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We construct dissipative spatial solitons in one- and two-dimensional (1D and 2D) complex Ginzburg-Landau
(CGL) equations with spatially uniform linear gain; fully nonlocal complex nonlinearity, which is proportional
to the integral power of the field times the harmonic-oscillator (HO) potential, similar to the model of “accessible
solitons;” and a diffusion term. This CGL equation is a truly nonlinear one, unlike its actually linear counterpart for
the accessible solitons. It supports dissipative spatial solitons, which are found in a semiexplicit analytical form,
and their stability is studied semianalytically, too, by means of the Routh-Hurwitz criterion. The stability requires
the presence of both the nonlocal nonlinear loss and diffusion. The results are verified by direct simulations of
the nonlocal CGL equation. Unstable solitons spontaneously spread out into fuzzy modes, which remain loosely
localized in the effective complex HO potential. In a narrow zone close to the instability boundary, both 1D and
2D solitons may split into robust fragmented structures, which correspond to excited modes of the 1D and 2D HOs
in the complex potentials. The 1D solitons, if shifted off the center or kicked, feature persistent swinging motion.
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I. INTRODUCTION

Nonlocality naturally occurs in many settings in optics,
plasmas, and Bose-Einstein condensates (BECs). Effects of
nonlocal nonlinear dynamics with diverse correlation kernels
have been studied in detail, both theoretically and experi-
mentally, in optics [1] and in BECs, where the nonlocality
is well known in the form of dipole-dipole interactions
[2]. Nonlocal nonlinearities help to create various species
of solitons [2,3], including fundamental ones [4,5], dipoles
and vortices [5–7], multipeak states [8–10], and asymmetric
solitons in couplers [11]. The nonlocality strongly affects
interactions between solitons, too [12]. The nonlocal nonlinear
response allows one to suppress the usual modulation insta-
bility of continuous waves. It also fosters the stabilization
of diverse types of solitons in nonlocal media [13]. In
addition to the use of self-focusing nonlocal nonlinearities, a
possibility of supporting stable bright solitons by spatially in-
homogeneous self-defocusing has been demonstrated recently,
too [14].

Complex Ginzburg-Landau (CGL) equations represent a
broad class of models which support spatial patterns due
to the simultaneous balance of gain versus loss, and self-
focusing nonlinearity versus diffraction or dispersion. CGL
equations find numerous realizations in superconductivity and
superfluidity, hydrodynamics and plasmas, reaction-diffusion
systems, quantum field theory, and other physical contexts
[15]. Well elaborated are applications of the CGL equations
to nonlinear optics [16], where, in particular, they give rise to
various species of dissipative solitons [17].

The above-mentioned ubiquity of nonlocal interactions
makes it natural to consider CGL equations with nonlocal
terms. Such equations were derived in diverse physical set-
tings, including, in particular, combustion [18], the Faraday’s
parametric instability [19], electrochemistry [20], and waves
of reaction-diffusion waves [21]. Various forms of nonlocal
CGL equations were also proposed as mathematical models for

the description of nonlinear-dissipative media with long-range
interactions [22,23].

The ultimate form of the spatial nonlocal nonlinearity
corresponds to the infinite correlation radius, i.e., the model
with a constant kernel in the nonlocal term; see Eq. (1)
below. The Schrödinger equation with such an ultranonlocal
nonlinear term, multiplied by the harmonic-oscillator (HO)
potential, was introduced by Snyder and Mitchell as a model of
“accessible solitons” [24]. In terms of nonlocal CGL equations,
the model with a flat kernel was proposed still earlier by Elmer
[22]. A natural possibility is to study one- and two-dimensional
(1D and 2D) dissipative solitons in the CGL equation with the
same type of the ultimate nonlocality as in the Snyder-Mitchell
model, but with a complex coefficient in front of this term,
in which the imaginary part represents the nonlinear loss.
This is the objective of the present paper. Our analytical
considerations and numerical results reveal conditions for the
existence of stable dissipative solitons in broad regions of the
underlying parameter space. As concerns unstable solitons,
they, generically, suffer spreading out into loosely bound fuzzy
states. However, in narrow regions near instability boundaries,
both 1D and 2D solitons split into robust fragmented clusters.

In addition, we study dynamical behavior of 1D solitons.
It is demonstrated that a stable 1D soliton, initially shifted off
the center, or suddenly kicked, performs a persistent swinging
motion.

The rest of the paper is organized as follows. The ultranon-
local CGL equation is introduced in Sec. II, and the analytical
framework for the study of dissipative solitons in this model is
developed in Sec. III. Systematic results for the 1D and 2D soli-
tons are reported in Sec. IV. The work is concluded by Sec. V.

II. MODEL

As said above, the model follows the general pattern of
the extreme nonlocal nonlinearity which gives rise to the
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accessible solitons in the 1D setting [24]:

iuz = − 1
2uxx + gx2u, (1)

g = G

∫ +∞

−∞
|u(x)|2dx, (2)

where, in terms of optical media, z and x are the propagation
distance and transverse coordinate, and G > 0 is a constant.
This type of the ultranonlocal nonlinearity can be naturally
generalized for CGL equations in the following form, which
is written here for the general 2D setting:

iuz =
(

−1

2
+ iβ

)
∇2u + [iγ0 + (g − iγ2)r2]u, (3)

{g,γ2} = {G,�}
∫ ∫

|u(x,y)|2dxdy ≡ {G,�}N, (4)

where ∇2 acts on transverse coordinates {x,y}, r2 ≡ x2 + y2;
β � 0 accounts for effective diffusion (viscosity); γ0 > 0 is
the linear-gain coefficient; and � > 0 represents nonlocal
nonlinear dissipation.

The ultranonlocal nonlinearity assumed in Eqs. (1) and (2)
can be realized in specially designed liquid-crystal optical
waveguides [25]. The complex nonlinearity represented by
Eq. (3) can be engineered similarly, if two-photon absorption,
which is responsible for the imaginary part (γ2), is taken
into account (and enhanced by means of resonant dopants,
if necessary). The diffusion term, which, as shown below, is
necessary for the stability of dissipative solitons in the present
model, appears if light creates free carriers in the medium,
which undergo the diffusion (see, e.g., Ref. [26]).

Our intention is to construct stable localized solutions to the
1D and 2D versions of Eq. (3), which is possible despite the
presence of the uniform linear gain, which usually makes all
localized solutions unstable, as the respective zero background
is obviously unstable. Recently, it was demonstrated that D-
dimensional dissipative solitons can be made stable, in this
case, if the coefficient in front of the local cubic loss term
grows at r → ∞ at any rate faster than rD [27].

Because Eq. (3) looks like a linear Schrödinger equation
with the complex HO potential, it is possible to construct
2D and 1D exact solutions in the form of isotropic chirped
Gaussians (cf. Ref. [28], where such Gaussians were used
as Ansätze for the variational approximation based on the
corresponding complex Lagrangian):

u(r,z) = A(z) exp

{
− r2

2w2(z)
+ ic(z)r2 + iψ(z)

}
, (5)

(in the 1D case, radial coordinate r is replaced by the linear
one, x), where variables A(z), w(z), c(z), and ψ(z) represent
the amplitude, width, wave-front curvature (chirp), and overall
phase of the dissipative soliton, respectively. The integral
power of Ansatz (5), defined according to Eq. (4), is

N = A2(
√

πw)D, (6)

where D = 1,2 is the transverse dimension.
Note that Eq. (1) is only formally a nonlinear equation,

being, in reality, fully tantamount to the linear Schrödinger
equation, as it conserves the integral power. On the other hand,

Eq. (3) gives rise to the following evolution equation for N :

dN

dz
= 2γ0N − Dβ

(
1

w2
+ 4c2w2

)
N − D�w2N2, (7)

whose feedback onto Eq. (3) makes it a truly nonlinear
equation.

III. DISSIPATIVE SOLITONS

Inserting Ansatz (5) into Eq. (3), the following system of
evolution equations for its parameters is derived in the exact
form:

dA/dz = [γ0 − Dβw−2 − Dc]A, (8a)

dw/dz = [βw−2 − 4βc2w2 + 2c

−�A2(
√

πw)Dw2]w, (8b)

dc/dz = (2w4)−1 − 2−(1+D/2)A2w−2 − 4βcw−2 − 2c2

−GA2(
√

πw)D. (8c)

It is easy to check that the power-balance equation (7) is a
corollary of Eq. (8).

Equations (8a)–(8c) give rise to a fixed-point (FP) solution,
A = A0, w = w0 (i.e., N = N0), and c = c0, which can be
found as a numerical solution of the respective algebraic sys-
tem, obtained from Eq. (7) by setting the left-hand sides equal
to zero. It is possible to derive an analytical approximation for
the FP in the limit of weak gain, γ0 → 0. Even in this limit
case, the general expressions are cumbersome; therefore we
produce them for the situations when the loss is represented
solely by the nonlinear term (β = 0, � �= 0), or by the
diffusion (� = 0, β �= 0): At order γ0 (next-order corrections
are ∼γ 2

0 ),

w−2
0 (β = 0) = 2γ0

D�
(
√

G2 + �2 + G),

N0(β = 0) = 4γ0

(D�)2
(
√

G2 + �2 + G), (9)

c0(β = 0) = γ0

D
,

w−2
0 (� = 0) = 1

Dβ

(
1 + 1√

1 + 4β2

)
,

N0(� = 0) = 1 +
√

1 + 4β2

(Dβ)2G
, (10)

c0(� = 0) = − γ0

D
√

1 + 4β2
.

Note opposite signs of the chirp in FPs (9) and (10). Below, it is
concluded that the FPs are unstable unless both the nonlinear
loss and diffusion are present. Nevertheless, analytical results
(9) and (10) are meaningful, as they demonstrate that the FPs
exist at arbitrarily small values of the linear gain, rather than
above any finite threshold.

Next, the stability of the FP can be investigated by intro-
ducing small perturbations about it, A = A0 + �A(z), w =
w0 + �w(z), c = c0 + �c(z), and deriving the respective

042912-2



ACCESSIBLE SOLITONS IN COMPLEX GINZBURG- . . . PHYSICAL REVIEW E 88, 042912 (2013)

linearized equations:

d(�a)/dz = b1�w + b2�c, (11a)

d(�w)/dz = b3�w + b4�c, (11b)

d(�c)/dz = b5�a + b6�w + b7�c, (11c)

where we define b1 = 2A0Dw−3
0 β, b2 = −DA0, b3 = −(2β

w−2
0 + 8βc2

0w
2
0 + 2γ2w

2
0), b4 = 2w0 − 8c0w

3
0β, b5 = −A0

(2D/2w2
0)−1, b6 = −2w−1

0 [(2w4
0)−1 + 2c2

0 + GA2(
√

πw)D].
Solutions to Eq. (11) are looked for, as usual, with the

z dependence in the form of exp(λz), where the instability
growth rate λ is determined by equating the determinant of
the linearized system (11) to zero:∣∣∣∣∣∣

−λ b1 b2

0 b3 − λ b4

b5 b6 b7 − λ

∣∣∣∣∣∣ = 0. (12)

Thus, the FP solution to Eq. (8) is stable when roots of Eq. (12)
have negative or zero real parts. Rewriting the equation in the
form of λ3 + a1λ

2 + a2λ + a3 = 0, where a1 ≡ −(b3 + b7),
a2 ≡ b3b7 − b2b5 − b4b6, a3 ≡ b5(b2b3 − b1b4), the stability
condition amounts to the Routh-Hurwitz (RH) criterion, i.e.,
coefficients a1, a2, and a3 must satisfy the system of three
inequalities:

a1 � 0,

∣∣∣∣a1 1
a3 a2

∣∣∣∣ � 0,

∣∣∣∣∣∣
a1 1 0
a3 a2 a1

0 0 a3

∣∣∣∣∣∣ � 0.

These conditions actually reduce to a relatively simple system
of inequalities:

a1 � 0, a3 � 0, a1a2 � a3. (13)

Similar stability criteria for stationary dissipative soliton solu-
tions in CGL equations without an external potential [28], and
with a linear potential [29], have been studied in detail before.

IV. RESULTS OF THE ANALYSIS

In addition to the numerical analysis of stability conditions
(13) for the FP, the robustness of the soliton propagation was
tested in direct simulations of the perturbed evolution of the
respective dissipative solitons in the framework of Eq. (4). The
direct simulations were initiated multiplying the wave form
(5) by 1 + ρ(x,y), where ρ(x,y) is a white-noise perturbation
function, whose maximum was 10% of the soliton’s amplitude.

A. The 1D case

Results produced by the FP-stability conditions (13) and
direct simulations in the 1D setting are collected in Fig. 1.
Quite naturally, the stability of dissipative solitons is most
strongly affected by the linear-gain and diffusion coefficients,
γ0 and β. It is natural too that the solitons are stabilized by
the increase of β and decrease of γ0, and larger G, imposing a
tighter nonlinearity-induced confinement, also helps to make
the self-trapped modes more robust, extending their stability
area in Fig. 1(a). Below the instability boundary, the soliton
decays into a fuzzy but nevertheless loosely localized mode,
as shown in Fig. 1(c). Some mismatch between the stability
boundaries produced by the direct simulations and the RH

FIG. 1. (Color online) (a) The stability area for 1D dissipative
solitons is located above the boundaries in the plane of the
linear-gain and diffusion parameters (γ0,β). The upper and lower
curves correspond, respectively, to smaller and larger values of the
nonlocality coefficient in Eq. (4), G = 10 and G = 30. The solid
and dashed curves represent, severally, results collected from direct
simulations of the perturbed evolution of the Gaussian dissipative
soliton (5) within the framework of Eq. (3), and results produced
by the FP-stability conditions (13). (b),(c) Examples of stable and
unstable evolution of the solitons, respectively, for β = 0.05 [at point
A in (a)] and β = 0.02 [at point B in (a)], while the other parameters
are G = 10 and γ0 = 60. In this figure, the nonlinear loss coefficient
in Eq. (4) is fixed to be � = 0.1.

criterion is explained by the fact that the boundary revealed
by the direct simulations corresponds to finite, rather than
infinitesimal, perturbations.

Figure 1(a) shows that the stability of the solitons requires
the presence of the diffusion term, β > 0, which is equally true
at all values of other parameters. The analysis reveals that the
stability is not possible either in the absence of the nonlinear
loss (at � = 0) or confinement (at G = 0).

As shown in Fig. 2, in a narrow interval of values of the
nonlocality coefficient G adjacent to the stability boundary,
at β < 0.04, the instability can split the soliton into two
symmetric fragments. This is an intermediate state between
the stable solitons and fully unstable ones, which spread out
into fuzzy modes. Plausibly, the stable split state may be
realized as the first excited (odd) eigenmode in the effective
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FIG. 2. (Color online) (a) The soliton splits into two fragments
in the black strip in the plane of (β,G), while beneath the strip, the
soliton decays into a fuzzy mode, similar to the one displayed in
Fig. 1(c). (b) An example of the splitting for G = 100, γ0 = 60, β =
0.02, and � = 0.1 [at point A in (a)].

FIG. 3. (Color online) The swinging motion of the soliton. (a)
The amplitude of the soliton’s oscillations, d , versus the nonlocal
nonlinear-dissipation coefficient, �, for three sets of parameters:
circles (G = 1 and β = 0.01), triangles (G = 1 and β = 0.02), and
squares (G = 6 and β = 0.01). (b) An example of the swinging motion
with � = 0.5, G = 6, and β = 0.01, the input position of the soliton’s
center being x0 = 3. In this figure, the linear-gain strength is γ0 = 13.

1D complex HO potential, which can be identified in Eq. (3).
In fact, the fuzzy mode displayed in Fig. 1(c) also features a
nonvanishing intrinsic structure, which may be a consequence
of the fact that the instability of the fundamental soliton is
accounted for by a spontaneous transition into a higher excited
state.

Simulations of the evolution of a soliton initially placed
off the central point, x = 0, reveal its persistent swinging
motion, in the effective HO potential, which sets in after
a transient stage; see Fig. 3. The amplitude, d, of the
established oscillations is chiefly determined by the nonlocal
nonlinear-dissipation coefficient, �, as shown in Fig. 3(a).
This phenomenon is similar to the soliton’s swinging motion
supported by spatially modulated losses, which was reported
in Ref. [30]. Naturally, the amplitude of the oscillatory
motion decreases with the increase of the diffusion coefficient,
β, which induces effective viscosity (friction force) in the
medium, as can be seen in Fig. 3(a), too—compare the circles
for β = 0.01 and triangles for β = 0.02, both pertaining to
G = 1. On the other hand, for fixed β, larger G implies the
tighter confinement, also leading to a smaller amplitude of the
oscillations—compare circles (for G = 1) and squares (for
G = 6) in Fig. 3(a), both pertaining to β = 0.01.

Additional simulations (not shown here in detail) demon-
strate that a similar dynamical regime can be initiated, instead
of shifting the soliton off x = 0, by the application of a kick
to it (i.e., by tilting the input beam, in terms of the optical
waveguide).

FIG. 4. (Color online) (a) The stability area for 2D dissipative
solitons is located above the boundaries in the plane of the linear-gain
and diffusion parameters (γ0,β). The chains of circles and squares
display, severally, results produced by the FP-stability conditions
(13), and those collected from direct simulations of the perturbed
evolution of the Gaussian dissipative soliton (5) within the framework
of the 2D version of Eq. (3). Examples of unstable and stable
perturbed evolution of the 2D solitons are displayed, respectively,
in panel (b) for β = 0.08, γ0 = 16 [point B in (a)] and in (c)
for β = 0.07, γ0 = 8 [point A in (a)]. In this figure, G = 4 and
� = 0.1.
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B. The 2D case

The stability chart for the 2D solitons, displayed in Fig. 4(a),
is qualitatively similar to its 1D counterpart; cf. Fig. 1(a).
In particular, the increase of the diffusion coefficient, β, and
decrease of the linear gain, γ0, lead to the expansion of the
stability area. Also similar to the 1D situation is the conclusion
that 2D solitons cannot be stable when any of the coefficients
β, �, G vanishes [in particular, Fig. 4(a) clearly demonstrates
that the presence of the diffusion term with β > 0 is necessary
for the stability].

An example of the unstable evolution in Fig. 4(b) demon-
strates that the instability can split the 2D soliton into multiple
fragments, similar to the splitting of the 1D soliton in Fig. 2.
In an appropriate parameter region, the fragmented cluster
may feature robust propagation, as observed in Fig. 4(b). It is
plausible that the cluster corresponds to an excited state of the
2D HO in the isotropic complex potential.

Another feature of the 2D setting, which is qualitatively
similar to what was reported above for the 1D solitons, is
the fact that the stable fragmented clusters exist in a relatively
narrow intermediate zone, at β < 0.04, between stable solitons
and unstable ones decaying into a loosely bound fuzzy mode,
as shown in Fig. 5 in the plane of (β,G). The tapering and
eventual vanishing of the splitting zone in Fig. 5(a), following
the growth of G and decrease of β, which makes it different
from the shape of the splitting zone in the 1D setting [cf.
Fig. 2(a)], is explained by suppression of the splitting in the

FIG. 5. (Color online) (a) The stability chart for 2D solitons in
the plane of the diffusion coefficient, β, and nonlocal-nonlinearity
strength, G. In region I the 2D solitons decay into fuzzy modes
[an example is displayed in (b) for G = 5 and β = 0.01, which
corresponds to point A in (a)]. In narrow zone II, the soliton splits
into a robust fragmented cluster; see an example in (c) for G = 20
and β = 0.02, which corresponds to point B in (a). It is similar to the
stable cluster which is displayed, for other values of the parameters,
in Fig. 4(b). The 2D solitons are stable in region III; see an example
in (d) for G = 55 and β = 0.02, which corresponds to point C in (a)
[cf. another example of the stable 2D soliton displayed in Fig. 4(c)].
In this figure, � = 0.1 and γ0 = 4.

limit of large G and small β, i.e., in the nearly conservative
model, under the action of the surface tension. Naturally,
the solitons tend to become more stable for the stronger
confinement and viscosity; therefore the stability region, III
in Fig. 5(a), expands with the increase of G and β, similar to
what is observed in Fig. 2(a) in the 1D setting.

Completely unstable 2D solitons spread out into a loosely
confined fuzzy state, as shown in Fig. 5(b), which is also
similar to the instability of 1D solitons; cf. Fig. 1(c). It is
worthy to note that the 2D fuzzy mode keeps the overall
rectangular shape, and simulations on a much longer scale of z

(not shown here in detail) do not demonstrate a transformation
of the fuzzy mode into a more circular form, which might be
expected due to the axial symmetry of Eq. (3). The persistence
of the internal structure of the 2D fuzzy mode may be a
consequence of the fact that the instability is accounted for
by a spontaneous transition of the fundamental soliton into a
higher-order excited mode; cf. the similar situation in the 1D
setting [Fig. 1(c)].

On the other hand, in contrast to the 1D setting, which
admits the swinging motion of the solitons (Fig. 3), in the 2D
model the soliton initially placed off the center, or suddenly
kicked, does not feature persistent oscillations, but is quickly
pulled back to the central position (not shown here in detail);
i.e., the effective viscous friction acting on the 2D soliton is
much stronger than in 1D.

V. CONCLUSIONS

We have introduced the CGL extension of the ultranonlocal
Snyder-Mitchell model for the accessible solitons, in both the
1D and 2D forms. Unlike the actually linear Schrödinger equa-
tion in the original model, the present nonlocal CGL equation
is a truly nonlinear one, due to the feedback of the evolution of
the total norm, according to Eq. (7). Stationary solutions for the
1D and 2D dissipative solitons were found in the semiexplicit
form, and their stability was analyzed semiexplicitly, too, by
means of the RH criterion. The stability was also verified
via direct simulations. Unstable solitons decay into fuzzy
modes, which remain loosely bound, under the action of the
complex HO potential. In narrow zones adjacent to the stability
boundary, the solitons split into robust fragmented clusters,
which may be realized as excited states of the 1D or 2D
harmonic oscillator. The stability of the dissipative solitons
demands the simultaneous presence of the nonlocal nonlinear
confinement and loss, and of the diffusion term.

The model can be implemented in optics—in particular,
using nonlocal liquid-crystal media. It may be interesting to
extend the analysis of the 2D setting, with the aim to construct
vortex modes and test their stability (similarly, it may be
possible to construct antisymmetric twisted modes in 1D). In
terms of the 2D model, it may also be interesting to generalize
the analysis for anisotropic CGL equations; cf. Ref. [31].
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