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In the present work, we consider the problem of a system of few vortices N < 5 as it emerges from its
experimental realization in the field of atomic Bose-Einstein condensates. Starting from the corresponding
equations of motion for an axially symmetric trapped condensate, we use a two-pronged approach in order
to reveal the configuration space of the system’s preferred dynamical states. We use a Monte Carlo method
parametrizing the vortex particles by means of hyperspherical coordinates and identifying the minimal energy
ground states thereof for N = 2, ...,5 and different vortex particle angular momenta. We then complement this
picture with a dynamical system analysis of the possible rigidly rotating states. The latter reveals a supercritical and
subcritical pitchfork, as well as saddle-center bifurcations that arise, exposing the full wealth of the problem even
for such low-dimensional cases. By corroborating the results of the two methods, it becomes fairly transparent
which branch the Monte Carlo approach selects for different values of the angular momentum that is used as a

bifurcation parameter.
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I. INTRODUCTION

Over the past fifteen years, there has been an intense interest
in the dynamics of nonlinear waves and coherent structures that
arise in the atomic physics realm of Bose-Einstein condensates
(BECs) [1-3]. A large component, adding to the appeal of
such states has been the apparent simplicity and controllability
of this setting, which at the mean field level can be well
approximated by the so-called Gross-Pitaevskii equation,
where solitons and vortices have been widely explored [3].
Among the relevant coherent structures, vortices have arguably
held a prominent position, perhaps in part due to the tantalizing
analogies to earlier studies on their properties in fluids;
relevant research activity focusing on vortices has now been
summarized in multiple works [4-9].

Some of the early interest in vortex structures has been
centered around their experimental realization in various
distinct ways. Additionally, vortices of higher topological
charge were produced and their decay was explored [10].
Finally, large-scale lattices featuring triangular symmetry were
demonstrated as the emerging ground state of the system
under fast rotation [11]. After what could be considered a
partial experimental research hiatus in the middle of the past
decade, a series of recently devised techniques shifted the
interests within the paradigm of vortices in BECs and gave
rise to new possibilities accessible both in their creation and
in their monitoring. In particular, the possibility to create
the vortices by quenching through the condensation quantum
phase transition [12] was coupled to minimally destructive
imaging techniques [13] and enabled the visualization of
single-vortex precessions but also multivortex interactions.
The latter included the case of the countercirculating vortex
dipole [13-15], but also more recently that of corotating
sets of N =2,...,5 vortices [16]. The case of N =3
was also explored through different experimental techniques,
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involving the excitation of a quadrupolar mode in Ref. [17].
While such few-vortex clusters were created early on in
the experimental history of atomic BECs [18], and were
intensely studied theoretically [19-28], these recent works
have shed new light onto relevant static and dynamic pos-
sibilities that has in turn motivated further theoretical analysis
[29-32].

Our principal aim in the present work is to revisit and
expand upon the recent experimental, computational, and
theoretical discussion of Ref. [16]. Given that the latter work
offers a well-established framework of ordinary differential
equations for tracking the vortex motion, here we wish to
advance to the extent possible our state of understanding of
such low-dimensional reductions of the system by employing
a variety of computational and theoretical tools. In particular,
on the computational side, we interweave two different ap-
proaches. On the one hand, we use a Monte Carlo (MC) -based
technique involving a twist of a reparametrization method
for the vortex particles based on hyperspherical coordinates.
This approach will prove extremely efficient in unveiling
the ground state of the system. On the other hand, we use
the computational software package AUTO [33] in order to
provide a bifurcation picture for the cases of N = 2, 3, and 4.
The combination of the two methods sheds further light on
the parameter values (in this case, the angular momentum as
discussed below) for which the MC method jumps from one
type of solution to the next. We corroborate these results by
systematic analytical results on the corotating vortex states,
whereby we explore not only the stability of the most standard
polygonal state [19], but also by-products of the bifurcations
thereof. In the case of N = 2, these are asymmetrically located
antidiametric vortices; for N = 3, they form isosceles as
opposed to equilateral triangles, for N = 4, rhombi emerge
instead of squares, and so on.
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Our presentation is structured as follows. In Sec. II we
present the basic equations associated with the vortex dynam-
ics and their mathematical framework (conserved quantities,
etc.). In Sec. III we analyze the Monte Carlo method used to
address the ground-state solutions of this system of equations.
In Sec. IV we present our numerical and analytical results,
separating the cases of N =2, 3, and 4 and even briefly
touching upon N = 5. Finally, in Sec. V we summarize our
findings and present our conclusions as well as a number of
directions of interest for future studies.

II. EQUATIONS OF MOTION AND CONSERVATION LAWS

For the recent experimental results of Ref. [16], it was
argued by a combination of numerical and theoretical results
(for related recent analyses see also the works of Refs. [34,35])
that the dynamics for N singled-charged BEC vortices trapped
in an axially symmetric magnetic trap can be described by the
following system of differential equations:

i‘iZ—CZS

i#] P

|: 5 cos(6; — 9,-):| , (D
i i) pz] Ti pij

where §; is the charge of vortex i and its position, rescaled
by the Thomas-Fermi (TF) cloud radius R, is given in polar
coordinates by (r;,6;), p;; is the distance between vortices
i and j, and ¢ = %(wvor/wgr) is an adimensional parameter
accounting for the ratio of the rotation frequency of two same-
charge vortices (wyort/d 2 when the vortices are separated by a
distance d again measured in units of Rp) and the rotational
precession induced by the magnetic trap. The precession of
a single vortex about the trap center can be approximated by
a)pr = cugr /(1 — r?), where the frequency at the trap center is

sm(@ 0;),

=

=1In(A%)/R3g, p is the chemical potential, and A is a
numerlcal constant [5,13,15,31].

In the remainder of our work we will consider small clusters
of vortices N = 1, ...,5 with the same charge. Without loss
of generality we consider S; =1 since the case §; = —1
corresponds to exactly the same dynamics if + — —¢. It is
straightforward to prove that the system of ordinary differential
equations (ODEs) (1) possesses two conserved quantities
corresponding to the angular momentum L and Hamiltonian
H. The angular momentum assumes the form

N
L=Yr )

i=1

and the Hamiltonian is given by
|
=3 Z In (1 — rlz)
_ZZZln[riZ—i—r?

i=1 j#i
It is worth mentioning that it is possible to reduce the number

of degrees of freedom of this Hamiltonian system to 2N — 2,
by using the conservation of angular momentum (2) and

—2rirjcos6; —6)]. (3
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introducing it as a parameter. Then, by defining the relative
angles 6;; = 60; — 6; we effectively eliminate the polar angle
of, say, the first vortex by placing our dynamics in a frame
rotating with the first vortex.

From a mathematical viewpoint the parameter ¢ might
be chosen arbitrarily. However, all throughout our study we
will use the nominal value ¢ = 0.1 that has been shown to
accurately describe the experimental values for the quasi-two-
dimensional case of rubidium atoms under the experimental
trapping conditions of, e.g., Ref. [16]. It was also argued
therein that variations of the number of atoms of the condensate
system would only have a logarithmically weak effect on c,
hence preserving this constant value of ¢ provides a reasonable
approximation. For this fixed value of ¢ we will vary the
angular momentum between 0 and 1, i.e., we will use the
angular momentum as our bifurcation parameter.

At this point we should mention that it is straightforward to
show that the first of Egs. (1) can be written in vector form as
follows:

. - r ~
it =—c |7 x —12 -é;, “4)

where ¢, is the unit vector along the z direction. Equation (4)
has a straightforward geometric interpretation: Each r? is
conserved if the cross product on the right-hand side of Eq. (4)
vanishes; this is a necessary (but not sufficient) condition for
the existence of a fixed point. There are two obvious cases for
this cross product to become zero: (i) The 7; are all collinear
and (ii) the 7; define a regular polygon of order N inscribed
in a circle of radius «/L/N. Since the first case does not
satisfy the second one of Egs. (1) for general N, we restrict
our considerations to the second, more interesting candidate,
namely, the polygonal case. To establish its relevance, let the
center of the polygon be at the origin of the axes in the (x,y)
plane and the considered polygon edge i lie at the positive
x axis. If N is odd, all terms in the sum )~ 7;/r7; can be
grouped into doublets (axially symmetric with respect to the x
axis) such that their sum forms a vector parallel (or antiparallel)
to 7;, thus leading to the vanishing of the associated cross
product. If N is even, the grouping in doublets is possible for
all j except one that is antiparallel to 7;. Thus, in either case
(N odd or even) the cross product vanishes and therefore the
r? are conserved in this case.

Additionally, for small enough N, e.g., for N =2 or 3,
if the vanishing of the cross product holds then the fixed-
point equations for the polar angles 6; are fulfilled as well. In
fact, in such cases, one can obtain analytical expressions for
the fixed-point configurations. However, we should emphasize
that these considerations refer only to the existence but not to
the stability of the relevant symmetric configurations (e.g.,
equilateral or isosceles triangles for N = 3). For N > 3 the
equations resulting from the vanishing of the cross product are
fewer in number than the ones necessary to uniquely determine
the fixed-point configurations: this is due to the fact that there
exist N equations for 7; = 0and N(N — 1)/2 for §; — 0 =0,
hence it is not straightforward to generalize this 1ntr1gu1ng
geometric interpretation beyond N = 3.

Our deterministic computational approach in seeking
rigidly rotating states of the vortex particles (effectively steady
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states in their relative angle variables) will be based on the
well-established continuation and bifurcation software AUTO
[33]. We do not discuss AUTO further here, but direct the
interested reader to the relevant resources mentioned above.
Instead, we now provide more details on our Monte Carlo
approach to identifying the system’s ground state as a function
of L.

III. MONTE CARLO METHOD

We employ the Metropolis Monte Carlo algorithm for
obtaining the minimum-energy-state configurations of the
vortices {r;,0;} of the Hamiltonian (3) for different numbers of
vortices N. In order to exploit the conservation of the angular
momentum, we introduce it as a parameter L in the simulations
and generate the r; through hyperspherical coordinates, thus
enforcing the constraint L = Z,N=1 r?. Due to the singularity of
the Hamiltonian (3) as r; — 1, for our purposes we have had to
restrict the values of L in the interval [0, 1]. It should be noted
here that the idea of using MC-type approaches for particles
interacting with logarithmic potentials (and also sustaining an
external confinement) stemmed from the pioneering study of
Ref. [36], which in turn was motivated by experiments (and
phase transitions observed) on systems of confined charged
metallic balls [37].

In particular, we begin with setting four different ini-
tial configurations: the symmetric configuration, i.e., {r; =
L/N,0; =2(i — 1) /N} and three random ones. We then
implement the Metropolis algorithm at an (artificial) ultralow
temperature kT = 107, for each initial condition, until we
reach equilibrium, a fact that is checked by the convergence
of the energy time series for the different random walks. Each
Monte Carlo step consists of the following procedural steps.

(i) We choose new configurations {#;,6;} such that they
satisfy the constraints L = Z,N: 72 and 0 < 7 < 1. A useful
parametrization of the first condition in terms of the hyper-
spherical coordinates is defined through the relations

7= \/Zcosqbl,
7 = VL sin ¢1 cos ¢,
7 = v/L sin ¢, sin ¢, cos ¢,

: (5)
Fnor = VL sin ¢1sing, - --singy_rcospy_1,
N = V'L sin ¢rsing, -+ -singy_psingy_;.

Note that we arrive at N — 1 independent angles and thus 7y
is completely determined by the knowledge of the other 7.
In the following we denote the prefactors of cos ¢; by «;, i.e.,
7 = a; cos ¢;. We have to fulfill also the second constraint. Itis
easily shown that the requirement 7 > 0 is fulfilled, without
loss of generality, by constraining the angles ¢; to the first
quadrant, thatis, 0 < ¢; < % In order to satisfy the condition
7; < 1 we need

1
a;jcosg; <1 =cosg; < —.
i
However, since the 7; are determined recursively we also need
to ensure that with a random choice of 7; all the 7 can be
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less than 1. This is not trivial especially for large values of L.
Beginning with 7; we have that

N
Y R<SN-1=L-#<N-1
i=2
=/ >al —(N-1).
Similarly, for 7,

Y RKN-2=L-F-7

i=

N

N
N -2

3

= Lsin®¢ — 7 < N —2

=7 >a5— (N -2).

Recursively, this leads to

2 .

[a? — (N —

P> al — (N —i)=cose; > Lzl).
Q;

Gathering all these conditions together we are led to the
requirement
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FIG. 1. (Color online) Bifurcation scenario for N =2 same-
charge vortices and corresponding MC simulations. The bifurcation
diagram, as a function of the square root of the angular momentum
of the system (+/L) is increased, obtained from the corresponding
ODEs (1) is depicted by the solid lines with blue denoting a stable
branch and red an unstable branch. The MC simulation results are
depicted by the small magenta circles. The critical point beyond
which (through a supercritical pitchfork bifurcation) the asymmetric
configurations arise (and become a ground state of the system) is
indicated by the vertical dashed line. Note how the MC simulations
accurately follow the stable branches of the bifurcation diagram.
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\/ { af—(N—i)}
M; = [max {0, —5——
o;

1
m; = min{l,—}.
Q;
We thus generate the {7;} in ascending order, beginning with 7y,

by choosing ¢; randomly from a uniform distribution subject
to the condition

cos '(m;) < ¢ < cos™'(M)). (6)

where

and

Concerning the angles &;, for an index j we choose 6;
randomly from a uniform distribution 0 < ] ; < 2m. Forall the
other angles the old values are kept, namely, §; = 6; fori # j.

(i1) We then calculate the difference AE = Epew — Eold,
where Eqq = H({r;,6;}) is the energy of the old configuration
and Enew = H({7;,6;)) is the energy of the new one.

(iii) If AE < 0 the new configuration is accepted, i.e., r; =
7, 0; = 6;. Otherwise, we accept the new configuration with a
probability P given by the Boltzmann factor P = exp(—BE),
where B = 1/kT.

After reaching equilibrium, in our case typically after
5 x 10 MC steps, we have practically the configurations
for T ~ 0, i.e., the minimum-energy configurations sought.
In order to optimize our results in this step we perform a
final MC simulation at 7 = 0. This deterministic local search
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reduces some of the fluctuations and allows us to obtain the
minimum configuration with a desirable accuracy, which in
our simulations leads to an error of order 1074,

We remark that the MC algorithm always converges to a
minimum, but it does not distinguish between local and global
ones. In order to handle this problem usually a large number of
initial conditions, or the use of more sophisticated techniques
(such as simulated annealing), are required. However, for the
cases examined here with a small number of particles, four
initial conditions are proven to be sufficient for identifying
the global minimum. This is also justified by the coincidence
of the MC results with those obtained by the solutions of the
corresponding ODEs presented in the following section.

IV. RESULTS

We now present our results in terms of the (numeri-
cally) exact bifurcation diagrams of the coupled systems of
ODE:s (1) and the corresponding approximate (ground-state)
phase diagrams obtained by the MC methodology described
in the previous section. We will perform this comparison
for N = 2,3, and 4 vortices and present the MC results for
N =5 vortices. In all of these cases, we complement our
computations with analytical results, wherever possible.

A. The N = 2 vortex case

We start by examining for completeness (and in order to
set the stage for follow-up observations) the case of N =2

i <

™

0.4f ' ' / I—
0.3} M

0.715 0.72 0.725 0.73 0.735 0.74 0.745 0.75
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|

FIG. 2. (Color online) Bifurcation scenario for N = 3 same-charge vortices and corresponding MC simulations. Same notation as in
Fig. 1. The left panels correspond to the entire domain 0 < L < 1 while the right panels depict a zoomed in version near the bifurcation
region. The top panels show the bifurcation diagrams in a planar view, namely, r; vs +/L. The bottom panels depict the bifurcation diagram
in the three-dimensional space (+/L,r;,r,), where the C3 symmetry of the solution is clearly visible. The thin dashed vertical line corresponds
to the symmetry-breaking bifurcation where the symmetric (equilateral triangle) solution loses its stability. The thin solid vertical line depicts
the location of the saddle-center bifurcation of collisions between asymmetric (isosceles triangle) solutions. The thin dash-dotted vertical line
corresponds to the location where the MC simulation switches branches (i.e., location where the energy minimum configuration switches from

an equilateral to an isosceles one).
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that was previously considered in some detail in Ref. [16]. As
discussed in that work, for values of the angular momentum
L <L®=2/c/(J/c+?2), ie., for radial displacements of
the vortices r < r'? = //c/(y/c + 2), the symmetric rigidly
rotating vortex state, namely, two vortices at equal distances
from the center of the trap, is stable. However, for radii (or
angular momenta) above this critical point, the symmetric
state becomes structurally unstable and gives rise, through a
supercritical (for the range of ¢ of relevance to the experiment)
pitchfork bifurcation (i.e., a spontaneous symmetry breaking),
to the emergence of asymmetric, yet still antidiametric, rigidly
rotating states. In the latter, one of the vortices is always
further away from the origin, say, r;, while the other is closer,
say, rp (ry < ry), such that the angular momentum constraint
L = r} + r3 is satisfied and also

—rira(ri + 1) +c(1 =) (1 —r3) = 0. (7)

This analytical expression identified in Ref. [16] by means
of a direct solution of the equations of motion, along
with the angular momentum constraint and the neces-
sity that 8, = (i.e., antidiametric vortices), character-
izes the class of asymmetric solutions in the case of
N =2.

Our Monte Carlo analysis does an excellent work on
capturing the relevant minimizers of the energy. As it is clear
from the (magenta) data points of Fig. 1, up to the critical
point L? (see the vertical dashed line), the Monte Carlo
computation follows the symmetric branch (see the blue line
for L < L®), while past the critical point, it follows the
newly emergent and stable (see the blue curves for L > L)
asymmetric branch arising from the pitchfork bifurcation. This
case serves as a useful benchmark between the analysis and the
numerical MC computation and as a prototypical example of
the phenomenology that will follow, involving the spontaneous
emergence of asymmetric rigidly rotating states and which will
be progressively more complex as the number of vortices N
increases.

B. The N = 3 vortex case

For N = 3, the symmetric rigidly rotating solution nat-
urally persists (in fact, it persists for all the N that we
have considered) with the relevant intervortex angle being
8;j =2m/N =2m/3 in this case. The angular momentum
constraint for this equilateral solution reads L = Nr? = 3r2.
The stability of this solution can be also identified analytically.
In particular, there is an eigenfrequency associated with it
assuming the analytical form

, 2c
AT a— ®

The zero crossing of this squared eigenfrequency atr = r(}) =

V. /c/(Jc + +/2) = 0.4275 yields the destabilization point

of the equilateral triangle. The corresponding critical angular

momentum satisfies VL), = +/3r$) = 0.7404. This critical
threshold is depicted by the thin vertical dashed line in Fig. 2
(and also Fig. 3).

The N = 3 case is richer than N = 2. In particular, in
addition to the symmetry-breaking pitchfork bifurcation that
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FIG. 3. (Color online) Bifurcation scenario for the relative angles
between vortices 81, as a function of the square root of the angular
momentum for N = 3 vortices. The data and notation are the same
as in Fig. 2. The top panel is the full view while the bottom panel
depicts a zoomed in version around the bifurcation region.

destabilizes the symmetric (equilateral triangle) solutions,
which is equivalent to the one we described for the N = 2
case, there is another bifurcation. This secondary bifurcation
happens at the critical point Lg)z where new solutions emerge
(see the threshold depicted by’the thin solid vertical line in
Fig. 2). In fact, this is a pair of solutions with a trilateral
symmetry C3 corresponding to the three possible isosceles
triangles of vortices that can emerge as rigidly rotating
solutions in the system. For these solutions, one of the vortices
is at, say, a longer distance from the origin, r;, while the
other two are at, say, a shorter distance r,. Then the angular
momentum constraintreads L = rl2 + 2r22, while the following
conditions completely specify the relevant solution in an
analytical form:

d++d*+38

O =831 = )
823 =27 — 2512, (9)
. 3rf‘r22 + 3r12r§ — ar13r23

T (=)= (-3 —arn)

where cosd = (r] +r3)/2r1r2 and a® = r} + 34rr3 + 3.
While we have attempted to identify this secondary critical
point in a tractable analytical form, it has not been possible
given the complexity of the above solution. Nevertheless,
we have been able to identify numerically that the relevant
bifurcation that leads to the emergence of the isosceles
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triangles is a saddle-center one. Namely, each of the three

(rotated by 120°) triangles comes with an unstable partner.

This saddle-center bifurcation arises numerically at LY =

cr,2 —
0.527 = \/LS)2 = 0.726, as illustrated by the thin solid

vertical line in Fig. 2. It is in fact very close to this point
that the Monte Carlo computation will jump at this newly
arising (stable such) branch. That is to say, almost as soon
as the branch is born, it becomes the global minimum of the
energy surface. Remarkably, it is the unstable partner of these
isosceles saddle-center pairs that collides with the symmetric

equilateral solution at LY, = 0.548 = VL), = 0.7404 (see
the threshold depicted by a thin dashed vertical line in
Fig. 2). Our dynamical and eigenvalue computations of Fig. 2
capture this transition, but the Monte Carlo method is entirely
insensitive to this step. This in turn suggests not only the
relevance of the Monte Carlo method as a convenient tool
for identifying the global energy minimum of the system
but also the usefulness of the full dynamical system analysis
provided herein as a means of identifying metastable states and
transitions between them. The combination of the two unveils
some of the complexities of the full energy surface. While
Fig. 2 focuses on the dependence of the radii of the particles
as a function of the angular momentum L, Fig. 3 shows the
corresponding relative angles between vortices (;;). These
deviate from their equilateral value of 27/3 in an asymmetric
manner, revealing the isosceles character of the triangle given
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that out of the three equal angles, only two remain equal while
the third acquires a different value.

C. The N = 4 vortex case

We now turn to the more complex case of N = 4. Here too
the symmetric solution exists with L = 4r? and §;; = /2.
However, the linearization around it now features two internal
modes. The first of them has the frequency

Wl — 2c? B 4c (10)
L= 4 (1 - r2)2

and remarkably crosses zero (and thus marks the critical point
for the destabilization of the configuration) at the same point as

the N = 3 case, i.e, atr = r¥ = v /(e + /2), which,

cr,1 =
however, now corresponds to the higher angular momentum

LY, = 4./c/(/c + +/2). The second of these critical points

T,
corresponds to the eigenfrequency

Wl — 9¢? 3
T4t (-

(an

which vanishes at 72 = (rc(fy)z)2 = /3¢/(~/3c + 2); this second
critical point does not appear to be of particular interest to our
study here.

In addition to the square configuration, we have again

sought the possibility of unveiling analytically reduced

0.89 0.2

FIG. 4. (Color online) Bifurcation scenario and corresponding MC simulations showing the complete dynamical picture associated with
the bifurcations in the case of N = 4. Similarly to the N = 3 case, the top panels show a planar representation of the solutions using only r;
as a function of «/Z, while the bottom panels relay a three-dimensional variant thereof with r,, as a function of r; and /L. The blue lines are
stable branches, the red lines represent the unstable branches, and the Monte Carlo data are overlayed using small magenta circles. This conveys
not only how new branches (such as the rhombus and general quadrilateral) emerge through suitable (supercritical pitchfork or saddle-center,
respectively) bifurcations, but also when they become the global energy minimizers and hence are followed by the Monte Carlo simulation.
Specifically, the thin dashed vertical line corresponds to the symmetry-breaking bifurcation where the symmetric (square) configuration loses
its stability towards the newly created rhombus configuration, while the thin dash-dotted vertical line corresponds to the location where the MC
simulation switches branches (i.e., transitions from the rhombic configuration to a more general quadrilateral without any apparent symmetry).
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symmetry solutions. An example that we have been able to
identify in this case is a rhombic configuration with r; = r3
and r, =r4 in which case still all the §;; = /2. For this
configuration we have been able to find that it consists of
two longer and two shorter segments r; and r, such that
L= 2(}"12 + r22) and r, = \/c(l — 1’12)/[21"12 + C(rl2 —D]. Itis
then straightforward to observe that this configuration collides
with the square branch (i.e.,r, = ry) exactly atr = rif)l , which
is precisely where the square configuration loses its’stability
through the zero crossing of the frequency ;. From the above
and since this solution exists only above this critical point,
it can be inferred that the primary instability of the square
configuration leads to a supercritical pitchfork bifurcation that
in turn results in the emergence of the rhombic state. This
is confirmed in Fig. 4, where the location of this primary
bifurcation indeed occurs at réf)l (see the dashed vertical line).

Numerically, we indeed observe this destabilization and the
corresponding symmetry breaking bifurcation that is depicted
in Fig. 4. In particular, a destabilization event for ¢ = 0.1
clearly arises at /L = 0.862 in the Monte Carlo method
(see the vertical dash-dotted line), while the corresponding
analytical prediction is at (L'}')//> = 0.855 (see the vertical
dashed line). It is particularly interesting that close inspection
of Fig. 4 reveals for a few points between 0.855 and 0.862 the
transition from the square to the rhombi (although the growth
rate of the associated instability in this interval is apparently
so weak that the MC method may still converge to the squares
for some values of /L within this interval). In contrast, we
also depict the relevant bifurcation for the relative angles §;;
in Fig. 5. Remarkably, but also naturally, between 0.855 and
0.862 and while the radii reveal (at least partially) the transition
from the squares to the rhombi, §;, remains invariant at 7 /2,
as it is shared by both configurations. Hence it is clear that
one cannot use solely the radii or solely the relative angles,
but a careful inspection of both unveils the full picture of
configurational transitions. For slightly higher values of the
angular momentum, i.e., for VL > 0.8626, the Monte Carlo
method jumps to another configuration, which in this case does
not appear to have any definite symmetry. While the relative
angles §;;, as discussed above, were unable to “discern” the
first transition (the supercritical pitchfork from the square to
the rhombus), nevertheless, they clearly distinguish the second
transition, whereafter none of the angles is equal to 7 /2.

It should be clear at this point that, as in the N = 3 case,
in the N = 4 examples as well, the dynamical picture offers
a particularly useful complementing view that corroborates
in an insightful manner the results of the Monte Carlo
approach. In particular, we observe clearly the transition
from the square to the rhombus. The latter state, however,
is apparently the ground state of the N =4 system only
for a small interval of angular momenta. This is because
already for /L = 0.859 a pair of asymmetric (so-called
irregular) quadrilaterals of vortices arises with unequal sides,
yet rigidly rotating around the center of the trap. Remarkably,
one of the highly asymmetric configurations that arise in
this saddle-center bifurcation is dynamically stable and it is
that one that becomes the global energy minimum beyond
the second critical point, namely, ~/L = 0.8626. For these
quadrilaterals it can be seen that approximately r; = r3, r; is
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FIG. 5. (Color online) Bifurcation scenario for the relative angles
between vortices 61, as a function of the square root of the angular
momentum for N = 4 vortices. The data and notation are the same
as in Fig. 4. The top panel is the full view, while the bottom panel
depicts a zoomed in version around the bifurcation region. Notice that
between the transition from the square to the rhombus (dashed vertical
line) and that from the rhombus to the general quadrilateral (dash-
dotted vertical line), no modification is noticed for the first bifurcation
by looking solely at the angles, as the rhombic configuration maintains
812 =7 / 2.

close to | and r3 but clearly not equal, and r4 is much larger
(rotated versions of such quadrilaterals also obviously exist
from symmetry). Interestingly, the dynamical picture reveals
one more feature, namely, that such quadrilaterals collide via
a subcritical pitchfork with the rhombic configuration for
L'/ = 0.87. That is, the full dynamics and stability picture
is far more complicated, involving a series of bifurcations, a
supercritical and a subcritical pitchfork, as well as a saddle-
center bifurcation, yet again the combination of the Monte
Carlo method and the bifurcation analysis yields a complete
understanding of the system’s ground-state features.

Finally, in order to more precisely illustrate the feature that
the MC simulation is indeed converging to the stable state
with minimum energy, we have followed the Hamiltonian (3)
as the angular momentum is varied. The results for N = 2, 3,
and 4 are depicted in Fig. 6. The left column on the panels
corresponds to the total energy as given by Eq. (3), while
the right panels depict zoomed in versions for the energy
difference AH between the configuration at hand and the
symmetric state. Namely, we define AH = H — H,, where
H is computed using Eq. (3) for each configuration and Hy =
H(ri =r*,8; ;11 = &%), where (r*,6") correspond to the radius
and relative angle for a symmetric polygonal configuration.
Namely, for N vortices these correspond to r* = /L/N and
6* = 2m/N. Inthe case of N = 2, the picture is very clear: As
soon as the asymmetric antidiametric configuration emerges,
the MC method converges to it. For N = 3, the emergence
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FIG. 6. (Color online) Energy corresponding to all the bifurcation branches presented in the previous plots together with the energy
computed from the MC simulations. As before, the bifurcation branches are depicted by a blue (red) line for stable (unstable) branches and
the MC simulations are depicted by the magenta circles. The first, second, and third rows of panels correspond, respectively, to the N = 2, 3,
and 4 cases. The left panels present the energy as computed from Eq. (3) over the entire range 0 < L < 1, while the right panels depict the
corresponding energy difference A H between each configuration and the corresponding symmetric configuration for each value of L (see the

text for more details).

of the asymmetric isosceles states occurs well before the
destabilization of the equilateral corotating triangle branch.
Nevertheless, very shortly after the saddle-center bifurcation
of this new branch (see the vertical solid line with the vertical
dash-dotted line in the middle right panel of Fig. 6), the MC
jumps to the newly emergent asymmetric branch as soon as
the latter becomes energetically favorable, yet well before the
instability of the equilateral branch (occurring at the location of
the vertical dashed line). The case of N = 4 is more complex.
Here we can see that once the square configuration destabilizes
towards the rhombic one (the vertical dashed line), the MC
follows the rhombi until very shortly after the emergence of
the irregular quadrilateral branch; the latter is generated by the
saddle-center bifurcation and acquires lower energy than the
rhombi (the vertical dash-dotted line). Immediately thereafter,
the MC approach traces this and jumps to it. It is clear from
the results presented in Fig. 6 that the MC simulations indeed

converge, for a given L, to the stable state that has the lowest
energy among the different vortex configurations.

D. The N = 5 vortex case

For the case of N =5, the relevant calculations, both
analytical and numerical, become, arguably, very complex.
Nevertheless, we have still been able to analyze the stability
of the pentagon configuration with r =r;, L =5r2, and
d8;j = 2m /5. Such configurations will be stable, remarkably,
until the same principal critical point as were N = 3 and 4
polygons, namely, r2 = (r0))? = /c/(v/¢ + +/2), although
of course this corresponds to a higher angular momentum

for this case, namely, Lg)l = 5(réf)1)2. In contrast, we have
also been able to identify a second critical point that arises
at r2 = r%)? = /c/(\Je + 1), i.e., at a higher radius. This

cr,2
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FIG. 7. (Color online) Monte Carlo results for N = 5 vortices.
The top and bottom panels depict, respectively, the MC results for
the radii 7; and the relative angles §;;. Two transitions are observed.
The first transition at L'/?> = 0.9467 (location depicted by the vertical
dashed line) indicates where the configuration with a single vortex
at the center turns into the ground state of the system. The second
transition observed at L'/?> = 0.9615 (location depicted by the vertical
dash-dotted line) indicates where the asymmetric configuration (a
tight cluster of four vortices plus a single vortex further away from the
center) turns into the ground state of the system. The solid (blue) dots
along the different branches indicate the locations of the displayed
vortex configurations in the top panel.

first critical point occurs analytically at /L = 0.956, while the
Monte Carlo method numerically appears to deviate from the
pentagon configuration for the earlier value of v/L = 0.9467.
However, as is clear from the Monte Carlo results of Fig. 7,
the bifurcation occurring at this point cannot be a supercritical
pitchfork one, given the sizable jump of the values of the
r; occurring at this point. Under close inspection, this first
transition captured by the MC simulations corresponds to a
value for the angular momentum where another, independent
configuration branch becomes the ground state of the system.
In fact, apparently, for values of the angular momentum in
0.9467 < L'? < 0.9615, the configuration bearing a single
vortex at the center surrounded by a square of vortices has less
energy than the pentagon. For larger values of the angular mo-
mentum L'/? > 0.9615, the asymmetric configuration bearing
atight cluster of four vortices near the origin and a single vortex
further away from the center corresponds to the lowest-energy
configuration of the system. Identifying the conditions for the
existence of windows where the configuration with a single
vortex at the center with a polygon of N — 1 vortices around
it is more energetically favorable than a polygon of N vortices
remains an interesting open problem for future work.
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V. CONCLUSION AND FUTURE WORK

In the present work, we have used a combination of analyti-
cal and numerical techniques to shed light on the (already fairly
complex for a small number of vortices) possible solutions and
associated bifurcations of corotating vortices in atomic Bose-
Einstein condensates. Building on the earlier establishment
of a relevant model through comparisons with experimental
results, e.g., in Refs. [15,16], we developed both a Monte
Carlo approach targeting the lowest-energy states and an
AUTO-based dynamical systems approach attempting to infer
the relevant solutions and their pitchfork and saddle-center
bifurcations into existence or termination. By corroborating
the two techniques and using the angular momentum as a
parameter and the energy as well as the vortex positions
as diagnostics, we were able to provide a full picture of
how two rigidly rotating vortices remain antidiametric but
become asymmetric and three rigidly rotating vortices tend
to be in an isosceles rather than equilateral triangle, while
four turn from squares to rhombi and from there to irregular
quadrilaterals. All these transitions have been quantified as a
function of increasing angular momenta and ultimately result
from the competition of the two energetic contributions in
Eq. (3), namely, the precession of each vortex due to the trap
and the pairwise interaction between the vortices. Whenever
possible the numerical observations have been complemented
by analytical solutions (e.g., identifying the destabilization
points of symmetric configurations or analytically character-
izing the bifurcating solutions such as isosceles triangles and
rhombi).

Nevertheless, naturally many open questions still remain
and the system clearly merits further investigation. As a
stimulus towards that direction, we presented the calculation
of N =35, indicating a clearly subcritical event that must
be leading to the destabilization of the pentagons. Our
computational approaches have natural limitations that arise
both for the dynamical systems AUTO-based analysis and
for the Monte Carlo efficient ground-state tracking method.
We now briefly discuss these limitations and present a view
towards overcoming them in the future, which would indeed
enable a systematic categorization of larger vortex particle
clouds.

On the one hand, the AUTO calculation is extremely useful
in identifying the relevant bifurcations, but given that it tracks
the different branches of solutions, it provides a progressively
more complex and difficult to parse picture as N is increased.
Hence it is necessary to use multiple and different suitably
chosen diagnostics in order to be able to systematically
scale up the picture to cases of larger N. It would be a
particularly meaningful task to try to develop such diagnostics
and it is part of our currently ongoing effort. On the other
hand, the Monte Carlo approach suffers from a different
limitation, most notably the divergence of vortex precessional
frequencies (and logarithmic associated single-vortex energy
contributions) when r; — 1. It is precisely for that reason
that we have confined our consideration on the MC side to
L < 1. It naturally turns out that when L > I, the energy
minimization can be trivially (but meaninglessly, as far as
the physical problem is concerned) realized by means of
one (or more) of the r; — 1 and hence H — —oo. It is
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thus of paramount importance in that regard to amend the
“pathological” precessional frequency expression with one
that more accurately predicts the r — 1 regime in comparison
to the partial differential equation (PDE) [see also the relevant
partial disparity in Fig. 1(a) of Ref. [16], for vortices at
distances very proximal to the TF radius]. A combination of
variants of the above tools devoid of these technical limitations
(for small and intermediate N) and possible intriguing tools
from PDE theory about vortex densities (for large N) in the
spirit, e.g., of the recent work of Ref. [38] can provide valuable
insights for future studies of vortices, but also of other types of
solitonic populations, such as dark solitons in one dimension
or vortex rings in three-dimensional BECs [39].

Finally, it is important to note that the results we present here
are based on the assumption of an axially symmetric trapping
potential. If one relaxes this symmetry and considers different
trapping strengths along the longitudinal directions, the vortex

PHYSICAL REVIEW E 88, 042914 (2013)

precession rate has to be adjusted and depends on the angular
position of the vortex with respect to the trapping axes [40];
see also Ref. [32] for multivortex settings. The dynamics for
asymmetric trapping is much richer than the one presented
here.
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