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Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators
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The emergence of explosive synchronization transitions in networks of phase oscillators recently has become
one of the most interesting topics. It is widely believed that the large frequency mismatch of a pair of oscillators
(also known as disassortativity in frequency) is a direct cause of an explosive synchronization. It is found
that, besides the disassortativity in frequency, the disassortativity in node degree also shows up in connection
with the first-order synchronization transition. In this paper, we simulate the Kuramoto model on top of a
family of networks with different degree-degree and frequency-frequency correlation patterns. Results show that
only when the degrees and natural frequencies of the network’s nodes are both disassortative can an explosive
synchronization occur.
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I. INTRODUCTION

Synchronization of coupled dynamical units has been
studied for many years [1–6]. These phenomena arise in
various fields of science, ranging from natural to social
and artificial systems [7–12]. The emergence of explosive
synchronization of coupled phase oscillators has recently
attracted much attention due to the discovery of an explosive
percolation transition in complex networks [13–20]. Here
the explosive synchronization refers to the first-order phase
transition where all nodes in the network abruptly get to
the synchronous state once the coupling strength is larger
than a threshold value [21–24]. The phase transition pro-
cesses towards synchronization have been widely studied by
considering topological structures and interaction patterns of
networks [25–32].

The first-order synchronization transition has been ob-
served in a scale-free network of phase oscillators and of
Rössler circuits when the natural frequencies of units are
positively correlated to their connections [21,23]. Moreover, it
has been found that the time delay may enhance the explosive
transition to synchronization [33]. So far the correlation
between the natural frequency and degree of the network’s
node is regarded as the main factor contributing to an explosive
synchronization in the heterogeneous networks [21,34,35].

However, to our knowledge, the physical picture behind
this mechanism leading to a first-order phase transition is
not quite clear compared with the original Kuramoto model
(KM) where the phase transition is continuous. In Ref. [21]
the natural frequency of each oscillator is identified with
its own degree, which makes the hubs possess very high
frequency, while the leaves possess rather low frequency.
The large frequency mismatches between the hubs and their
neighbors in the heterogeneous networks inhibit the formation
of condensation nuclei, which leads to a first-order phase
transition. Very recently I. Leyva et al. [36] explicitly imposed
certain constraints on the frequency differences between each
node and its neighbors, which avoids any oscillator behaving
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as the core of a clustering process and also leads to an explosive
synchronization.

The seminal work of Ref. [21] and the frequency gap-
conditioned (FGC) model proposed in Ref. [36] clearly show
the large frequency mismatch of a pair of oscillators (also
known as disassortativity in frequency) is a direct cause
of an explosive synchronization. It is found that, besides
the disassortativity in frequency, the disassortativity in node
degree also shows up in connection with the first-order
synchronization transition, which is not noticed in the previous
literature. Thus, several questions about the synchronous
transition remain open: How does the assortativity in degree
influence the process of synchronization transition? What is the
criterion for an explosive synchronization transition in terms
of the assortativities in node degree and natural frequency?

The remainder of this paper is organized as follows.
In Sec. II we give the model of coupled phase oscillators
and propose a global constraint condition. Meanwhile, the
building steps of a FGC random network are introduced in
detail. We depict the main results obtained through numerical
simulations and analyze the influence of the frequency gap on
the synchronization process in Sec. III. We give a qualitative
explanation for the emergence of an explosive synchronization
in Sec. IV. Section V is devoted to study of the effects of
different topological structures and dynamical properties on
the synchronization transitions. Concluding remarks are made
in Sec. VI.

II. MODEL

Let us consider an undirected and unweighted network of
N coupled phase oscillators with the following equations of
motion [37]:

dφi

dt
= ωi + d

N∑

j=1

aij sin(φj − φi) i = 1,2, . . . N, (1)

where φi and ωi are the phase and natural frequency of the ith
oscillator, respectively, d > 0 is a coupling constant, and {aij }
is the entry of the adjacency matrix that uniquely defines the
interaction between the nodes. Thus, if there is a edge between
node i and node j , then aij = 1, and otherwise, aij = 0.
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The system size N is set to 400 for all calculations
in the present work, since the results described below do
not change qualitatively for larger systems. Meanwhile, the
average degree 〈k〉 of each node is set to 50 for any one
realization. Generally, an order parameter R(t) is defined to
quantify the degree of synchronization among the N coupled
phase oscillators [1],

R(t)eiψ(t) = 1

N

N∑

j=1

eiφj (t), (2)

where R(t) ∈ [0,1] measures the degree of the phase coherence
of populations and ψ(t) denotes an average phase of the
system. When R(t) = 1, the system reaches a complete
synchronous state, and when R(t) ≈ 0, it drifts into an
incoherent state.

In order to achieve an explosive synchronization, we have
to avoid that any one oscillator behaves as the core of a
clustering process in which its neighbors begin to aggregate
to the synchronous state smoothly and progressively, as in the
classical routes described in previous papers [38–40]. In other
words, the frequency gap between the connected oscillators
cannot be too small. Otherwise, these units easily form a
condensation nucleus. Thus, it is feasible to impose certain
constraints on the frequency gaps between the linked nodes.
Here a global constraint condition of frequency gaps can be
set as follows:

1

L

L∑

i=1

|pi − qi | > γ, (3)

where pi , qi are the natural frequencies of the nodes at the ends
of the ith edge and L is the total number of edges in the
network. This model allows us to construct networks with the
same average degree 〈k〉, interpolating from random graphs
to disassortative networks by tuning the single parameter γ ∈
[0,1) [21].

The construction of network consists of the following steps:
(1) assign to the N oscillators natural frequencies ωi randomly
spaced spanning the interval [0,1]; (2) randomly pick a pair of
nodes (i,j ), and form a link between them only if their values
satisfy the condition (3); and (3) repeat step 2 until the desired
number L of links in the network is obtained.

III. EMERGENCE OF AN EXPLOSIVE
SYNCHRONIZATION

In this section, we will focus on the influence of different
values of γ on the process of synchronization transition. As
shown in Fig. 1, we have simulated two synchronization
trajectories, labeled as forward (solid circle) and backward
(hollow circle) continuations in each panel [21]. The former is
done by calculating stationary value of R via varying d from
0 to 0.02 in steps of 0.0004, and using the outcome of the last
run as the initial condition of the next one, while the latter is
performed by decreasing d from 0.02 to 0 with the same step.

Figure 1 reports the results obtained by setting p(ω) = 1 as a
uniform frequency distribution in the interval [0,1]. Panels (a)
and (b) of Fig. 1 show a typical second-order phase transition
with a perfect match between the backward and forward
synchronization trajectories for relatively small values of γ .

(c) (d)

(b)(a)

FIG. 1. The order parameter R vs the coupling strength d for
different values of γ . (a) γ = 0.2, (b) γ = 0.3, (c) γ = 0.4, (d) γ =
0.5.

Notably, the first important result is observed for sufficiently
large values of γ [see panels (c) and (d) of Fig. 1], in which
an abrupt first-order synchronization transition appears. Two
different paths leading to the synchronization also imply that
there is a critical value γc, above which the first-order phase
transition occurs, otherwise the second-order phase transition
happens. Furthermore, for each oscillator i, we denote byN (i)
the set of oscillators linked to it. In Figs. 2 and 3, the symbol 〈·〉
indicates the average value over the ensemble N (i), that is, the
average neighbor connectivity 〈kj 〉 = (1/ki)

∑
j∈N (i) kj and

the average neighbor frequency 〈ωj 〉 = (1/ki)
∑

j∈N (i) ωj .
The second significant result is the spontaneous emergence

of degree-degree and frequency-frequency correlation features
with the changeover of the order of phase transitions. By
inspecting the average degree of each oscillator’s neighbors,
comparison between panels (a, b) and panels (c, d) of Fig. 2
manifests that condition (3) leads to the emergence of a

(c) (d)

(b)(a)

FIG. 2. The average neighbor connectivity 〈kj 〉 vs the degree ki

of the ith node for different values of γ . (a) γ = 0.2, (b) γ = 0.3,
(c) γ = 0.4, (d) γ = 0.5.
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(c) (d)

(b)(a)

FIG. 3. The average neighbor frequency 〈ωj 〉 vs the natural
frequency ωi of the ith node for different values of γ . (a) γ = 0.2,
(b) γ = 0.3, (c) γ = 0.4, (d) γ = 0.5.

disassortative network where low-degree (high-degree) nodes
are mainly coupled to high-degree (low-degree) nodes. Panels
(a) and (b) of Fig. 3 refer to the cases γ = 0.2 and γ = 0.3, in
which no frequency-frequency correlation is present. In panels
(c) and (d) of Fig. 3, instead, we report the cases γ = 0.4 and
0.5 (the values for which a first-order phase transition occurs),
which give evidence of the emergence of a very pronounced
zigzag-shaped relationship between the frequency of the
network’s node and the average frequency of its neighbors. The
results show that the high-frequency (low-frequency) nodes
are prone to attaching to other low-frequency (high-frequency)
nodes with the increase of γ .

IV. ASSORTATIVITY IN NETWORKS

In view of the analysis in Sec. III, it is natural for us to
introduce the assortativity coefficients of degree and frequency
to depict the topological structures and dynamical properties
of the networks [41,42].

A network is said to show assortative (disassortative)
mixing of structure if the nodes in the network that have
many connections tend to be connected to other nodes with
many (few) connections. In a disassortative network, the
explosive transition persists, while in an assortative network
the transition becomes a second-order one if the assortative
coefficient of degree is large enough [24]. Here, we use the
same form as Ref. [43] to characterize the frequency-frequency
correlation of networks:

rω = L−1 ∑L
i=1 piqi − [

L−1 ∑L
i=1(pi + qi)/2

]2

L−1
∑L

i=1

(
p2

i + q2
i

)
/2 − [

L−1
∑L

i=1(pi + qi)/2
]2 ,

(4)

where pi and qi are the natural frequencies of the nodes at
the ends of the ith edge. Here rω > 0 implies that the natural
frequency of network is assortative, whereas it is disassortative.

Figure 4(a) displays the change trend of two kinds of
assortativity coefficients with the increase of γ . One can see
that a dramatic drop occurs when γ changes from 0.34 to 0.36,
which is consistent with the findings in Figs. 2 and 3.

(b)(a)

FIG. 4. (a) The assortativity coefficients (rk and rω) of degree
and natural frequency vs the continuous frequency gap γ . (b) The
maximum slope ρ of order parameter as a function of γ .

Additionally, in order to detect the critical value of γ , we
introduce a maximum slope of order parameter at different
values of γ [24]. It is defined as follows:

ρ = lim
�d→0

�R

�d

∣∣∣∣
max

. (5)

One may find that a sudden jump occurs when γ changes from
0.33 to 0.36, as shown in Fig. 4(b). We can conjecture that the
critical value of γ is about 0.33.

Comparing with panels (a) and (b) of Fig. 4, we find that the
two values of γ are very close. Are both phenomena inevitable
or occasional? Does it mean an association between the onset
of an explosive synchronization and the transition points
of assortativities in degree and frequency? In the following
section, we will continue our discussion.

In order to give a qualitative explanation for the emergence
of an explosive synchronization in Fig. 1, we plot ωi as a
function of ki , and a parabola-shaped relationship between
the frequencies and the degrees of the network’s nodes starts
to take shape and becomes clearer with the increase of γ , as
shown in Fig. 5. When γ > γc, the high-degree (low-degree)
nodes locate at the ends (center) of the frequency spectrum.
Considering degree-degree correlation, more coupling terms
contribute to the high-degree nodes, but they are far away from

(c) (d)

(b)(a)

FIG. 5. The relationship between degree ki and natural frequency
ωi of each node is obtained for different values of γ . (a) γ = 0.2,
(b) γ = 0.3, (c) γ = 0.4, (d) γ = 0.5, after the network construction
is completed.
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the center of the frequency spectrum, while the low-degree
nodes are in the opposite situation. The pattern of interaction
inhibits a condensation center from generating and makes the
oscillators either all drift or all phase-locked [44,45]. From the
standpoint of frequency-frequency correlation, the emergence
of an explosive synchronization is due to the high probability
of connections with large frequency mismatches.

V. EFFECTS OF DIFFERENT MIXING PATTERNS

In order to reveal the relationship between the two phenom-
ena in Fig. 4, we construct four types of networks with different
degree-degree and frequency-frequency correlation patterns.
(a) The model of a FGC random network is constructed
according to the condition γ = 0. It falls back to the random
graph of Erdös and Rényi (ER) [46]. (b) First, the model of a
FGC random network is constructed according to the condition
γ = 0. Then we intentionally swap natural frequencies of
nodes, until rω ≈ −0.3 is obtained. (c) First, the model of a
FGC random network is constructed according to the condition
γ = 0.5. Then we use a randomly distributed natural frequency
to replace the original frequency distribution. The operation
keeps the degree sequence, and thus the heterogeneity of the
network’s degree remains unchanged. (d) The model of a FGC
random network is constructed according to the condition
γ = 0.54.

It is shown in Fig. 6 that the degree-degree and the
frequency-frequency correlations of the networks have a
significant impact on an explosive transition. The first-order
phase transition arises due to the disassortativities in degree
and natural frequency in the FGC networks. Return to Fig. 4(a),
the dramatic drop can be regarded as the onset of an
explosive synchronization, which is in good agreement with
the simulation of Fig. 4(b).

From the above analysis, we can conclude that the disas-
sortativities in degree and natural frequency are the underlying
factors to excite an explosive synchronization. In order to
verify our assertion, we adopt two kinds of control strategies.

(c) (d)

(b)(a)

FIG. 6. Four types of mixing patterns (a) rk = −0.005258,
rω = −0.000536; (b) rk = −0.001057, rω = −0.299152; (c) rk =
−0.213452, rω = 0.000797; (d) rk = −0.269381, rω = −0.593702.

(c) (d)

(b)(a)

FIG. 7. Synchronization diagrams R(d) for different assorta-
tivities in natural frequency. The values of rω in each panel
are (a) rω = −0.286715, (b) rω = −0.105545, (c) rω = 0.100128,
(d) rω = 0.250056. The four realizations share the same disassorta-
tivity in degree rk = −0.321414.

On the one hand, a network with the disassortative degree
is constructed according to the condition γ = 0.58. Then
we intentionally swap natural frequencies of nodes, until the
predetermined value of rω is obtained. The swap operation
keeps the disassortative degree unchanged. As a result, the
size of the hysteresis loop gradually shrinks until completely
disappears with the increase of the assortativity in frequency
(Fig. 7). On the other hand, a network with the disassortative
frequency is constructed according to the initial condition
γ = 0.44. Then we reshuffle the random network and keep
its disassortative frequency unchanged [47]. As expected,
a similar phenomenon happens with the increase of the
assortativity in degree (Fig. 8). It is clear that the transition

(c) (d)

(b)(a)

FIG. 8. Synchronization diagrams R(d) for different assortativi-
ties in degrees. The values of rk in each panel are (a) rk = −0.250372,
(b) rk = −0.149809, (c) rk = 0.100203, (d) rk = 0.200252. The
four realizations share the almost identical disassortativity in natural
frequency rω ≈ −0.305276.
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points of assortativities in degree and natural frequency are
also the demarcation points of the order of phase transitions in
the FGC random networks.

VI. CONCLUSIONS

In summary, we proposed a new scheme to induce an
explosive synchronization and demonstrated a prerequisite for
the occurrence of this phenomenon in networks of phase oscil-
lators. It should be pointed out that the single disassortativity is
not uniquely sufficient to determine the emergence of an explo-
sive synchronization transition. The disassortativities in degree
and natural frequency are indispensable to excite an explosive
synchronization in the FGC random networks. It is worth men-
tioning that the two transition points of assortativities in degree
and natural frequency almost overlap in the FGC random
networks. In addition, the more disassortative a network is,
the more easily an explosive synchronization may occur.

Our study generalizes some previous results and extends
the possibility of encountering first-order phase transitions to
a general standard of topological structures and dynamical

properties. This suggests a feasible scheme for engineering
networks able to display critical phenomena and the emergence
of explosive transition in their macroscopic states. Finally,
the evidence for the spontaneous emergence of degree-degree
and frequency-frequency correlations in connection with these
abrupt transitions may shed light on the microscopic roots
behind these phenomena. Our findings will pave the way for the
study with similar dynamical context in real-world networks.
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