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We investigate the possibility of obtaining chimera state solutions of the nonlocal complex Ginzburg-Landau
equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our
numerical studies reveal the existence of a variety of amplitude-mediated chimera states (including stationary
and nonstationary two-cluster chimera states) that display intermittent emergence and decay of amplitude dips
in their phase incoherent regions. The existence regions of the single-cluster chimera state and both types of
two-cluster chimera states are mapped numerically in the parameter space of C1 and C2, the linear and nonlinear
dispersion coefficients, respectively, of the NLCGLE. They represent a new domain of dynamical behavior in
the well-explored rich phase diagram of this system. The amplitude-mediated chimera states may find useful
applications in understanding spatiotemporal patterns found in fluid flow experiments and other strongly coupled
systems.
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Chimera states, spatiotemporal patterns of coexisting co-
herent and incoherent behavior in an array of coupled identical
oscillators, have received a great deal of attention in recent
times [1–5]. First found by Kuramoto and Battoghtokh [6]
from numerical investigations of the weak coupling version of
the nonlocal complex Ginzburg-Landau equation (NLCGLE),
the chimera state has subsequently been studied for a variety of
systems [7–26], including two-dimensional ones [24,27–29]
and those that have time-delayed coupling [30] or those
with a time-delayed feedback [31]. The phase-only chimera
state has been suggested as a useful paradigm to represent
such curious phenomenon as unihemispheric sleep in certain
mammals and birds, where during sleep one half of their
brain is quiescent while the other half remains active [3,32].
Recently, the phase-only chimera states have also been
observed experimentally in a chemical system [33], in an
optoelectronic set up [34] under controlled laboratory settings,
as well as in a mechanical experiment consisting of two
populations of metronomes [35]. An experimental realization
of a modified Ikeda time-delayed equation is also shown
to exhibit chimera-like states [36]. These past studies have,
however, been confined to the weak coupling limit of the
oscillator arrays where the amplitude variations have been
ignored and only the dynamical behavior of the phases have
been considered. In many practical situations, such as in
fluid flow representations, amplitude equations provide a more
realistic description of the physical phenomena and have been
widely employed to study the collective behavior of such
systems. An interesting question to ask is, therefore, whether
spatiotemporal patterns corresponding to chimera states can
exist for the strong coupling limit. We note here that, recently,
multichimera states have been found in networks of coupled
FitzHugh-Nagumo (FHN) and Hindmarsh-Rose (HR) neuron
models [37,38]. In this paper we address the question of the
existence of chimera states in strong coupling limits. We report

*gautam.sethia@gmail.com

the numerical discovery of chimera solutions for the NLCGLE
equation in the regime where amplitude effects matter. In
contrast to the classical chimera states found for the phase-only
systems, the present ones display amplitude activity in the
incoherent region of the solution in the form of intermittent
emergence and decay of amplitude dips and we classify them
as amplitude-mediated chimeras (AMCs). The phases of the
oscillators in the incoherent region continue to have a random
distribution. These states bear a close resemblance to the
simultaneous appearance of laminar and turbulent regions in
Couette flow studies [39,40] and may have wider applications
to other strongly coupled systems.

Our model system is the well-known one-dimensional
NLCGLE [41] that has been extensively studied in the past
in the context of applications to various physical, chemical,
and biological phenomena [42–44].

∂W

∂t
= W − (1 + iC2)|W |2W + K(1 + iC1)(W − W ), (1)

where W (x,t) = A(x,t)exp[iφ(x,t)] is a complex field quan-
tity with A(x,t) and φ(x,t) representing the amplitude and
phase, respectively. C1, C2, and K are real constants character-
izing the linear and the nonlinear dispersion and the coupling
strength, respectively. The nonlocal mean field W (x,t) is given
by

W (x,t) =
∫ 1

−1
G(x − x ′)W (x − x ′,t)dx ′, (2)

where the normalized coupling kernel G(x − x ′) has an
exponentially decaying form, namely,

G(x) = κ

2(1 − e−κ )
e−κ|x|, (3)

with κ > 0. κ is the inverse of the coupling range and provides
a measure of the nonlocality of the coupling. The space
coordinate is made dimensionless by normalizing it with the
system length L, and hence the system size extends from −1 to
1. For K � 1, Eq. (1) can be reduced to a nonlocal evolution
equation for the phase function φ(x,t) that has been the subject
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FIG. 1. (Color online) Snapshots of the stationary state spatial profiles of the phase (φ) and the amplitude |W | (multiplied by 10 and shown in
blue, the upper curves) for (a) a single cluster AMC with K = 0.40, C1 = −0.5, C2 = 2.0; (b) a two-cluster AMC with K = 0.40, C1 = −4.0,
C2 = 0.5; and (c) a phase-only chimera with K = 0.05, C1 = −0.9, C2 = 1.0, respectively. κ is fixed at 2 for all the cases. Panels (d)–(f) show
the corresponding spatial profiles of the long-time average of the order parameter amplitudes (R) and the frequencies (ω = 〈φ̇〉). The computed
value of � is marked with a horizontal dashed line (in black). The vertical dotted lines in the lower three panels (d)–(f) are drawn as a visual
guidance to the coherent segments.

of several past studies for the classical chimera solutions.
We have carried out extensive numerical explorations to seek
chimera solutions of Eq. (1) and have discovered a variety of
such states over a wide range of parameter space. Broadly,
they consist of stationary one-cluster and two-cluster chimera
states and also a nonstationary (breather) variety of the
two-cluster state. The two coherent regions of the two-cluster
chimera states have opposite phases and are separated by
incoherent regions. Multicluster phase coherent regions have
also been observed before in time-delayed systems [30] and
more recently by Zhu et al. [45,46] in the weak coupling
limit of the NLCGLE. The major difference of the present
solutions from their counter parts of the phase-only systems is
that these amplitude-mediated chimera states have significant
temporal variations of the amplitude in the incoherent spatial
regions. These regions show intermittent emergence and decay
of amplitude dips, which in some cases can resemble amplitude
hole (defect) solutions.

In looking for chimera states, our choice of the system
parameters has been guided by earlier investigations of the
NLCGLE, including those in the weak coupling limit. Thus,
we have chosen two values of K , namely 0.05 and 0.4,
to represent weak and strong coupling cases, respectively.
The value of κ has been chosen to be equal to 2 so that
κL = 4, which is the same as chosen by Kuramoto and
Battogtok [6] (who had κ = 4 and L = 1). The values of
C1 and C2 have been varied over a wide range. We show a
typical snapshot of the amplitude-mediated one-cluster and
two-cluster solutions in Figs. 1(a) and 1(b), respectively,
whereas in Fig. 1(c) for comparison we display a classical
phase-only chimera obtained, in this case, from Eq. (1) in
the weak coupling limit by taking a low value of K . Notice
that for the classical chimera state the amplitude fluctuations
are negligible, justifying their neglect in the weakly coupled

limit of the NLCGLE. For the classical (phase-only) chimera,
the set of values C1 = −0.9 and C2 = 1 corresponds to α =
tan−1(C2 − C1)/(1 + C1C2) = 1.52, where α is the phase-
shift parameter in the weak coupling limit [6]. For the
AMCs, the amplitude variations in the incoherent region
are quite significant, sometimes dipping close to zero values
corresponding to traveling hole-like solutions. Our simulations
have been done with the XPPAUT [47] package with 201
discrete oscillators equally spaced on a ring. We have carefully
checked our numerical results to rule out finite-size effects. The
nature of the AMC is found not to change when, for example,
we change the number of oscillators from 201 to 401. The
characteristics of the AMC remain the same and it does not
exhibit any transient nature or tendency to collapse. The initial
conditions of our simulations consist of slightly perturbed
uniformly spaced phases from 0 to 2π with unit amplitude.

The stationary patterns of these AMCs can also be under-
stood in terms of a complex order parameter, defined as

R(x,t)ei	(x,t) =
∫ 1

−1
G(x − x ′)A(x − x ′,t)eiθ(x−x ′,t)dx ′, (4)

where R(x,t) is the amplitude of the order parameter, 	(x,t) is
the mean phase, and θ = φ + �t is the relative phase defined in
the frame rotating with the angular frequency � and amplitude
A of the coherent segment of the chimera. Using Eq. (4), and
separating Eq. (1) into its real and imaginary parts, one can get

∂A

∂t
= (1 − K − A2)A

+KR cos(	 − θ ) − KRC1 sin(	 − θ )
(5)

A
∂θ

∂t
= −(−� + KC1 + C2A

2)A

+KRC1 cos(	 − θ ) + KR sin(	 − θ ).
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By restricting to time stationary solutions, we get

cos(	 − θ ) =
[

1 + (1 + C1C2)A2 − (1 + C1�)

K
(
1 + C2

1

)
](

A

R(x)

)
.

(6)

The absolute value of the right-hand side of Eq. (6) cannot be
greater than 1 and this puts a condition on the magnitude R

of the order parameter, namely (R(x) � |�|), in any coherent
segment in space where

� =
[

1 + (1 + C1C2)A2 − (1 + C1�)

K
(
1 + C2

1

)
]
A. (7)

We obtain the amplitude A and the frequency � of the coherent
segment from the simulations and compute the value of �

using Eq. (7). In Figs. 1(d)–1(f) we have plotted the time
averaged profiles of R(x) for the chimera states corresponding
to the snapshots in Figs. 1(a)–1(c), respectively. The horizontal
line in each figure marks the computed � value. As can be seen,
the results are in good agreement in that the coherent segments
found in Fig. 1 correspond to regions where the condition R >

� is satisfied. As a further check on the nature of the collective
state, we have also plotted the average frequency profiles in
Figs. 1(d)–1(f), which all show the typical signature of chimera
states, namely a constant frequency in the coherent region
(flat profile) and a peaked profile in the incoherent region [6].
For the nonstationary breather state, the order parameter is
no longer a constant quantity but shows a periodic temporal
variation. This, along with amplitude |W | for any one of the
oscillators, is shown in Fig. 2(a) for the two-cluster AMC state.
Figure 2(b) shows the spatiotemporal pattern of the phase φ

after the transients. Each oscillator goes through coherent and
incoherent segments periodically.

To get a perspective of the existence regions of the AMCs
with respect to other collective states of the NLCGLE, we
have next carried out a linear stability analysis of plane
wave solutions of Eq. (1), that are of the form W 0

k (x,t) =
ake

i(πkx−ωkt) and that satisfy the dispersion relation

ωk = C1
(
1 − a2

k

) + C2a
2
k , (8)

with a2
k = 1 − K ′, K ′ = K(1 − Iκ,k), and

Iκ,k =
∫ 1

−1
G(x ′)eiπkx ′

dx ′.

Perturbing these equilibrium solutions by writing Wk = [1 +
u(x,t)]W 0

k , where u(x,t) = ∑
n un(t)eiπnx and substituting in

the linearized form of Eq. (1), we can get a variational equation
for un,

∂un

∂t
= [

1 + iωk − 2(1 + iC2)a2
k + K(1 + iC1)

× (Iκ,n+k − 1)
]
un − (1 + iC2)a2

k ūn. (9)

Taking un(t) ∼ eλt , Eq. (9) and its complex conjugate yield a
2 × 2 matrix M , whose eigenvalues are determined from the
following quadratic characteristic equation [48]:

|M − λI | ≡ λ2 + (r1 + ir2)λ + p1 + ip2 = 0, (10)

where I is the 2 × 2 unit matrix and r1 = −(a + e), r2 =
−(b + f ), p1 = −bf + ae − c2 − d2, and p2 = af + be,
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FIG. 2. (Color online) (a) The temporal patterns of the amplitude
|W | of an oscillator and amplitude R (the lower curve in blue) of the
order parameter. (b) The spatiotemporal pattern of the phases. The
parameter values for this simulation are κ = 2,K = 0.4, C1 = −8,
and C2 = 0.95.

which in turn are expressed in terms of system parameters:

a = 1 − 2a2
k + KIκ,n+k − K

b = ωk − 2C2a
2
k + KC1(Iκ,n+k − 1)

c = −a2
k

(11)
d = −C2a

2
k

e = 1 − 2a2
k + KIκ,n−k − K

f = −ωk + 2C2a
2
k − KC1(Iκ,n−k − 1).

Equation (10) determines the eigenvalues λ for a perturbation
with a wave number n. Setting the real part of λ to be
zero gives us a condition for marginal stability of the form
(κ,k,n) = 0, where

(κ,k,n) = −p2
2 + r1r2p2 + r2

1 p1. (12)

From our numerical analysis, we find that the lowest mode
number perturbation (n = 1) is the first one to get destabilized
and therefore determines the marginal stability curve. We
fix n = 1 for our further stability analysis. For the uniform
(k = 0) state, we are able to get a simple analytic form for the
marginal stability curve, namely,

(κ,0,1) = 1 + C1C2 + K
(
1 + C2

1

)
2

(1 − γ ) = 0, (13)
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FIG. 3. (Color online) (a) Stability diagram of the synchronous state (k = 0, solid curve) and the k = 1 traveling wave (TW) state (dashed
curve) in C1 − K plane with κ = 2 and C2 = 1. The region below the solid curve and marked U is unstable for both the states, region S is stable
for the synchronous state, and B is a bistable region. (b), (c) Stability diagrams similar to (a) but in the phase plane of C1 − C2. K is chosen to
be 0.05 for (b) and 0.40 for (c). The open circle symbols in (b) mark the phase-only chimeras that are found in the weak coupling limit. The
filled circle marks the chimera state shown in Fig. 1(c). In (c) the yellow colored region (upper shaded region) shows the existence domain of
the single-cluster AMC and the green region (lower shaded region in bistable domain B) that of the two-cluster stationary and breather AMCs.
The three filled circles mark the positions of the AMCs displayed in Figs. 1(a), 1(b), and 2.

where γ ≡ Iκ,1 = κ2 coth( κ
2 )

π2+κ2 accounts for the nonlocality in the
system.

The stability condition  > 0 reduces to the well-known
Benjamin-Feir-Newell criterion 1 + C1C2 > 0 for γ → 1,
corresponding to large κ , i.e., local or diffusive coupling and in
the global limit (γ → 0 for small κ), to that reported in earlier
works [49,50]. Figure 3(a) shows the stability diagram for
the uniform state (k = 0) as well as for the k = 1 traveling
wave state in the C1 − K phase space where C2 is fixed
at 1 and κ at 2. The phase-only models are valid near the
dotted line at K = 0. Similarly, Figs. 3(b) and 3(c) show the
stability diagrams in C1 − C2 phase space for two different
values of K but the same value of κ . The location of a few
chimera states are marked by different point symbols (filled
and open circles) on these stability diagrams. The open circles
in Fig. 3(b) represent phase-only chimera states that are found
in the weak coupling limit. The filled circle marks the chimera
state shown in Fig. 1(c). It is seen that the phase-only chimera
states coexist with the stable uniform traveling wave state
(k = 0), as has been noted earlier [2]. The AMCs on the other
hand can exist in both the stable and unstable region of the
k = 0 state. To determine the existence domain of the AMCs
we have carried out a systematic and extensive numerical
exploration in the C1 − C2 phase space. Our results are shown
in Fig. 3(c), where the existence domains are marked in color.
Single-cluster AMCs are found in the region marked yellow
(upper shaded region) and the two-cluster and breather AMCs
exist in the region marked in green (lower shaded region in
bistable domain B). These domains thus mark a new dynamical

region for the NLCGLE, representing an additional collective
excitation state of the system.

In conclusion, we have studied the NLCGLE system in the
strong coupling limit and found a new class of chimera states
where the incoherent regions display significant amplitude
fluctuations. These amplitude-mediated chimeras can be of
the stationary kind (with a single- or two-cluster configuration
of coherent regions) or have an oscillatory nature. Our detailed
numerical investigation has also marked out the existence
regions of these hybrid states in the reference frame of
the stability diagram of the uniform state and the k = 1
traveling wave state of the NLCGLE. These states not only
complement the previously found phase-only chimera states
but also extend the applicability domain of such hybrid
states to physical systems that are better represented by
full-blown amplitude equations such as the NLCGLE. Some
systems that come to mind in this context are fluid flow
simulations, where the simultaneous appearance of laminar
and turbulent regions have been observed [39], and neuronal
networks displaying bump states, where a subset of neurons
fire in synchrony while others fire incoherently [51]. The
discovery of these novel states also opens up a number of
interesting future areas of investigation, including a study
of their stability, delineating their linkages to other coherent
solutions of the NLCGLE, such as traveling waves and holes,
and exploring their existence for other forms of the coupling
kernel.

G.C.S. acknowledges the support of MPI-PKS, Dresden,
Germany, where part of the work was carried out.
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