy dependent. The definition of
states in Sec. II B can involve such dynamic states. In addition,
as discussed in the text, the seed of reactivity boundaries
existing between the states involves not necessarily only one
single saddle point but also several saddle points with different
indices.

However, there still remains the need for development of
practical methods for extracting the reactivity boundaries.
When only one saddle point plays a dominant role in
determining the occurrence of the reaction, normal form
theory readily extracts the seed of reactivity boundaries in
an analytical way. In contrast, there is still no practical method
applicable to general cases where more than one saddle point
are involved in the reaction process [73].

In the present investigation, because of the existence of
symmetry, we can identify the seed of reactivity boundaries
in the intermediate region. What happens when such apparent
symmetry does not exist, or is very difficult to find a priori,
is still unresolved. It will be a challenge for future work to
devise convenient methods to extract the seeds of reactivity
boundaries and investigate how they look for nonsymmetric
systems.

Also note that the seed of reactivity boundaries in our
generalized definition is not necessarily a NHIM, hence,
not necessarily structurally stable. This raises a question of
how meaningful (robust) conclusions obtained for a particular
system are, a problem to be addressed in future work.
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APPENDIX: UNIFORM SAMPLING

Here we explain how we sample the uniform distributions
under constraints to depict the reactivity boundaries and the
sets of reacted or reacting trajectories, i.e., those having just
crossed the surface of z = 0 from the product well and those
being about to cross the surface, in the reactant well described
in Sec. III B. To depict reactivity boundaries, we sample
the position coordinate (R,ϕ) according to the following
distributions:

ρ(R,ϕ; z = 0,pz = 0,H = E)

∝
∫

δ(E − H (p,q))δ(z)δ(pz)dpRdpzdpϕdz

∝
√

E − V (R,ϕ; z = 0). (A1)

Here we define ρ̄sd(R,ϕ) =
√

E−V (R,ϕ;z=0)
E−V0

, yielding 0 <

ρ̄sd < 1, where V0 = minR,ϕ V (R,ϕ; z = 0). We employ the
rejection method [80] to sample phase-space points with
the distribution ρ̄sd. We first sample points uniformly in the
range of ϕ ∈ [−π,π ] and R ∈ [2Å,2.2Å], which include the
whole energetically accessible region. The point is accepted
or rejected by the following criterion:{

accept ρ̄sd(R,ϕ) > RAND,

reject otherwise,
(A2)

where RAND is a uniform random number from 0 to 1. Then
we perform a sampling of the momentum for each sampled
configuration as follows:

pR =
√

2(E − V ) sin θ/mR,

pϕ =
√

2(E − V ) cos θ/(Iϕ/2),

where θ is a uniform random number from −π to π .

Similarly, to depict the sets of reacted or reacting trajec-
tories in the reactant well, we sample phase-space points
according to the following distribution:

ρ(q̃2,ϕ; q̃1 = 0,p̃1 < 0,H = E)

∝
∫

δ(E − H (p,q))(−p̃1)δ(q̃1)dp̃1dp̃2dp̃ϕdq̃1

∝ E − V (q̃2,ϕ; q̃1 = 0). (A3)

Here (x) is the Heaviside step function, and we define
ρ̄wl(q̃2,ϕ) = (E − V (q̃2,ϕ; q̃1 = 0))/(E − V0), yielding 0 <

ρ̄wl < 1, where V0 = minq̃2,ϕ V (q̃2,ϕ; q̃1 = 0). We sample
points uniformly in the range of ϕ ∈ [−π,π ] and q̃2 ∈
[−0.15Åu1/2,0.15Åu1/2] which include the whole energet-
ically accessible region on this section. We apply the same
rejection method [80] to construct ρ̄wl distribution,{

accept ρ̄wl(q̃2,ϕ) > RAND,

reject otherwise.
(A4)

Then we perform a sampling of the momentum for each
sampled configuration as follows:

{
accept sin θ1 > RAND,

reject otherwise.
(A5)

p̃ϕ =
√

2(E − V ) sin θ1 sin θ2,

p̃1 = −
√

2(E − V ) cos θ1,

p̃2 =
√

2(E − V ) sin θ1 cos θ2,

since coordinate transformation to polar coordinates intro-
duces phase-space Jacobian J = 2(E − V ) sin θ1, where θ1,θ2

are uniform random numbers from 0 to π/2 and from −π to
π , respectively.
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