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Stabilization of standing waves through time-delay feedback
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Standing waves are studied as solutions of a complex Ginzburg-Landau equation subjected to local and global
time-delay feedback terms. The onset is described as an instability of the uniform oscillations with respect
to spatially periodic perturbations. The solution of the standing wave pattern is given analytically and studied
through simulations.
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I. INTRODUCTION

The supercritical Hopf bifurcation is one of the simplest
ways that a stationary state in a nonlinear system can undergo
a transition to sustained oscillations. There, a small-amplitude
limit cycle is born which already at onset displays a finite
frequency. If we are considering a reaction-diffusion system,
the dynamics of a system that undergoes such a bifurcation is
described by the complex Ginzburg-Landau equation [1,2].
The primary solution of this system is the homogeneous
periodic solution (uniform oscillations), corresponding to the
limit cycle appearing at the Hopf bifurcation. However, the
uniform oscillations in the spatially extended system may be
unstable. The resulting states of spatiotemporal chaos appear
if the Benjamin-Feir-Newell criterion 1 + αβ < 0 is fulfilled,
a phenomenon that is induced by the diffusive coupling and
that is therefore genuine to a system with spatial degrees of
freedom.

Considerable efforts have been made to understand this
type of chaotic behavior and to apply methods to suppress this
kind of turbulence and replace it with simpler, more regular
dynamics. Consequently, control of chaotic states in nonlinear
systems is a wide field of research that we cannot review here
and we refer the reader to [3,4]. In the context of the reaction-
diffusion systems, the introduction of forcing terms or global
feedback terms have been shown to be efficient ways to control
turbulence. To cite only one example, chemical turbulence
can be suppressed by global time-delayed feedback [5,6] in
the CO oxidation reaction on Pt(110) or in the photosensitive
Belousov-Zhabotinsky reaction [7].

Global feedback methods, where a spatially independent
quantity (or a spatial average of a space-dependent quantity)
is coupled back to the system dynamics, have attracted
much attention since in many cases the implementation in
experiments is easier and the mathematical analysis simpler
[4]. Nevertheless, local methods have gained interest in recent
years since they allow to access other solutions of the systems
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in such diverse media as neurophysiological [8], cardiac [9],
or semiconductor systems [10,11]. A local scheme with zero
time delay was used in [12] to suppress spatiotemporal chaos
in the CO oxidation system by the creation of localized wave
sources (pacemakers).

The effect of local feedback on the complex Ginzburg-
Landau equation (CGLE) was investigated by Socolar and
co-workers [13,14]. Later, Silber and co-workers investigated
a feedback scheme that included spatial shifts and in this
way were able to stabilize traveling waves [15,16]. In electro-
chemical systems, nonlocal coupling arises naturally and the
onset of pattern formation has been formulated in terms of a
nonlocal CGLE [17–19], including the description of standing
waves [18].

Feedback methods with an explicit time delay amplify the
range of possibilities of control that can be applied to the
system and provide the researcher with an additional adjust-
able parameter. On the level of the mathematical description,
the model equations become delay differential equations [20].
One of the most important time-delay feedback schemes is due
to Pyragas, who proposed to generate a control signal from the
difference between the actual system state and a time-delayed
one [21].

Motivated by previous work [22,23], we studied the CGLE
subjected to a time-delay feedback with local and global
terms [24–26] where each feedback term is of the Pyragas
type. Extensive simulations showed the range of patterns that
can be stabilized as a function of the local and global feedback
terms [24]. If the feedback is global, uniform oscillations,
the basic time-periodic solution of a system close to a Hopf
bifurcation, can be stabilized for a large range of feedback
parameters, while standing waves are found only in a small
parameter area. As the contribution of the local feedback
term becomes larger, the parameter regions increase where
standing waves and—to a lesser extent—traveling waves are
found. In [25], we studied the homogeneous periodic and the
homogeneous stationary (amplitude death) solutions from an
analytical point of view, performed linear stability analysis
and derived the limiting curves of the stability regions. In [26],
we proposed an analytic solution of standing waves for our
model. In the present article, we show the derivation of this
solution in detail, present simulations of standing waves,
and compare the numerical with the analytical results. We
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demonstrate that the agreement between our analytical and
numerical findings is good and that the theory—in spite of a
series of simplifications—describe the observed pattern very
well.

This paper is organized as follows. In Sec. II, we introduce
the model and describe briefly the basic solution, uniform
oscillations. In Sec. III, we present the standing wave solution,
including a pattern overview, analytic solution, and numerical
simulations. We conclude the work in Sec. IV.

II. THE MODEL AND ITS BASIC SOLUTION

Reaction-diffusion systems can display various types of
oscillatory dynamics. However, close to a supercritical Hopf
bifurcation, all such systems are described by the CGLE
[1,2],

∂A

∂t
= (1 − iω)A − (1 + iα)|A|2A + (1 + iβ)�A,

where A is the complex oscillation amplitude, ω the linear
frequency parameter, α the nonlinear frequency parameter, β

the linear dispersion coefficient, and � the Laplacian operator.
For 1 + αβ < 0 (the Benjamin-Feir-Newell criterion), the
homogeneous periodic solution Au = e−i(ω+α)t is unstable and
a regime of spatiotemporal chaos is observed.

The CGLE for a one-dimensional medium with a combi-
nation of local and global time-delayed feedback has been
introduced in Ref. [24] and reads

∂A

∂t
= (1 − iω)A − (1 + iα)|A|2A + (1 + iβ)

∂2A

∂x2
+ F,

F = μeiξ {ml[A(x,t − τ ) − A(x,t)] (1)

+mg[Ā(t − τ ) − Ā(t)]},
where

Ā(t) = 1

L

∫ L

0
A(x,t) dx

denotes the spatial average of A over a one-dimensional
medium of length L. The parameter μ describes the feedback
strength and ξ characterizes a phase shift between the feedback
and the current dynamics of the system. The feedback has a
local contribution Fl and a global one Fg ,

Fl = μmle
iξ [A(x,t − τ ) − A(x,t)],

(2)
Fg = μmge

iξ [Ā(t − τ ) − Ā(t)].

If ml = 0, the case of global time-delay feedback is retrieved
[23].

As result of extensive simulations, many different spa-
tiotemporal patterns have been identified in this system [24].
These include, but are not limited to, uniform oscillations,
standing waves, traveling waves, amplitude death, and spa-
tiotemporal chaos. The stabilization of uniform oscillations
(homogeneous periodic solution) and amplitude death (ho-
mogeneous trivial solution) have been considered in [25].
Before discussing the standing wave solution, we introduce
the homogeneous periodic solution. The solution of feedback-

induced uniform oscillations is given by

A0(t) = ρ0e
−i
t . (3)

It is a solution of Eq. (1) with the amplitude and frequency
given by

ρ0 = √
1 + μ(mg + ml)χ1,

(4)

 = ω + α + μ(mg + ml)(αχ1 − χ2).

Here, χ1,2 denote effective modulation terms that can be
positive or negative. They arise from the feedback and hence
depend on ξ and τ :

χ1 = cos(ξ + 
τ ) − cos ξ,
(5)

χ2 = sin(ξ + 
τ ) − sin ξ.

In general, no explicit analytic solution for Eqs. (4) can
be given because χ1,2 also depend on 
. Nevertheless, the
solution can be computed using root-finding algorithms, as
done in [25].

III. STANDING WAVES

A. Pattern overview

In system (1), standing waves appear in parameter areas
adjacent to regions where stable uniform oscillations are
observed. In Fig. 1, we show typical space-time diagrams as
μ is varied. The parameter set is chosen as in Refs. [24,25]
such that in the absence of feedback, the system undergoes
spatiotemporal chaos. For large μ, the feedback induces
uniform oscillations [Fig. 1(a)]. Then, as μ is decreased,
harmonic, small-amplitude standing waves set in [Fig. 1(b)].
As μ decreases further, the amplitude profile of these waves
may show a period-2 behavior in space [Fig. 1(c)], before
the standing waves start to “breathe” [Fig. 1(d)]. Finally,
spatiotemporal chaos sets in [Fig. 1(e)]. In this paper, we de-
scribe the onset of standing waves in more detail. For standing
waves, the (real) amplitude of the oscillation is modulated
close to the corresponding value of uniform oscillations and
is constant in time. In [26], we announced the standing wave
solution, and here we describe the derivation and implications
in more detail. Since close to onset, the amplitude of the
modulation is small and its profile is harmonic, the onset of
standing waves can be perceived as instability of the uniform
solution with respect to space-dependent perturbations of wave
number kc.

B. Analytical solution

The stability analysis for uniform oscillations has been
presented in detail in Ref. [25] and we just state that the
uniform periodic solution becomes unstable with respect to
standing waves with wavelength 2π/kc when we have

λ1(kc) = 0, ∂kλ1(kc) = 0, and

λ2(kc) = 0, with kc �= 0,

where λ is the eigenvalue of the stability analysis and λ1 and
λ2 are its real and imaginary parts.

The simulations of (1) show that the onset of standing
waves at the boundary to the stable homogeneous periodic
solution is soft, and the standing wave is characterized by a
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FIG. 1. Main spatiotemporal solutions for different feedback magnitudes. From uniform oscillations (a) via harmonic standing waves (b),
period-2 standing waves (c), breathing standing waves (d), to spatiotemporal chaos (e). Shown are space-time diagrams in gray scale for
ReA (left panels) and |A| (right panels) for a time interval of t = 50 in the asymptotic regime. Due to the strong contribution of the uniform
oscillations, the standing waves are difficult to recognize for ReA in (b) and (c), although they are clearly visible for |A|. Note that the
period-2 behavior is in space (not in time) and is difficult to see due to the small amplitude but is clearly seen in Fig. 2. The parameters are
ml = 0.7, mg = 0.3, τ = 0.3. The values of μ are μ = 1.00 (a), μ = 0.90 (b), μ = 0.55 (c), μ = 0.50 (d), and μ = 0.44 (e). Black (white)
denotes low (high) values of the respective quantity (rescaled for each simulation). For |A|, these values are (|A|min,|A|max) = (0.753,0.753)
(a), (|A|min,|A|max) = (0.744,0.762) (b), (|A|min,|A|max) = (0.636,0.953) (c), (|A|min,|A|max) = (0.57,0.98) (d), (|A|min,|A|max) = (0.15,1.1)
(e). The other parameters are α = −1.4, β = 2, ω = 2π − α, ξ = π/2. System size, L = 128.

vanishing space-dependent part at threshold [24]. Hence, by
constructing a standing wave solution with nonzero amplitude,
we are necessarily off threshold. However, then the uniform
periodic solution is unstable not only to one critical wave
number kc, but to a band of wave numbers. Typically, the wave
number observed in simulations in this case is the one which
corresponds to the maximal growth rate kmax, given by the
condition ∂kλ1(kmax) = 0 [where λ1(kmax) > 0].

Standing waves in this system arise as spatial modulations
of the amplitude on top of the uniform oscillations; the ansatz
is therefore

A(x,t) = H (t) + Bk(t)(eikx + e−ikx), (6)

with H being the uniform mode and Bk the complex amplitude
of the mode with wave number k. This ansatz can also be
interpreted as a rightgoing wave (with wave number k) and
a leftgoing one (with wave number −k) sharing the same
amplitude and thus describing a standing wave pattern.

Before inserting ansatz (6) into Eq. (1), we have to
determine several terms appearing in Eq. (1), with

|A|2A = |H |2H + 4|Bk|2H + 2H ∗B2
k

+ (eikx + e−ikx)(H 2B∗
k + 2|H |2Bk + 3|Bk|2Bk)

+ (e2ikx + e−2ikx)
(
2H |Bk|2 + H ∗B2

k

)
+ (e3ikx + e−3ikx)|Bk|2Bk, (7)
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and

Fl = μmle
iξ {[H (t − τ ) − H (t)]

+ (eikx + e−ikx)[Bk(t − τ ) − Bk(t)]}, (8)

Fg = μmge
iξ [H (t − τ ) − H (t)].

being of particular relevance. Equation (8) assumes that the
space-dependent part of A(x,t) does not contribute to the
average Ā(t). This is fulfilled if L → ∞ or L = 2πn/k (with
n = 1,2, . . .). In the following, we neglect the higher-order
harmonic contributions in Eq. (7), which close to onset is well
justified. Inserting finally ansatz (6) into Eq. (1), and using
Eqs. (7) and (8), we obtain

dH

dt
+ (eikx + e−ikx)

dBk

dt

= (1 − iω)[H + (eikx + e−ikx)Bk]

− (1 + iα)
[|H |2H + 4|Bk|2H + 2H ∗B2

k

+ (eikx + e−ikx)(H 2B∗
k + 2|H |2Bk + 3|Bk|2Bk)

]
− (1 + iβ)k2(eikx + e−ikx)Bk

+μ(ml + mg)eiξ [H (t − τ ) − H (t)]

+μmle
iξ [Bk(t − τ ) − Bk(t)](eikx + e−ikx). (9)

Now we separate the equation into space-dependent and space-
independent parts and arrive at

dH

dt
= (1 − iω)H − (1 + iα)

(|H |2H + 4|Bk|2H + 2B2
k H

∗)

+μ(ml + mg)eiξ [H (t − τ ) − H (t)],

dBk

dt
= (1 − iω)Bk − (1 + iα)(H 2B∗

k + 2|H |2Bk + 3|Bk|2Bk)

− (1 + iβ)k2Bk + μmle
iξ [Bk(t − τ ) − Bk(t)]. (10)

In the case of Bk = 0, the first equation reduces to the equation
describing the mode of the homogeneous periodic solution.
However, the coupling terms in the first equation of Eq. (10)
tell us that if Bk �= 0, the uniform mode H is different from
the uniform oscillations (3) and we cannot use Eq. (4).

To solve Eq. (10), we assume the solution to be of the
following form [27]:

H = H0e
−i
0t ,

(11)
Bk = Bk0e

−i(
0t+γ ).

Thus, both modes oscillate at the same frequency 
0, while
there is a phase shift γ between the modes. The real amplitudes
are given by H0 and Bk0, respectively.

After inserting (11) into (10), we obtain

(−i
0)H = (1 − iω)H − (1 + iα)
(
H 2

0 + 4B2
k0

+ 2B2
k0e

−2i(
0t+γ )e2i
0t
)
H

+μ(ml + mg)eiξ (ei
0τ − 1)H,

(−i
0)Bk = (1 − iω)Bk − (1 + iα)
(
H 2

0 e−2i
0t e2i(
0t+γ )

+ 2H 2
0 + 3B2

k0

)
Bk − (1 + iβ)k2Bk

+μmle
iξ (ei
0τ − 1)Bk. (12)

Dropping H from the first equation and Bk from the second,
this simplifies to

0 = 1 + i
0 − iω − (1 + iα)
(
H 2

0 + 4B2
k0 + 2B2

k0e
−2iγ

)
+μ(ml + mg)eiξ (ei
0τ − 1),

(13)
0 = 1 + i
0 − iω − (1 + iα)

(
H 2

0 e2iγ + 2H 2
0 + 3B2

k0

)
− (1 + iβ)k2 + μmle

iξ (ei
0τ − 1).

These equations can be separated into real and imaginary parts.
We write them as

0 = 1 − [
H 2

0 + 2B2
k0(2 + cos 2γ )

]
− 2αB2

k0 sin 2γ + μ(ml + mg)χs
1 ,

0 = 
0 − ω − α
[
H 2

0 + 2B2
k0(2 + cos 2γ )

]
+ 2B2

k0 sin 2γ + μ(ml + mg)χs
2 ,

(14)
0 = 1 − k2 − [

H 2
0 (2 + cos 2γ ) + 3B2

k0

]
+αH 2

0 sin 2γ + μmlχ
s
1 ,

0 = 
0 − ω − βk2 − α
[
H 2

0 (2 + cos 2γ ) + 3B2
k0

]
−H 2

0 sin 2γ + μmlχ
s
2 ,

where χs
1,2 are given by

χs
1 = cos(ξ + 
0τ ) − cos ξ,

(15)
χs

2 = sin(ξ + 
0τ ) − sin ξ.

For a given k, Eqs. (14) can be solved numerically through
root-finding algorithms, giving solutions for H0, Bk0, 
0, and
γ . There, the wave number k is provided by the eigenvalue
problem studied in [25], where we use either kc (at threshold)
or kmax (away from threshold). Combining Eqs. (6) and (11),
the family of standing wave solutions can be written as

ASW = e−i
0t [H0 + 2Bk0 cos(kx)e−iγ ]. (16)

C. Numerical simulations and comparison to analytical solution

For numerical integration of Eqs. (1) in one-dimensional
space, we choose the system size of L = 128 with a spatial
resolution of �x = 0.32. For time integration, we use an ex-
plicit Euler scheme with �t = 0.002. The Laplacian operator
is discretized using a next-neighbor representation. We apply
periodic boundary conditions and the initial conditions consist
of developed spatiotemporal chaos. The overall simulation
time for a given parameter set is t = 500 (usually the systems
reach the stable asymptotic state before t = 200). For the sake
of comparison with Refs. [24,25], the parameters are chosen as
α = −1.4, β = 2, ω = 2π − α ≈ 7.68, ξ = π/2. Therefore,
the Benjamin-Feir criterion 1 + αβ < 0 is met and we observe
amplitude turbulence in the absence of feedback. Although we
do not vary ml or mg in this article, we keep ml + mg = 1
constant as in [24,25].

As an example for standing waves, we choose ml = 0.7,
mg = 0.3, μ = 0.7, and τ = 0.3. As result of simulation, we
observe a standing wave with wave number k = 0.589 and
an amplitude profile |A| shown in Fig. 2 as a black curve.
Note that it actually shows a “period-2” behavior since we are
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FIG. 2. (Color online) Amplitude profiles for μ = 0.7 (other
parameters as in Fig. 1). Shown are simulation [black curve (top
curve at space point 55)], theoretical result using the theoretically
obtained wave number [blue curve (bottom curve at 55)], theoretical
result using the wave number observed in the simulations [red curve,
central curve at 55]. We display only a part of the medium (total size,
L = 128).

quite off threshold (for all other parameters fixed, the onset
of standing waves occurs at μc = 0.932). By nonlinear curve
fitting, we obtain (
0,H0,Bk0,γ ) = (8.11,0.683,0.213,1.752)
from the simulations. However, for the chosen parameter
values, the stability analysis of uniform oscillation gives
kmax = 0.603 and the eigenvalue analysis (14) using this wave
number yields (
0,H0,Bk0,γ ) = (8.29,0.616,0.233,1.816).
The corresponding spatial amplitude profile is shown in Fig. 2
as a blue curve. Quantitative differences to the simulated
pattern are close to 10% or smaller, and the amplitude
profiles agree qualitatively very well. Taken into account that
both stability analysis of uniform oscillations and analytical
solution of standing waves use approximations like neglecting
higher-order terms, the agreement can be considered very
good. Furthermore, the simulations were carried out for a
relatively small system and the periodic boundary conditions
imply that we have an integer (and relatively small) number
of waves in the system, in this case 12. Therefore, in general,
it cannot be expected that the observed wave number (here
k = 0.589) matches the wave number predicted by the stability
analysis of uniform oscillations kmax = 0.603. If we use
k = 0.589 to calculate the standing wave solution through
(14), we obtain (
0,H0,Bk0,γ ) = (8.26,0.636,0.221,1.786);
i.e., all deviations become smaller and quantitative agreement
improves (displayed as a red curve in Fig. 2).

D. Properties of standing waves

To analyze the onset of standing waves a little further,
in Fig. 3(a) we show the amplitudes of the standing wave
modes, the uniform one H0 and the spatial one Bk0 as function
of μ. From the stability analysis of uniform oscillations
[25], we obtain their amplitude ρ and the point where they
become unstable: Here, the onset of standing waves occurs
at μc = 0.932, and the standing wave solution exists for μ

smaller than μc. From that analysis, we also obtain kc = 0.652
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FIG. 3. (Color online) (a) Amplitudes H0 (blue curve or upper
gray curve) and Bk0 (red or lower gray curve) of the standing waves
and the amplitude ρ0 of uniform oscillations (black) as function of
μ. The dotted curve indicates the unstable uniform periodic solution.
(b) Wave number k (green or gray) of the pattern as a function of μ at
threshold μc = 0.932, k = kc = 0.652. For μ < μc, we show kmax.
Dashed black curves indicate the limits of k of the family of standing
wave solutions. (c) Frequency 
0 of standing waves (green or gray
curve) vs frequency 
 of uniform oscillations (black). The dotted
curve corresponds to the unstable uniform oscillations. (d) Phase
shift γ as function of μ (in multiples of π ). Note that this figure
only describes the solution itself, not its stability. Around μ ≈ 0.5,
breathing sets in, and around μ ≈ 0.4, turbulence.

(at threshold) or kmax (away from threshold) that we use in
Eq. (14) to calculate the properties of the standing waves. The
values of k decrease as we move away from μc, but change less
than 15% over the whole studied interval [Fig. 3(b)]. Within the
area confined by dashed curves, standing wave solutions with a
given k exist; i.e., the solution with k = kmax is just one possible
representative of a family of solutions. We do not discuss the
stability of these solutions here. Coming back to Fig. 3(a), we
observe that the solution corresponding to uniform oscillations
also exists for μ < μc, but is unstable. As expected, the ampli-
tude Bk0 increases as we move away from μc. Its magnitude
shows a square root dependence as a function of the distance
to the bifurcation point: Bk0 = 0.5(μc − μ)1/2. Note that the
total amplitude of the space-dependent part in (16) is given by
2Bk0; i.e., the total amplitude follows the typical square-root
dependence from the bifurcation point. In Fig. 3(c), we see that
the oscillation frequency of standing waves 
0 is larger than
the oscillation frequency of the unstable uniform oscillations

. Both frequencies vary approximately linearly with μ (at
least close to μc), and so does their difference. Finally, we also
give the value of γ of the computed solution as a function
of μ [Fig. 3(d)]. Note that this figure only describes the
standing wave solution itself, not its stability. Around μ ≈ 0.5,
breathing sets in, and around μ ≈ 0.4, turbulence.

E. Breathing standing waves

As we have seen in Fig. 1(d), we observe breathing standing
waves, where, periodically, strong dips in the amplitude |A|
(noted as black areas in the right panel) are present. However,
the amplitude maxima (right panel) also oscillate slightly
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FIG. 4. (Color online) Stability area for the standing wave
solution, as obtained by simulations where μ and τ were changed
in steps of 0.05, respectively. Stable regular standing waves are found
in the open center region, limited by developed turbulence (black
squares), uniform oscillations (blue circles), and irregular (breathing)
standing waves (red diamonds). The curve indicates the analytically
calculated onset of standing waves. System size L = 256, other
parameters are as in Fig. 1.

in space, and consequently the pattern could also be called
“swinging” standing waves. In any case, the standing wave
pattern is still clearly seen as the underlying pattern for ReA
(left panel).

In Fig. 4, we show for the case mg = 0.7, ml = 0.3 the area
where regular and breathing standing waves are found: Stable
regular standing waves are found in the open center region,
limited by developed turbulence (black squares), uniform
oscillations (blue circles), and irregular (breathing) stand-
ing waves (red diamonds). We note that the breathing standing
waves are observed far from onset of the regular standing
waves. Indeed, we can perceive them as a transitory pattern
to fully developed turbulence. To understand the onset of the
breathing behavior in more detail, we performed simulations
for τ = 0.3, where μ was decreased in steps of 0.01 (starting
from a stable standing wave pattern), and for different system
sizes. We observed that for larger system sizes, the breathing
set in for slightly smaller μ (simulations not shown). This
can be explained by the fact that for a larger system size,
the standing wave pattern that is formed in the stable regime
can have a wave number closer to the optimal one, i.e., kmax,
whereas in a smaller system, the condition to have an integer
number of waves forces the system to adopt a wave number
farther away from kmax (this always assuming that the pattern
with k = kmax is formed, excluding possible other pattern
selection processes). While patterns with different k may
coexist in general, it is obvious that their stability properties

need not to be the same. In particular, patterns with different
k can become unstable to breathing at different μ.

IV. CONCLUSION

In this article, we derived the solutions of standing waves
for a CGLE in the presence of global and local time-delay
feedback terms and studied their properties analytically and
numerically. It is given by

ASW = e−i
0t [H0 + 2Bk0 cos(kx)e−iγ ], (17)

where k is given by the eigenvalue problem studied in [25];
i.e., it corresponds either to kc (at onset of the standing wave
pattern) or kmax (away from onset) and H0, Bk0, 
0, and γ

calculated from (14).
The complex Ginzburg-Landau equation describes the

dynamics of a spatially extended system that undergoes a
supercritical Hopf bifurcation. The basic solution in this
system corresponds to uniform oscillations. We considered the
situation where this solution is Benjamin-Feir unstable in the
absence of feedback (1 + αβ < 0), leading to spatiotemporal
chaos. Then, uniform oscillations can be induced through the
feedback. Standing waves are observed where this solution
becomes unstable with respect to perturbations with a certain
wave number [shown in Fig. 1(b)]. We have shown that
analytical theory describes well the numerically observed
properties of the pattern. We have illustrated this with an
example even far from onset. Standing waves represent a
family of solutions with different wave number k.

Standing waves can become unstable to a breathing mode.
It can be interpreted as an intermediate stage between fully
developed turbulence and regular standing waves, an effect
that also depends on system size. No general stability analysis
has been carried out for standing waves, but it is expected that
solutions with different k have different stability properties
(for all other parameters fixed).

Standing waves have been reported for a CGLE under
global feedback without explicit time delay [27–30] and later
also under global feedback with time delay [23]. To the best
of our knowledge, an explicit solution of standing waves was
first formulated in [27] [Eqs. (16) and (18)] and then in [30]
[Eq. (6)]. However, in systems without time delay, more analyt-
ical results are available than in systems with time delay where
the fundamental equations become delay differential equations
and more results rely on numerical evaluation. Furthermore, in
contrast to the above-mentioned studies, our model contains
local feedback terms. According to the simulations and the
stability analysis of uniform oscillations [25], local feedback
terms enlarge the area where standing waves can be stabilized.
So while local feedback is not necessary to produce standing
waves, it is favorable. For purely local feedback, standing
waves are observed even for low feedback magnitudes, while
uniform oscillations then require high feedback magnitudes.
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