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One cannot hear the density of a drum (and further aspects of isospectrality)
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It is well known that certain pairs of planar domains have the same spectra of the Laplacian operator. We prove
that these domains are still isospectral for a wider class of physical problems, including the cases of heterogeneous
drums and quantum billiards in an external field. In particular we show that the isospectrality is preserved when
the density or the potential is symmetric under reflections along the folding lines of the domain. These results
are also confirmed numerically using the finite-difference method: We find that the pairs of numerical matrices
obtained in the discretization are exactly isospectral up to machine precision.
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I. INTRODUCTION

In an important and influential paper, Kac proposed an
interesting problem, whether one can hear the shape of a
drum [1]. From a mathematical point of view, the spectrum
of a drum corresponds to the set of eigenvalues of the negative
Laplacian on a given planar domain, where the solutions vanish
at the border (Dirichlet boundary conditions). Therefore, Kac’s
question can be rephrased as whether there are nonisometric
planar domains where the Laplacian has the same spectrum.
A partial answer to the question comes from Weyl’s law:
Although in most cases, one does not know the spectrum
of a given domain exactly, the asymptotic behavior of the
eigenvalues is related to the geometrical properties of the
domain (area, perimeter, etc.). As a result, it is possible to
distinguish drums with different area and perimeter just by
hearing their sound. This result, however, does not exclude the
existence of nonisometric isospectral domains of equal area
and perimeter.

More than 25 years after the publication of Ref. [1], Gordon
et al. [2,3] found an example of a pair of nonisometric planar
domains with the same Laplace spectrum (see Fig. 1) using a
theorem by Sunada [4]. Bérard has given a simple proof of the
isospectrality constructing a map that takes an eigenfunction
in one domain and maps it onto an eigenfunction of the second
domain [5,6]. Buser et al. [7] have used this transplantation
approach to obtain a large number of isospectral planar
domains, while Chapman has visualized this result in terms of
paper folding [8]. A discussion of the transplantation method
is also found in [9]. Isospectral domains with a fractal border
have been studied by Sleeman and Hua [10]. The isospectrality
of these domains was later verified both numerically [11,12]
and experimentally using microwave cavities [13–15].

More recently, isospectral electronic nanostructures of
shapes similar to those of Fig. 1 have been built by Moon
et al. [16]. The extra degree of freedom provided by the
isospectrality has been used to extract the quantum phase of
the electron wave functions. The reader interested in a detailed
account of the present state of the research in this area should
refer to the recent review by Giraud and Thas [17].

In this paper we want to show that it is possible to generalize
the results of Refs. [2,3,5,6] to a wider class of physical
problems, such as the case of heterogeneous drums or of
quantum billiards in an external field. We will prove that,

under certain conditions, the pairs of isospectral domains of
the Laplacian remain isospectral even in these cases. These
results may be summarized saying that one cannot hear the
shape of an inhomogeneous drum nor distinguish two quantum
billiards in an external field uniquely by their spectrum.

A related but different problem has been studied by Gottlieb
[18,19] and by Knowles and McCarthy [20], who have found
examples of materially isospectral congruent membranes, i.e.,
isospectral membranes with the same shape but different
densities. In particular, the authors of [20] have used a
conformal transformation on the domains of Fig. 1, obtaining
a pair of inhomogeneous isospectral membranes of circular
shape. Holmgren et al. [21] have analyzed the problem of
hearing the composition of an inhomogeneous drum using
tools of asymptotic linear algebra on the associated numerical
problem.

II. ISOSPECTRALITY

Bérard has proved that it is possible to map an eigenfunction
of one of the domains of Fig. 1 onto an eigenfunction of the
other domain. Both domains in the figure are made of seven
building blocks, which are triangles of angles (45◦, 45◦, and
90◦). The triangles of the first domain are labeled as shown in
the figure.

Assuming that an eigenfunction of the first domain is
known, the linear combinations shown in the second domain
of Fig. 1 are also solutions of the Laplacian in each triangle.
Here the notation Ā means that the solution in A is reflected
with respect to the dashed line. It is easy to see that the function
obtained with these linear combinations and its gradient are
everywhere continuous inside the domain and that it vanishes
at the border. Therefore, this function is an eigenfunction of
the second domain with the same eigenvalue.

It is important to notice that the building blocks may be
classified into two classes, where the blocks belonging to the
same class are related by an even number of reflections along
the dashed lines: {A,C,E} and {B,D,F,G}. For instance, if
we consider the first domain in the figure and we set the origin
in the upper vertex of the triangle A, we see that a function
f (x,y) defined on A transforms under reflection along the
dashed line into a function f (y,x) on B; a further reflection
along the horizontal dashed line transforms this function into
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FIG. 1. (Color online) Isospectral drums of Gordon et al.

f (y,−x), which can be obtained from the first one with a
simple rotation.

One may generate each of the two isospectral domains
of Fig. 1 starting with a single building block with repeated
reflections along the dashed lines. Notice that the linear
combinations in the second domain of Fig. 1 only mix
functions belonging to the same class (observe that under
reflection a function changes class).

Consider now the eigenvalue equation

Ĥψn = Enψn

over the first domain of Fig. 1. Here Ĥ is a Hermitian operator,
which contains the Laplacian and with an explicit dependence
on the coordinates. We assume that we know an eigenfunction
of Ĥ and we want to see under what conditions the linear
combinations in the second domain of Fig. 1 provide an
eigenfunction of Ĥ .

In the case of a homogeneous drum, the reflection of the
eigenfunction along a dashed line is still an eigenfunction
of the Laplacian since this operator commutes with the
reflections; in the present case, however, because of the explicit
dependence on the coordinates, the operator does not commute
with the reflection and therefore the reflection of the function
on A, Ā, is not in general an eigenfunction of Ĥ . However,
this problem is solved if the operator Ĥ in each building block
is also obtained from the operators in the neighboring blocks
through a reflection along the dashed line separating the two
blocks.

FIG. 2. (Color online) Inhomogeneous isospectral drums. The
regions with larger density are darker.

In this way, the linear combinations appearing in the second
domain Fig. 1 are once again eigenfunctions of the operator.
Since the function obtained with these linear combinations and
its gradient are everywhere continuous in the domain and the
function vanishes on the border, it is an eigenfunction of Ĥ over
the second domain. Therefore, the domains are isospectral.

It is useful to discuss two physical examples of isospectral
problems of this kind. We consider first the case of an
inhomogeneous drum: Its vibrations are described by the
eigensolutions of the Helmholtz equation

(−�)ψn(x,y) = En�(x,y)ψn(x,y), (1)

where �(x,y) > 0 is the density of the membrane and (x,y) ∈
� is a domain in the plane [we also assume Dirichlet boundary
conditions on the border ∂�, ψn(x,y)|∂� = 0]. It is convenient
to convert Eq. (1) to[

1√
�

(−�)
1√
�

]
φn(x,y) = Enφn(x,y), (2)

where Ĥ ≡ 1√
�

(−�) 1√
�

is a Hermitian operator and

φn(x,y) ≡ √
�ψn(x,y) [22] [notice that Eqs. (1) and (2) have

the same spectrum].
According to our previous discussion, the two domains will

be isospectral if the density � in any of the building blocks
that compose the domains is the reflection of the density on
a neighboring block along the dashed line separating the two.
Notice that the two heterogeneous domains have clearly the
same mass (we call �A and �B the domains on the left and the
right of Fig. 2, respectively, and �A and �B their densities)
M = ∫

�A
dx dy �A(x,y) = ∫

�B
dx dy �B(x,y) and therefore

their spectrum has the same asymptotic behavior, provided by
Weyl’s law, En = 4πn/M (n → ∞) [23].1

Figure 2 displays a pair of inhomogeneous isospectral
drums with a piecewise constant density (the lighter and darker
colors in the figures correspond to two different densities
�1 and �2). More elaborate examples, with a continuously
varying density inside a given block, can be easily obtained.
Also, one could consider more general shapes of the domains,
such as those discussed in [7,8,10].

1Observe that Weyl’s law allows one to distinguish between
inhomogeneous drums of different mass just by listening to their
high-frequency sound.
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FIG. 3. (Color online) Isospectral quantum billiards in an electric
field. The arrows indicate the direction of the constant electric field.

As a second example of the isospectral problem we consider
a quantum particle confined in a finite region under the action
of an external force (in the absence of a force, the operator
reduces to the Laplacian, for which the isospectrality has
already been proved). Therefore, we are interested in the
spectrum of the single-particle Hamiltonian Ĥ = [− h̄2

2m
� +

V (x,y)] in each of the two domains of Fig. 1.
In this case the condition of isospectrality requires the

potential V (x,y) in each block to be the reflection of the
potential on a neighboring block, along the dashed line
separating the two. For instance, V (x,y) could be the potential
generated by the interaction of an electron confined in any
of the two domains of Fig. 1 with seven pointlike charges q

located at the center of mass of each building block. In Fig. 3 we
display a simpler example of isospectral quantum billiard: The
vector lines represent an electric field of constant magnitude
E pointing in a given direction. Reversing the sign of E clearly
corresponds to inverting the directions of the vectors in the
figure.

III. NUMERICAL EXPERIMENTS

It was noted by Wu et al. in Ref. [11] that the finite-
difference method provides matrices that are exactly isospec-
tral up to machine precision when applied to the calculation
of the spectrum of the Laplacian over the two domains of
Fig. 1 (clearly, the same grid size is used in both cases).
We have followed the same strategy of Ref. [11] for the
general problems discussed in this paper, working with very
fine grids (the maximum grid that we have generated contains
200 521 points) and using a collocation approach based on tent
functions, which is equivalent to a finite-difference approach.

In all our calculations we have found that the matrices
obtained in the discretization of the problem are always exactly
isospectral, up to machine precision,2 and therefore we will
always report a single numerical value for both domains.
This result provides a numerical confirmation of our previous
results.

2The isospectrality of two domains may not be manifest when the
images under reflection of a grid point in one building block do not
belong to the grid; in this case, the isospectrality is only obtained in
the continuum limit.

TABLE I. Lowest ten eigenvalues of the inhomogeneous drums
of Fig. 2. Here �1 = 1 and �2 = 2.

n E(FD)
n E(ex)

n

1 1.521 89 1.519 92
2 2.634 94 2.630 02
3 3.083 34 3.079 02
4 4.583 12 4.576 97
5 4.838 82 4.831 08
6 6.233 55 6.226 62
7 6.689 75 6.677 69
8 7.718 14 7.701 22
9 7.925 51 7.915 04
10 8.669 13 8.657 50

The first example that we have studied is the inhomoge-
neous drum of Fig. 2 with densities �1 = 1 (lighter region)
and �2 = 2 (darker region). In Table I we report the lowest
ten eigenvalues of these domains (the building blocks are
triangles with angles 45◦, 45◦, and 90◦ and shorter side of
length 	 = 2): The second column contains the results obtained
with finite difference with a grid containing 200 521 points; the
third column contains the results obtained using Richardson
extrapolation on a sequence of approximations obtained using
grids with spacing h = 1/4k, with k = 19, . . . ,30. For all
the cases examined this sequence has a monotonic behavior
with decreasing h and therefore the extrapolation improves
significantly the accuracy of the results. In the case of a
homogeneous membrane, where the very precise results of
Ref. [12] are available, this procedure applied to the sequence
of eigenvalues obtained with the same grids used here allows
one to obtain the lowest eigenvalues correct to about four
decimal places. We expect roughly the same accuracy here.

The second example that we consider is plotted in Fig. 3:
In each building block an electric field of constant magnitude
points in a given direction. Our numerical results have been
obtained by setting h̄2/2m = 1 and e = 1 and considering
an electric field E = 5. The wave functions for the ground
state of this problem in the two domains are plotted in Fig. 4.
The corresponding eigenvalue obtained using the largest grid
(200 521 points) is E

(FD)
1 = −1.213 02; the value obtained by

extrapolation (see the discussion for the previous example) is
E

(ex)
1 = −1.213 11.

FIG. 4. (Color online) Wave functions of the ground state of the
isospectral Hamiltonians corresponding to Fig. 3 with E = 5.
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IV. CONCLUSION

We have generalized the results of Gordon et al. [2]
to a larger class of physical problems, which include the
case of inhomogeneous drums or quantum billiards in an
external field. We have proved that the domains found in
Ref. [2] are still isospectral when the density or the potential
in each building block is obtained from the reflection of
the analogous quantities in the neighboring blocks, along
the common border separating the two. In particular our
results signal the possibility of building isospectral pairs of

ray-splitting billiards, i.e., cavities with abrupt changes in the
properties of the medium filling it (see the work by Couchman
et al. [24] and the works by Vaa et al. [25,26], contain-
ing experimental verification of the theoretical semiclassical
formulas).
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