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We investigate the relationship between the emergence of chaos synchronization and the information flow in
dynamical systems possessing homogeneous or heterogeneous global interactions whose origin can be external
(driven systems) or internal (autonomous systems). By employing general models of coupled chaotic maps for
such systems, we show that the presence of a homogeneous global field, either external or internal, for all times
is not indispensable for achieving complete or generalized synchronization in a system of chaotic elements.
Complete synchronization can also appear with heterogeneous global fields; it does not requires the simultaneous
sharing of the field by all the elements in a system. We use the normalized mutual information and the information
transfer between global and local variables to characterize complete and generalized synchronization. We show
that these information measures can characterize both types of synchronized states and also allow us to discern
the origin of a global interaction field. A synchronization state emerges when a sufficient amount of information
provided by a field is shared by all the elements in the system, on the average over long times. Thus, the
maximum value of the top-down information transfer can be used as a predictor of synchronization in a system,
as a parameter is varied.
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I. INTRODUCTION

Global interactions in a system occur when all its elements
are subject to a common influence or field. Global interac-
tions appear naturally in the description of many physical,
biological, and social systems, such as coupled oscillators
[1,2], Josephson junction arrays [3], charge density waves
[4], multimode lasers [5], parallel electric circuits, neural
dynamics, ecological systems, evolution models [6], economic
exchange [7], social networks [8], mass media models [9],
cross-cultural interactions [10], etc. A global interaction field
may consist of an external environment acting on the elements,
as in a driven dynamical system; or it may originate from
the interactions between the elements, in which case, we talk
of autonomous dynamical systems. In many cases, global
interaction fields coexist with local or short-range interactions.

Although systems with global interactions possess a
simple topological connectivity structure—a fully connected
network—they can exhibit a variety of collective behaviors,
such as chaos synchronization, dynamical clusters, nontrivial
collective behavior, chaotic itineracy [6,11], quorum sensing
[12], etc. These behaviors have been studied in models of
globally coupled maps [13] and have been experimentally
investigated in globally coupled oscillators in chemical,
physical, and biological systems [14–17].

In particular, chaos synchronization is a fundamental phe-
nomenon in dynamical systems [18,19]. Its investigation has
provided insights into many natural processes and motivation
for practical applications such as secure communications and
control of nonlinear systems [20–22]. Complete synchro-
nization in a system of dynamical elements subject to a
global interaction field, either external or autonomous, occurs
when the state variables of all the elements and the global
field converge to a single orbit in phase space. Generalized
chaos synchronization, originally discovered in driven chaotic
systems, arises when all the state variables of the elements

in the system get synchronized into an orbit that is different
from that of the drive [23,24]. The concept of generalized
synchronization of chaos has also been extended to the context
of autonomous systems [25]. This means that the chaotic state
variables in a dynamical system can synchronize to each other
but not to a coupling function containing information from
those variables.

The occurrence of both forms of chaos synchronization in
driven and in autonomous systems with global interactions
suggests that the nature, either external or endogenous, of the
global field acting on the elements in a system is irrelevant. At
the local level, each element in the system is subject to a field
that eventually induces some form of synchronization between
that field and the element. In general, the local dynamics in
systems with global interactions can be seen as a single drive-
response system [11,26]. In particular, if the time evolution of
an external global field acting on a system is identical to that
of an autonomous global field acting on a replica system, the
corresponding local drive-response dynamics in both systems
should be indistinguishable, and therefore the corresponding
synchronized states are equivalent; i.e., they occur for the same
parameter values in both systems [27].

In many systems it is important not only to detect syn-
chronized or other collective states, but also to understand
the relationships between global and local scales that lead to
such behaviors. For example, it has recently been argued that
top-down causation—where information flows from higher
levels to lower levels in complex systems—may be a major
contributor to evolutionary transitions and to the emergence
of behaviors in living systems [28], and synchronization in
neural systems has been described as a top-down information
processing driven by a stimulus [29].

The above results suggest that the emergence of collective
behaviors, such as a synchronized state, in a system is
associated with the reception by its elements of some amount
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of information provided by a source, either external or
endogenous to the system. In this article we investigate the
relationship between information flow between the global and
local variables and the emergence of complete and general-
ized synchronization of chaos in dynamical networks with
global interactions of different types. We employ information
measures [30,31] that have been widely applied to quan-
tify drive-response causal relationships between subsystems
and interdependences between data sets in many fields of
science, including linguistics [32], electroencephalographic
signals [33], neuroscience [34], communication systems [35],
dynamical systems [36], and climate networks [37]. We show
that these information measures can characterize complete and
generalized synchronized states and also allow us to discern the
origin, either external or endogenous, of a global interaction
field. A given synchronization state emerges when a sufficient
amount of the information transmitted by a field is shared
by all the elements in the system, on the average over long
times. Thus, the maximum value of the top-down information
transfer can be employed as a predictor of synchronization as
a parameter in the system, such as the coupling strength to the
field, is varied.

In Sec. II we present a general coupled map model for
systems with external or endogenous global interactions.
and define the quantities to characterize synchronized states
and information flow in such systems. Homogeneous global
interaction fields, which may act intermittently, are considered
in Sec. III. We extend the concept of a global field to
include heterogeneous global interactions in Sec. IV. Section V
contains the conclusions of this work.

II. GLOBAL INTERACTION FIELDS

We describe a global interaction in a system as a field
that can influence all the elements in the system. As a simple
model of a dynamical system subject to a global interaction,
we consider a system of N coupled maps of the form

xi
t+1 = w

(
xi

t ,yt

)
,

yt+1 = φ
(
yt ,x

j
t

)
,

(1)

where xi
t (i = 1,2, . . . ,N ) represents the state variable of the

ith map in the system at discrete time t , yt is a global interaction
field that can affect each map at time t , and j ∈ Q where Q

is a subset of elements in the system. Equation (1) describes
a system of elements interacting with a common dynamical
environment that can receive feedback from the system. For
simplicity, we shall focus on the presence of global interactions
and will not include local interactions.

An external global field yt possesses its own dynamics,
independent from the dynamics of the elements, given by

φ
(
yt ,x

j
t

) = g(yt ). (2)

On the other hand, an internal global field yt can be represented
by

φ
(
yt ,x

j
t

) = h
(
x

j
t

∣∣j ∈ Qt

)
, (3)

where h is a function of the states of a given subset Qt of
elements in the system at time t . The coupling function h may
represent a constraint or a conservation law in the system.
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FIG. 1. Top panels: homogeneous global interactions. (a) Exter-
nal field g(yt ) acting with probability p on all elements. (b) Internal
field h(xj

t |j ∈ Qt ) acting with probability p on all elements. Bottom
panels: heterogeneous global interactions. (c) External field g(yt )
acting on a fraction p of elements chosen at random at every time. (d)
Internal field h(xj

t |j ∈ Qt ) acting on a fraction p of elements chosen
at random at every time.

We shall consider the coupling of the maps to the global
interaction field in the diffusive form

w
(
xi

t ,yt

) = (1 − ε)f
(
xi

t

) + εφ
(
yt ,x

j
t

)
, (4)

where f describes the local dynamics of the maps, and the
parameter ε is the strength of the coupling to the global field.
Since we are particularly interested in chaos synchronization,
we choose for the local dynamics the logistic map f (xi

t ) =
4xi

t (1 − xi
t ), so that f (xi

t ) is fully chaotic for xi
t ∈ [0,1]. In

this paper, we consider both driven and autonomous systems,
subject to global interactions, whose schemes are illustrated in
Fig. 1.

A. Synchronization states

Synchronization in the system Eq. (1) at a time t corre-
sponds to a state xi

t = x
j
t , ∀ i,j . Thus, a synchronized state

can be described by the condition xi
t = x̄t , ∀ i, where x̄t is the

instantaneous mean field of the system,

x̄t = 1

N

N∑
i=1

xi
t . (5)

To characterize the occurrence of synchronization, we shall
consider the asymptotic time average 〈σ 〉 (after discarding a
number of transients) of the instantaneous standard deviations
σt of the distribution of state variables xi

t , defined as

σt =
[

1

N

N∑
i=1

(
xi

t − x̄t

)2

]1/2

. (6)

A synchronization state corresponds to 〈σ 〉 = 0. In addition,
we define the asymptotic time average 〈δ〉 (after discarding a
number of transients) of the quantity

δt = |x̄t − yt |. (7)

Two forms of synchronization can take place in the
system Eq. (1) in relation to the global field yt : (i) complete
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synchronization, given by the condition xi
t = x̄t = yt , i.e., all

elements are synchronized to the field, and characterized by
〈σ 〉 = 0 and 〈δ〉 = 0; and (ii) generalized synchronization,
corresponding to the condition xi

t = x̄t �= yt , i.e., all elements
are synchronized to each other but not the field, and described
by 〈σ 〉 = 0 and 〈δ〉 �= 0. It has been shown that both types of
synchronization can occur in systems with global interactions,
for either autonomous or driven systems [25]. In this paper we
shall use the numerical criteria 〈σ 〉 < 10−7 and 〈δ〉 < 10−7 for
characterizing the zero values of these quantities.

In order to characterize the information exchange between
the global field and the local dynamics in the system, we
consider the following quantities:

(1) the normalized mutual information between two vari-
ables yt and xt , based on Shanon’s mutual information [30],

My,x = −
∑

xt ,yt
P (xt ,yt ) log

(
P (xt ,yt )

P (xt )P (yt )

)
∑

xt
P (xt ) log P (xt )

; (8)

(2) the information transfer from a variable yt to a variable
xt , defined as [31]

Ty,x =
∑

xt+1,xt ,yt

P (xt+1,xt ,yt ) log

(
P (xt+1,xt ,yt )P (xt )

P (xt ,yt )P (xt+1,xt )

)
, (9)

where P (xt ) means the probability distribution of the time
series of the variable xt , P (xt ,yt ) is the joint probability
distribution of xt and yt , and so on. The quantity My,x measures
the overlap of the information content of the variables yt and xt ;
it represents how much the uncertainty about xt decreases if yt

is known. The quantity Ty,x measures the degree of dependence
of xt on the variable yt ; i.e., the information required to
represent the value xt+1 from the knowledge of yt . Note that
the information transfer is nonsymmetrical, i.e., Ty,x �= Tx,y .
The normalized mutual information My,x is symmetrical, i.e.,
My,x = Mx,y , and does not indicate the direction of the flow of
information between two interacting dynamical variables, as
Ty,x does. When the two variables are synchronized, xt = yt .
Then we obtain My,x = 1 and Ty,x = 0.

III. HOMOGENEOUS GLOBAL INTERACTIONS

We describe a homogeneous global interaction as a field
shared simultaneously by all the elements in a system. Since,
in general, the interaction with the field may not occur for
all times, we consider a coupled map system subject to a
homogeneous, intermittent, global interaction of the form

∀ i, xi
t+1 =

{
w

(
xi

t ,yt

)
with probability p,

f
(
xi

t

)
with probability (1 − p).

(10)

Each map in the system Eq. (10) is subject to the presence
(or absence) of the same influence at any time. Then,
the occurrence of complete or generalized synchronization
between a local map and the global field yt implies the
same form of synchronization between the mean field of the
system x̄t and yt , regardless of the nature, either external or
endogenous, of the global field yt .

A system subject to a homogenous external field [Fig. 1(a)],
corresponds to

∀ i,xi
t+1 =

{
(1 − ε)f

(
xi

t

) + εg(yt ) with probability p,

f
(
xi

t

)
with probability (1 − p),

yt+1 = g(yt ). (11)

The auxiliary system approach introduced in Ref. [24] implies
that a driven map can synchronize on identical orbits with
another, identically driven map. The system Eq. (11) can be
regarded as one of multiple realizations for different initial
conditions of a single, intermittently driven map. Thus, by
extension, the elements in this system should synchronize with
the external field in the same form as a single local map driven
by that field does.

A complete synchronized state in the system Eq. (11)
is given by xi

t = x̄t = yt , ∀ i, and it can occur when the
external field is equal to the local dynamics, g = f . If g �= f ,
generalized synchronization, characterized by the condition
xi

t = x̄t �= yt , ∀ i, may also arise in this system.
On the other hand, a system subject to an autonomous

homogeneous global field [Fig. 1(b)] can be described as

∀ i, xi
t+1

=
{

(1 − ε)f
(
xi

t

) + εh
(
x

j
t

∣∣ j ∈ Qt

)
with probability p,

f
(
xi

t

)
with probability (1−p),

(12)

where Qt is a subset consisting of q � N elements of the
system that may be chosen at random at each time t . Each
map receives the same input from the endogenous global field
yt = h at any t with probability p. Complete synchronization
in the system Eq. (12) occurs when f (xi

t ) = f (x̄t ) = h,
while generalized synchronization appears if f (xi

t ) = f (x̄t ) �=
h, ∀ i.

A. Complete synchronization

As examples of complete chaotic synchronization in sys-
tems having homogeneous global interactions, we consider
the driven system Eq. (11) with g = f , and the autonomous
system Eq. (12) subject to a partial mean field coupling
function defined as

h
(
x

j
t

∣∣j ∈ Qt

) = 1

q

q∑
j=1

f
(
x

j
t

)
, (13)

where q � N maps are randomly chosen at each time t . For
these systems, the condition 〈δ〉 = 0 implies 〈σ 〉 = 0 and,
therefore, complete synchronization.

Figure 2(a) shows the quantity 〈δ〉 as a function of the
coupling parameter ε, for both the homogeneous driven system
and the homogeneous autonomous system, with fixed values of
p and q/N . Complete synchronization for both systems takes
place at a critical value εc = 0.579, for which 〈δ〉 < 10−7.

Figures 2(b) and 2(c) show, respectively, the normalized
mutual information Myt ,x

i
t

and the information transfer Tyt ,x
i
t

between the homogeneous global field and one map, averaged
over 50 randomly chosen maps, for both systems as functions
of ε. These averaged quantities give practically the same
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FIG. 2. Complete chaos synchronization in systems with homo-
geneous global fields. (a) 〈δ〉 vs ε, (b) mutual information Myt ,x

i
t

vs ε,
and (c) information transfer Tyt ,x

i
t

vs ε. On each panel, the continuous
line corresponds to the homogeneous driven system Eq. (11) with g =
f and the dashed line corresponds to the homogeneous autonomous
system Eqs. (12) and (13). Both information measures are calculated
with 2 × 105 points in the time series, after discarding transients, and
averaged over 50 randomly chosen maps. The number of states used
to calculate the corresponding probability distributions is 100. The
same conditions are used in Figs. 3 and 5. Fixed parameters: p = 0.8,
N = 104, q/N = 0.4.

result as for just one randomly chosen map. The results
shown are also independent of q for large enough system
system size N . We observe that, as the coupling strength
ε increases, the global field and the local variables become
more correlated, and the normalized mutual information for
both systems increases until Myt ,x

i
t
= 1 at the value εc. In the

complete synchronization region ε � εc, we find the constant
values Myt ,x

i
t
= 1 and Tyt ,x

i
t
= 0 for both systems, signaling

complete synchronization in each case. Once complete chaos
synchronization is established, the evolution of the global
field, regardless of its source, is identical to that of the maps.
Thus, the mutual or the transfer information cannot distinguish
between the driven and the autonomous systems in a regime
of complete synchronization.

On the other hand, just before vanishing at the critical
value εc, the information transfer for both systems becomes
maximum. This indicates that, as the critical values of the
parameters for the onset of complete chaos synchronization
are approached, the flow of information from the global field

to the local maps must be large. Figure 2(c) shows that the
maximum value of the information transfer for the driven
system is greater than the corresponding maximum value for
the autonomous system. Thus, in the vicinity of parameter
values for the emergence of complete synchronization, an
autonomous global field needs to convey less information to
the local maps than an external driving field. This suggests
that the information transfer Tyt ,x

i
t

can serve as a predictor
of a state of complete synchronization in the parameter
space of driven and autonomous systems with homogenous
global interactions. Moreover, this quantity can distinguish
between these two types of systems near the onset of complete
synchronization.

B. Generalized synchronization

If the functional form of the global field is different from that
of the local dynamics, generalized synchronization may occur
in a system subject to a homogeneous global interaction. For
example, consider an external field in a driven system Eq. (11)
such as

g(yt ) = μ

2
(1 − |2yt − 1|), (14)

with μ = 1.98 and yt ∈ [0,1]. Then at synchronization in
the driven system Eqs. (11) and (14), we have xi

t = x̄t �= yt .
Similarly, in an autonomous system Eqs. (12), consider a
homogeneous global interaction different from a mean field,
such as the coupling function

h
(
x

j
t

∣∣j ∈ Qt

) = μ

2

[
1 −

∣∣∣∣∣2
(

1

q

q∑
j=1

x
j
t

)
− 1

∣∣∣∣∣
]
, (15)

with μ = 1.98, where q � N elements are chosen at random
at each time t . Then, a synchronized state in the autonomous
system Eqs. (12) and (15) corresponds to f (xi

t ) = f (x̄t ) �= h.
For the fields chosen above, the functional form of the
autonomous field in a synchronized state is similar to that
of the drive, h = g(x̄t ). However, the time evolution of h at
synchronization is not necessarily identical to that of g(yt ).

Figure 3(a) shows the quantity 〈σ 〉 as a function of the
coupling parameter ε for both systems with homogeneous
global interactions, the driven system with g given by Eq. (14)
and the autonomous system with h given by Eq. (15). These
systems get synchronized at different values of ε for which
〈σ 〉 < 10−7. The inset in Fig. 3(a) shows that the quantity 〈δ〉
for both systems does not vanish when ε is varied, indicating
that the synchronized state in both cases corresponds to
generalized synchronization.

Figure 3(b) shows Myt ,x
i
t

for both systems, as a function
of ε. In contrast to the constant value Myt ,x

i
t
= 1 exhibited

by the normalized mutual information for both systems in a
state of complete synchronization [Fig. 2(b)], the behavior
of Myt ,x

i
t

in the regime of generalized synchronization is
different for each system. The normalized mutual information
for the autonomous system in a generalized synchronized state
reaches an almost constant value Myt ,x

i
t
= 0.695 < 1, since

the time series of the local maps and the coupling function
h are not identical. For the driven system, Myt ,x

i
t

increases
monotonically with increasing ε, but the values of Myt ,x

i
t

are
below the value of this quantity for the autonomous system
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FIG. 3. Generalized chaos synchronization in systems with ho-
mogeneous global fields. (a) 〈σ 〉 vs ε (inset: 〈δ〉 vs ε); (b) Myt ,x

i
t

vs
ε; and (c) Tyt ,x

i
t

vs ε. On each panel, the continuous line corresponds
to a homogeneously driven system Eq. (11) with g given in Eq. (14)
and the dashed line corresponds to the homogeneous autonomous
system Eqs. (12) and (15). Fixed parameters are p = 0.8, N = 104,
q/N = 0.4.

in the region of generalized synchronization. Therefore, in a
generalized synchronization state, the amount of information
shared between the field h and the local maps in the
autonomous system is greater than that between the external
field g and the maps in the driven system.

Figure 3(c) shows the information transfer Tyt ,x
i
t
versus ε for

both systems. Similarly to the behavior observed for complete
synchronization, as the coupling strength approaches the criti-
cal value εc for the emergence of generalized synchronization,
the information transfer in the autonomous system becomes
maximum. Also, the values of Tyt ,x

i
t

for the driven system are
greater than the values of this quantity for the autonomous
system. However, in the generalized chaos synchronization
regime, for ε > εc, the information transfer in both systems
does not vanish; and the values of Tyt ,x

i
t

for the driven system
are greater than the values of this quantity for the autonomous
system. This means that the autonomous field must provide
less information to the local maps than an external drive for
sustaining generalized synchronization. This behavior should
be expected since the autonomous field h already contains
information about the dynamics of the elements in the system.
At the onset of generalized synchronization, both Tyt ,x

i
t

and

0
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FIG. 4. Regions for chaos synchronization on the plane (p,ε)
for systems with homogeneous global interactions. (a) Complete
synchronization (CS) for both the homogeneous driven system
Eq. (11) with g = f = 4x(1 − x), and the homogeneous autonomous
system Eqs. (12) and (13). The boundary of the region where complete
synchronization takes place is given by ε = 1 − e−λf /p , with λf =
ln 2 for the map f . (b) Generalized synchronization (GS) for both the
homogeneously driven system Eqs. (11) and (14) (continuous line)
and for the homogeneous autonomous system Eqs. (12) and (15)
(dashed line), with N = 104, q/N = 0.4.

Myt ,x
i
t

for the driven system are continuous while they are
discontinuous for the autonomous system. Thus, the quantities
Myt ,x

i
t

and Tyt ,x
i
t

can distinguish between the driven and the
autonomous systems in a state of generalized synchronization,
in contrast to the case of complete synchronization.

C. Dynamics at the local level

At the local level in a system with a homogeneous global
field, each element is subject to a field that eventually induces
some form of synchronization between that element and
the field, similarly to a single master-slave system. Thus,
the local dynamics can be seen as a single drive-response
map system where a drive g acts with probability p on
a map f . In particular, the linear stability analysis of the
complete synchronized state for the single driven map yields
the condition [25]

p ln |1 − ε| + λf < 0, (16)

where λf is the Lyapunov exponent of the map f . A stable
completely synchronized state occurs when this condition is
fulfilled. On the other hand, a stable generalized synchronized
state in both kinds of homogeneous system can be numerically
determined with the criterion 〈σ 〉 < 10 < −7 on the space of
parameters (p,ε).

Figure 4 shows the regions where complete and generalized
synchronization can be found on the plane (p,ε) for the
systems with homogeneous global interactions considered
here. The region of parameters for complete synchronization is
the same for both the autonomous and the driven systems. The
regions corresponding to generalized synchronization are not
identical for these systems with the chosen functional forms
of their global fields.

IV. HETEROGENEOUS GLOBAL INTERACTIONS

The concept of a global field can be extended beyond the
concept of spatial homogeneity. In this respect, we consider a
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system with heterogeneous global interactions, as follows:

xi
t+1 =

{
w

(
xi

t ,yt

)
if i ∈ Rt,

f
(
xi

t

)
if i /∈ Rt .

(17)

where Rt is a subset containing pN elements of the system,
with p � 1, which may be chosen at random at each time t .
Thus, the average fraction of elements coupled to the field in
Eq. (17) at any given time is p, so that not all the maps in the
system receive the same influence at all times. In comparison,
the coupling of the elements to the field in systems with
homogeneous global interactions, Eq. (10), is simultaneous
and uniform; each map receives the same influence from the
field yt at any t with probability p. At the local level, each map
in the system with heterogeneous global interactions, Eq. (17),
is subject, on the average, to the global field yt with probability
p over long times. For p = 1, the homogeneous system
Eq. (10) and the heterogeneous system Eq. (17) are identical.

In the case of an external field [Fig. 1(c)], Eq. (17) takes
the form

xi
t+1 =

{
(1 − ε)f (xi

t ) + εg(yt ) if i ∈ Rt,

f (xi
t ) if i /∈ Rt,

yt+1 = g(yt ).

(18)

For an autonomous field [Fig. 1(d)], the coupled map system
Eq. (17) becomes

xi
t+1 =

{
(1 − ε)f

(
xi

t

) + εh
(
x

j
t : j ∈ Qt

)
if i ∈ Rt,

f
(
xi

t

)
if i /∈ Rt,

(19)

where, again, Qt is a subset consisting of q � N elements
of the system that may be chosen at random at each time t .
Each map in Eq. (19) is subject, on the average, to the same
coupling function h with probability p over long times. The
same condition holds for each map with respect to the drive
g in the heterogeneously driven system Eq. (18). Then, if g

exhibits the same temporal evolution as h, the synchronization
behavior of the autonomous system Eq. (19) should be similar
to the behavior of the driven system Eq. (18) over long times.

A. Complete synchronization

When the heterogeneously driven system Eq. (18) gets
synchronized, we have xi

t = x̄t . However, the synchronized
solution exists only if g = f . Therefore, only complete
synchronization xi

t = x̄t = yt can take place in this system.
On the other hand, a synchronized state in the heterogeneous
autonomous system Eq. (19) occurs when f (xi

t ) = f (x̄t ).
However, this synchronized solution exists only if h = f (x̄t ).
Therefore, as in the case of the heterogeneous driven system,
only complete synchronization, where f (xi

t ) = f (x̄t ) = h, can
emerge in the heterogeneous autonomous system Eq. (19). As
an example of a coupling function h(xj

t : j ∈ Qt ) leading to
complete synchronization in the heterogeneous autonomous
system Eq. (19), we choose the partial mean field Eq. (13).

Figures 5(a)–5(c) show the quantities 〈δ〉, Myt ,x
i
t
, and Tyt ,x

i
t
,

respectively, as functions of ε for both heterogeneous systems,
driven and autonomous, with global interactions. Both systems
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FIG. 5. Complete chaos synchronization in systems with hetero-
geneous global fields. (a) 〈δ〉 vs ε; (b) Myt ,x

i
t

vs ε; and (c) Tyt ,x
i
t

vs ε. On
each panel, the continuous line corresponds to the heterogeneously
driven system Eq. (18) with g = f , and the dashed line corresponds
to the heterogeneous autonomous system Eqs. (19) and (13). Fixed
parameters: p = 0.8, N = 104, q/N = 0.4.

reach complete chaos synchronization at the critical value
εc = 0.579.

The information transfer in Fig. 5(c) becomes maximal
previous to the synchronization threshold, similarly to the be-
havior observed in homogeneous systems. Thus, a maximum
in the information transfer Tyt ,x

i
t

in the space of parameters
can be regarded as a precursor to a state of synchronization,
either complete or generalized. Figures 2(c), 3(c), and 5(c)
reveal that a lesser amount of information flow from the
global field to the local maps is necessary for the emergence
of synchronization in autonomous systems, in comparison to
that required for synchronization in driven systems possessing
similar functional forms of their global fields and identical
parameter values.

In either homogeneous or heterogeneous autonomous
systems, complete synchronization occurs independently of
the number q of elements randomly chosen in the function h,
or if the q chosen elements are always the same. Thus, the
reinjection of an autonomous coupling function h, although
containing partial information about the system, to a fraction
of randomly selected elements suffices to achieve complete
synchronization. If the elements in subset Rt receiving the
coupling function h or the drive g are always the same, then
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only elements in this subset reach complete synchronization,
since only those elements share the same information, on the
average.

V. CONCLUSIONS

We have investigated the relationship between the emer-
gence of synchronization and the information flow in dynam-
ical systems possessing global interactions. We have used the
normalized mutual information Myt ,x

i
t

and the information
transfer Tyt ,x

i
t

between global and local variables to charac-
terize complete and generalized synchronization in models of
coupled chaotic maps for such systems.

We have found that the presence of a homogeneous global
field, either external or internal, for all times is not indispens-
able for achieving complete or generalized synchronization
in a system of chaotic elements. Complete synchronization
can also appear with heterogeneous global fields; it does not
requires the simultaneous sharing of a global field by all
the elements in the system. Furthermore, the global coupling
function in autonomous systems does not need to depend on
all the internal variables for reaching synchronization and,
in particular, its functional form is not determinantal for
generalized synchronization.

In both systems with homogeneous or heterogeneous global
fields, at the local level each element is subject, on the average,
to a field that eventually induces some form of synchronization
between that element and the field, similarly to a single
drive-response system. Then, a set of elements identical to
the response and subject to a global field that behaves as the
drive also synchronizes in a similar manner.

What becomes essential for the emergence of a given
synchronization state is that all the elements in the system
share a sufficient amount of information provided by a field,
on the average, over time. This amount is characterized by the
maximum value of the information transfer Tyt ,x

i
t

previous
to the critical values of parameters for either complete or

generalized synchronization. Therefore, the quantity Tyt ,x
i
t

could be employed to anticipate the occurrence of a state
of synchronization in the space of parameters of a system
possessing a global interaction field. Furthermore, the form
in which information flows from macroscopic to microscopic
scales for the emergence of synchronization, as measured by
the quantities Myt ,x

i
t

and Tyt ,x
i
t
, differs between a driven and

an autonomous system with global interactions, even if they
have similar functional forms for their local dynamics or for
their global fields. In summary, we have found that (i) near
the onset of complete synchronization when a parameter is
varied, the maximum of the information transfer Tyt ,x

i
t

for a
driven system is greater than that for an autonomous system;
(ii) near the onset of generalized synchronization, the nor-
malized mutual information Myt ,x

i
t

and Tyt ,x
i
t

exhibit sharp
changes for an autonomous system, while these quanti-
ties exhibit a smooth behavior for a driven system; and
(iii) in a state of generalized synchronization, Tyt ,x

i
t

is greater
for a driven system than for an autonomous system and
Myt ,x

i
t

is smaller for a driven system than for an autonomous
system.

Our results suggest that these information measures could
be used to characterize, and possibly also to predict, other
forms of collective behaviors observed in dynamical systems
having global interactions. Further extensions of this work
include the investigation of the relationship between top-down
information flow between global and local scales, and the
emergence of collective behaviors and structures in more
complex dynamical networks.
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