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Multifractality, stickiness, and recurrence-time statistics
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We identify the fine structure of resonance islands and the stickiness in chaos through recurrence time statistics
(RTS), which is based on the concept of Poincaré recurrences. The projection of recurrence time statistics onto the
phase space does give relevant information on the hierarchical and microstructures of the chaotic beach around the
islands of a near-integrable system, the annular billiard. These microstructures interfere in the effective transport
of a particle in the phase space, which can be observed through RTS. This technique proves also to be a powerful
tool to describe the homoclinic tangle of the manifolds within the chaotic sea.
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I. INTRODUCTION

The first theory of recurrences was introduced by Henri
Poincaré in his 1890 work [1] in which he introduced the
development of recurrences in conservative systems as well as
presented the idea of homoclinic tangles. Poincaré’s pioneer-
ing work became more motivating with increased performance
of computers, allowing numerical implementations of that
concept in different branches of science. Two far-ranging
reviews, which deal with Poincaré’s recurrence times, can be
found in Ref. [2] with a particular emphasis in synchronization
of complex systems and in Ref. [3], whose focus is the concept
of fractional kinetics for chaotic Hamiltonian systems.

Over the last few years one has seen a growing interest
in implementing recurrence time statistics (RTS). We cite a
few representative works. In Ref. [4] the authors studied a
stationary flow with hexagonal symmetry, and they observed
a sharp transition from normal to anomalous in the transport
properties. In the anomalous scenario Poincaré’s recurrence
time distribution presents a power tail. They state that RTS
provides a local measurement for the existence of anomalous
transport. In Ref. [5] it is found that the minimum recurrence
time is calculated for the lobes of an unstable manifold, and it
is shown that such results are shorter than the results obtained
with the usual Poincaré’s recurrence time. The authors of
Ref. [6] obtained an asymptotic decay law for Poincaré’s
recurrence as well as for the correlations by considering the
standard map with divided phase space due to a critical golden
curve. In Ref. [7] the author applied RTS for chaotic systems
and developed scaling laws relating the mean recurrence time
with the information dimension of the chaotic attractor, and
he used RTS for analyzing transients and nonstationary time
series. From RTS he also located bifurcations and different
changes in the dynamics. A study of synchronization of chaotic
systems can be found in Ref. [8], where it is shown that
the dimension of Poincaré’s recurrences may indicate the
onset of synchronized oscillations, and in Ref. [9] the authors
analyze the dependence of the mean recurrence time, and
of the recurrence time statistics, on the probability density
function in the interval where the recurrences are observed
and in the temporal correlations of time series. For long-term
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correlations, they verified the validity of the stretched expo-
nential distribution, showing that it is restricted to the class of
linear long-term correlated processes.

In Ref. [10] the authors investigated, numerically and
analytically, the spectrum of Poincaré’s recurrence times for
area-preserving maps. They considered the limits of strong
and weak coupling. In the first scenario, the spectrum typically
exhibited an exponential decay, while for weak coupling they
stated that for any domain of the phase space foliated by
invariant tori, the asymptotic spectrum decays with t−2. For
transition regions, they proposed a combination of both laws.
In that direction, the authors of Ref. [11] considered the first
recurrence time in order to characterize the statistical proper-
ties of near-integrable systems. For points at the boundary of
the chaotic sea and invariant tori, they posed that the statistic
of the first return times is sensitive to capture the different
qualitative behaviors and gives information about the relative
weights played by both dynamics. In a later work [12], the
authors extended this analysis to multiple return times, and
they showed that for any domain involving a regular region and
the chaotic sea, the statistics of visits presents a superposition
of a Poissonian distribution, ρk(τ ) = e−τ

k! τ k , with a power law.
They have also presented that when two or more systems
are coupled, the distribution of multiple visits in domains
intersecting the boundaries is a linear superposition of the
individual distributions of each region. As a consequence,
they showed that the real limit distributions can be masked
by some finite-size effects. In a previous and formal work [13]
the proofs for the exponential one and the Poisson laws
are rigorously obtained. In a more recent paper [14] the
authors used the first recurrence time to show that conservative
systems exhibit a generalized bifurcations diagram and that all
observed results agree with the results obtained with the finite
time Lyapunov exponent technique.

In the present paper we continue a set of previous works
[15–17], but now using RTS to characterize the thinnest
structures of a nonlinear resonance. Additionally, we show that
these thin structures are well recovered by plotting different
components of the recurrence times. For this study we use
the time-dependent, but nondissipative, annular billiard as our
model. The reason to consider such a complex model is based
on our experience in this system and its rich dynamics and
also due to the growing interest in applying this system in
some areas of physics [18–20].
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We organize this paper as follows: in Sec. II we present
RTS; in Sec. III we revisit briefly the annular billiard system;
and in Secs. IV and V we present the results and conclusions,
respectively.

II. RECURRENCE TIME STATISTICS

Initially we introduce the concept of Poincaré’s recurrences
for Hamiltonian systems. According to Poincaré’s theorem
[21,22], for a confined Hamiltonian system �, all non-null-
measure trajectories starting in any subset A ∈ � will return
many times to the neighborhood of their initial conditions.
Even though the probability of a recurrence happening in a
thermodynamic system is very low since the mean time for a
recurrence is very large, for low-dimensional chaotic systems
this mean time is measurable and can be useful.

We will develop this tool to study the vicinity of resonance
islands where it is expected to have more intense stickiness
for the dynamical flow. We choose our recurrence region, A,
as large as possible involving, but not touching, the stickiness
region. As we are interested in characterizing the effect of
stickiness in the dynamics, we proceed as follows: We start a
single initial condition in the chaotic sea (our recurrence region
A), and we propagate it. When it enters in the stickiness region
we define the recurrence time as the time that the trajectory
spends inside this region, that is, the time between the instant
it entered in the stickiness region and the time that it goes back
to the recurrence region. Next, we restart the time counter, but
we continue propagating the same initial condition in order to
store multiple recurrence times.

It is common in the literature when one calculates return
times statistics to launch an ensemble of initial conditions and
evaluate the times of the first return associated with each initial
condition normalized by the average return time. It is expected
that one collects short and long return times depending on
the capture of the trajectory by the structures of stickiness.
Nevertheless, for closed Hamiltonian systems, Poincaré’s
theorem ensures that an initial condition will repeatedly come
back to the neighborhood from which it has departed. In that
sense, a single initial condition will visit a certain stickiness
region as many times as is desired depending only on the
interval of time of observation. So one collects short and long
return times in the same way as noted above.

Thus, the recurrence times will occur many times, forming
a sequence of times Ti = {T1, T2, . . ., Tn} in such way that
when a trajectory is trapped in a stickiness trap, T corresponds
to a very long time. We define a probability distribution P (T )
in such way that the probability of finding a recurrence time
between Ti and Ti + dTi is P (T ) dT. The function P (T ) is also
known as the distribution of recurrence time, and it satisfies
two conditions:

(1) Normalization :
∫ ∞

0
P (T ) dT = 1, (1)

(2) Normalization [23] : 〈T 〉 =
∫ ∞

0
T P (T ) dT = 1

μ(A)
,

(2)
where μ(A) is the measure of the recurrence region. This
lemma leads to finite values for the first moment and allows
us to read that the probability of finding a trajectory in region

A is equal to the inverse of the average recurrence time. In
fact, this point is related with the ergodicity of the chaotic
sea, for which it is expected that a trajectory spends, on the
average, equal times in similar volumes of the chaotic phase
space. In that sense, the meaning of the recurrence times is well
defined from the concept of measure μ(A) of the recurrence
region A.

For numerical experiments, it is convenient to use the
distribution of the recurrence time, for times which are greater
than a certain value τ , through

ρ(τ ) =
∫ ∞

τ

P (T ) dT . (3)

Expression (3) is called recurrence time statistics (RTS).
It is well established that for fully chaotic systems, RTS has

an exponential decay [24],

ρ(τ ) ≈ e−ητ , (4)

where η is related with the inverse of the Kolmogorov-Sinai
entropy. On the other hand, for mixed systems, for which there
are stickiness regions, RTS has a power law decay,

ρ(τ ) ≈ τ−γ , (5)

where γ is called the recurrence exponent [25–27]. Conversely,
if RTS obeys a power law it is sufficient to say that the analyzed
region presents dynamic traps [28].

From the numeric viewpoint RTS does not depend on
any ensemble of initial conditions; it is obtained from one
trajectory, and this is an advantage in relation to other proba-
bility densities. So the main parameter to have a satisfactory
result is the iteration number of the dynamical map, or the
time in the case of continuous flux. Equation (3) is, in fact,
a cumulative density of probabilities for recurrence times
T > τ , and numerically we calculate RTS through

ρ(T ) = MT

M
, (6)

where MT is the number of recurrence with time T > τ and M

is the total number of recurrences along the iteration process.
With this definition we start an initial condition from a chosen
return region A, and we evolve it during a long time in order
to minimize any fluctuation, which could exist if a different
initial condition had been used [29]. Region A is made as big
as possible in order to avoid short recurrence times, which in
general correspond only to random motions in the chaotic sea.
We emphasize that for long times, different probability density
functions (PDFs) lead to the same distribution observed for
RTS because only the phase-space structures close to the
stickiness region are relevant. Thus, the power-law tail of
RTS can be connected with other PDFs, such as survival
probabilities and decay rates [30,31]. Concerning this point,
the main difference between the RTS tail and the tails of other
PDFs is where the trajectories are begun. Usually survival
probabilities and decay rates are calculated by an ensemble of
initial condition touching the stickiness region while RTS is
obtained for a single one. In this particular case a difference
of (−1) in the recurrence exponent is observed [25,32].
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FIG. 1. A geometric scheme of a particle in the static annular
billiard.

III. THE MODEL

In order to understand the system we are dealing with, we
initially describe the dynamics of the annular billiard with
static boundaries. It consists of a particle moving freely in an
annular region limited by two circumscribed circumferences.
They may present either the concentric or the eccentric
geometries. We define the radius of the outer circle as R = 1,
the radius of the inner circle as r , and the eccentricity as d; see
Fig. 1 for a pictorial example of the annular billiard. For the
purpose of this work we will keep d = 0 in all calculations; this
means that the angular momentum of the particle is a constant
of motion.

Inside the annulus, a particle moves along a straight line
until it collides with a boundary. We will also consider only
elastic collisions in this work. No dissipation is present,
and the system is globally conservative for the static case
and conservative in a stroboscopic fashion after introducing
a periodic time-dependent perturbation. After suffering a
collision the particle is specularly reflected in the sense that
the incidence angle is equal to the reflection angle. From Fig. 1
we can determine the position of the particle at a collision with
the external boundary through the determination of the angles
θ and α. The range of θ is [−π , π ] while that of α is [−π/2,
π/2]. The map describing the dynamics corresponds to an
application that projects the coordinates (θn, αn) of a collision
with the outer circle, in the coordinates (θn+1, αn+1) of the
next collision. There are also two kinds of motion, which are
distinguished by the so-called tangency condition, namely,

sin αn − d sin(θn − αn) < r. (7)

If the combination of both, θn and αn is such that condition (7)
is not matched, then the particle does not hit the inner circle, in
the current iteration, and the dynamics is described by a kind
of map MA, given by

αn+1 = αn, θn+1 = θn + π − 2αn. (8)

On the other hand, when condition (7) is satisfied, then between
two successive collisions with the outer circle, the particle also

collides with the inner circle, and the dynamics is governed by
a different map given by

αn+1 = arcsin{r sin(β) − d sin(θa)},
(9)

θn+1 = θn + 2β − αn+1 − αn,

where

θa = θn+1 + αn+1 = θn + 2β − αn,
(10)

β = arcsin

{
1

r
[sin(αn) − d sin(θn − αn)]

}
.

A convenient pair of coordinates for a plane of phase is
S = sin(θ ) and L= (α/2π ) in such way that S = [−1, 1]
and L = [−0.5, 0.5]. We call this plane as geometric plane
of phases. For the concentric, d = 0, and static case, this
plane of phases is filled by straight lines. The system is then
fully integrable because, besides the angular momentum of
the particle with respect to the origin of coordinate system
O, the total energy is also preserved. This integrability can
be broken through the eccentricity, for d �= 0 chaotic orbits,
and resonance structures can appear in the geometric plane
of phases. The reader can find more details about the static
annular billiard in Ref. [33].

Now we introduce a time-dependent perturbation in the
boundaries in such way that both circles can breathe peri-
odically in time. We define εR , εr , and ω as the amplitude
of oscillation of the outer and inner circles and the ratio of
frequencies of both boundaries, respectively. The particles now
can suffer collisions in regions called as collision zones, which
are given by [1 + εR , 1 − εR] and [r + εr , r − εr ] associated
with the outer and inner boundary, respectively. Figure 2 shows
a schematic view of the pulsating annular billiard (PAB) with
both collision zones, identified by the two rings with dotted
lines. The radius of the internal boundary is described as r0

only to emphasize that it is the radius of the nonperturbed
case, or static case. This system was already studied through
two distinct approaches, one called simplified model (SM)
and another complete model (CM). In the CM, when a particle
goes into a collision zone, it can suffer successive collisions

FIG. 2. A geometric scheme of a particle in the pulsating annular
billiard. The collision zones are the shaded regions.
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before leaving this region. On the other hand, in the SM both
boundaries are kept static, but in a collision the boundaries
transfer momentum as they were pulsating, and in this case no
successive collision can happen.

The algebraic details for both case can be found in Ref. [34]
for the CM and Ref. [35] for the SM. The introduction of a
time-dependent perturbation breaks one constant of motion,
and the total energy is not preserved any longer, now it can
vary; however, for the concentric case this variation is limited
in a range associated with the height of the chaotic sea of a
second plane of phases, called energy plane of phases. This
plane is defined by the coordinates (−vn, ϕ) where vn is the
normal component of the velocity of the particle and ϕ is
the oscillation phase of the external circle. Contrarily, for the
eccentric case the particle energy can increase “unlimitedly,”
and the phenomenon of Fermi acceleration can be observed
[34,35]. Nevertheless, as already mentioned above, we will
develop our studies about Poincaré’s recurrence using only
the concentric geometry. Figure 3 shows the energy phase
plane for the concentric PAB.

IV. RESULTS

Even though, for δ = 0, the PAB presents spanning curves
in the energy phase space (−vn,ϕ) there is a wide region of
mixed dynamics with chaos and rich resonance structures.
These resonance structures may constitute, in different ways,
appropriated regions to observe stickiness and multifractality,
which are characterized from the different decay laws obtained
with the RTS technique. The multifractality of the main
island [inside the blue box of Fig. 3(a)] is responsible for
trapping trajectories during very long time. We will look at the
multifractal island of Fig. 3(b) in order to evaluate RTS and the
ranges of times associated with the different zooms of Fig. 3.
Let us consider three zooms of the blue rectangle marked in
Fig. 3(a). Figure 3(b) corresponds to the archipelago inside
the rectangle of Fig. 3(a). Figure 3(c) is an enlargement of the
island on the far right of Fig. 3(b). And Fig. 3(d) is a zoom of
the island at the top of Fig. 3(c). We can observe that the island
configurations are quite different, and this fact, associated with
the multigeneration islands, which means islands of different
scales, shows that this region has a multifractal structure.

The stickiness region which we are going to consider in
the present study is marked in blue in Fig. 3(a) in such way
that an initial condition is started in the connected chaotic sea,
which is our recurrence region, outside the blue box. Note
that proceeding in this way, our recurrence region A will be
defined as the whole accessible space outside the blue square in
Fig. 3(a). The blue square we call our region of study. The
main purpose of this work is to investigate if the different
periods of the recurrence times carry thorough information
about the deepest scales of stickiness. We iterate the initial
condition up 1011, but we initialize the time counter only when
the trajectory enters the stickiness region [blue box in Fig. 3(a)
and emphasized in Fig. 3(b)], and we store the recurrence times
every time the particle leaves this region. At this moment
we reinitialize the time counter until the next entry into the
stickiness region, when the time counter is again reinitialized,
and this process is repeated until we exhaust the total number
of iterations. The different recurrence times will be repeated

0.0925

0.0928

3.510 3.535

FIG. 3. (Color online) Plots of −Vn × ϕ for the concentric
pulsating annular billiard with εR = εr = 0.01 and r = 0.4. (a) A
typical plot of the system with invariant tori, chaos, and resonance
structures. (b)–(d) Successive zooming of the archipelago seen in the
blue rectangle of (a): (c) zoom of the orange box in (b); (d) zoom of
the orange box in (c).

many times. So we construct the plot of RTS as a function of
τ , as shown in Fig. 4.

Figure 4 shows that for short times, τ < 20, the decay
is approximately exponential, as previously noted, and this
behavior corresponds to random motions into the chaotic sea
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FIG. 4. (Color online) RTS for the island structures observed in
Fig. 3(b). The intervals of time R1, R2, R3, and R4 have been chosen
to study the different kind of time decay. R1 [1:10]; R2 [100:300];
R3 [2 × 103:8 × 103]; R4 [3 × 104:1 × 105].

outside of any trap. Figure 5(a) corroborates this. On the other
hand, for intermediate and long recurrence time, the decay
is best represented by power laws. If the zoomed islands of
Fig. 1 had a self-similarity, it would be reasonable to expect
that a unique power law would be enough to represent RTS.
However, as this is not the case, then RTS must be represented
by different power laws, each one for a different range of time.
These times are classified by intervals identified by R1, R2, R3,
and R4. We point out that the choice of these four intervals was
made to understand the origin of different trapping regimes that
can be characterized by different decay laws of RTS in Fig. 4.
The time corresponding to each interval was chosen without
any explicit reason, but we stress that different intervals of
times related to the same decay should generate the same result.

Now we apply the RTS technique in order to uncover the
microstructures inside the island of Fig. 3(b) as well as to get
the homoclinic walk of the manifolds. The procedure consists
in dividing the phase space presented in Fig. 3(b) into a grid
of 103 × 103 points to construct a density of trajectories for
each interval Rk previously defined. The plot of the density
is obtained from the evolution of the same initial condition
after 1011 iterations and separating the trajectories that return
in each time T ∈ Rk . We projected four density plots on the
phase space. They are shown in Figs. 5(a)–5(d), from which we
can observe a very high quality in their similarity with Fig. 3

In fact, they are a decomposition of Fig. 3(b) in components
of recurrence times. Figure 5(a) corresponds to the region R1,
which is identified by short recurrence time associated with
random walk into the chaotic sea. Figure 5(b) corresponds to
the region R2 characterized by intermediate recurrence times.
This plot shows fine contours that are similar to the manifolds
of the hyperbolic fixed points present in the energy phase
space of the annular billiard. We call these contours projected
manifolds, and they form the homoclinic tangle separating
the near-integrable islands and the sea of chaos. Figure 5(c)
corresponds to the region R3 whose recurrence times are
reasonably long, and the plot shows second generation islands
immersed into a layer of chaos. In this regime the trajectories
spend a lot of time around the manifolds, reported in region
R2, and next they go toward the second generation of islands,
where they remain practically trapped. Observing the plots

FIG. 5. (Color online) Projection of RTS on the phase space. We
see the density of points, associated with Fig. 3(b), for trajectories
with the recurrence times selected in Fig. 4, R1 (a), R2 (b), R3 (c),
and R4 (d).

of Figs. 5(b) and 5(c), it seems reasonable to accept that a
trajectory is first trapped by the manifolds and then by the
second generation of islands. A similar result has been reported
in Ref. [36], whose trapping, due to the manifolds, the author
identifies as stickiness in chaos. However, in his approach
the corresponding recurrence time is not identified. Finally,
Fig. 5(d) corresponds to the region R4 from where it is possible
to observe that the trajectory has attained an inner region of
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the resonance structure. This regime is associated with very
long recurrence times, and because of that, the finest structures
and their essence are visited and uncovered. Conversely, these
finest islands are responsible for the long time trapping. A re-
markable aspect of this regime is that when a trajectory attains
the interval R4, it does not spend too much time visiting other
intervals and rapidly converges to the inner structures of scales.

V. CONCLUDING REMARKS

We apply the technique of recurrence time statistics in order
to identify and characterize the multifractality and stickiness
of a nonlinear mixed system.

The technique of RTS has been applied in the annular bil-
liard model in order to study and identify the finest resonance
structures of the phase space that trap the particles for different
time scales. The RTS presented different behaviors, and we
observed that there is not only a decay law, which shows that
the dynamics comprises different layers of stickiness, each
one trapping the particle in a proper way. This point reinforces
that the dynamics presents different resonance structures for
different scales and highlights its multifractality. Besides being
a powerful tool to study low-dimensional Hamiltonian chaotic
systems, RTS shows an interesting feature, namely, it splits
the different motions and geometries which are present in the
phase space.

In the literature, it is well established that strong chaotic
systems present an exponential behavior for the recurrence
times distribution and that for near-integrable systems this
distribution presents a polynomial form. The annular billiard
model, which we are considering, is such a complex system,
due to the different possibilities of movements, so we expect
intermediate patterns between these limits. Our numerical
evidences suggest that there are different polynomial decays
for RTS due to the stickiness caused by the multiscale
resonance structures, and we point out that our results can
be applied to any other low-dimensional dynamical system.

We would like to pose a final comment about the richness
of the annular billiard: it presents a peculiarity when we keep
constant the caustic of radius (r + δ) and simultaneously
increase the “parameter of perturbation δ”; the scattering inner
disk tends to a point, and the dynamics tends to be regularized.
However, a unique nonperiodic trajectory fills densely the
phase space as the system was chaotic. This point will be
subject of new investigation in the light of the recurrence times.
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