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Emergence of antiphase bursting in two populations of randomly spiking elements
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Animal locomotion activity relies on the generation and control of coordinated periodic actions in a central
pattern generator (CPG). A core element of many CPGs responsible for the rhythm generation is a pair of
reciprocally coupled neuron populations. Recent interest in the development of highly reduced models of CPG
networks is motivated by utilization of CPG models in applications for biomimetic robotics. This paper considers
the use of a reduced model in the form of a discrete time system to study the emergence of antiphase bursting
activity in two reciprocally coupled populations evoked by the postinhibitory rebound effect.
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I. INTRODUCTION

The onset of switching activity in groups of reciprocally
coupled populations of neurons is a typical element of many
central pattern generators (CPGs) responsible for production
and control of rhythmic motor activity in animals [1–5]. A
great deal of neurobiological studies of CPG circuits in exper-
iments with animals and in theoretical studies of corresponding
computational models capturing neuronal behavior at various
levels of details demonstrated the important role of dynamical
mechanisms involved into the generation of rhythm and its
control [6–8]. A rather common network circuit found in many
CPG networks is a half-center oscillator that acts as a core
of rhythm generation and control [9–11]. Many half-center
oscillators are formed by two neurons or two groups of neurons
linked together by a reciprocal inhibition [12–14]. Such simple
networks play an important role in the control of motor activity
patterns such as walking, flying, and swimming.

A relatively recent development in studies of various
CPG models was motivated by potential applications of
neurobiological principles for the control of motor activity in
biomimetic robots [15,16]. A very important element of such
modeling is the design of very simple and computationally
efficient models of neuronal behavior that are sophisticated
enough to capture important dynamical mechanisms of real
neurons and networks of neurons and can be simulated in real
time within a compact low-power computer implemented with
a field-programmable gate array or digital signal processor
chip [17,18]. The reduction of the computational complexity
here is achieved by the design of a low-dimensional model of
the neuron that captures the important dynamical properties
of real neurons and by scaling down the redundancy of the
network in which a population of similar neurons operating
together as a network node is replaced by a single-neuron
model. A significant reduction of model complexity for the
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description of neuronal behavior can be achieved by using a
map-based approach [19–24]. The reduction of the network
size is a typical approach used in many simulations of big
networks (see, for example, [6,17]).

In this paper we study how the network reduction affects
the dynamical properties of half-center oscillations in the
populations of reciprocally inhibiting neurons [see Fig. 1(a)].
We focus on the case of intrinsically not bursting neurons
in which the onset of switching antiphase oscillations is
supported by the effect of postinhibitory rebound (PIR) bursts.
The neurons within each group do not interact with each other,
however, each neuron in one group inhibits all neurons in the
other group. In the study we use a dynamical map model
with stochastic perturbations in which an isolated element
(neuron) exhibits occasional spikes at random moments of
time; however, the interaction between two groups of such
elements leads to the formation of the mean activities of the
groups in antiphase burstlike oscillations.

II. INDIVIDUAL SPIKING DYNAMICS

As a simple model for capturing the dynamics of the spiking
activity of a neuron we use the following two-dimensional
discrete-time system [21,22]:

xn+1 = xn + F (xn) − yn − βH (xn − d) + I syn
n ,

yn+1 = yn + ε(xn − J ), (1)

where x mimics the qualitative behavior of the neural mem-
brane potential and y models the effects of relatively slow
ionic currents governing the transient behavior of the neuron.
The nonlinear functions F (x) and H (x) are written

F (x) = x(x − a)(1 − x), (2)

H (x) =
{

1, x � 0

0, x < 0,
(3)
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FIG. 1. (Color online) Examples of symmetric reciprocally in-
hibiting networks, the half-center oscillators. (a) Two groups of
neurons inhibiting each other. For simplicity, synaptic links from
only one presynaptic neuron in each group are shown. (b) Similar
network with only two neurons.

where 0 < a < 1. The parameters β and d control the shape
of bursting oscillations, ε is a time scale for y, and J

defines neural excitability. For J < Jmin, where Jmin = (1 +
a − √

1 − a + a2)/3 and the function F (x) has a minimum at
x = Jmin [Fig. 2(a)], the neuron is in a resting state (excitable
regime). In contrast, for J > Jmin the neuron generates spike
sequences and the larger J is, the more spikes in a sequence.

Coupling between the neurons is modeled using the input
synaptic current I

syn
n as defined by

I syn
n = −gn

(
xpost

n − ν
)
, (4)

where g is the synaptic conductance, xpost is the membrane
potential of the postsynaptic neuron, and ν is the reversal
potential. The dynamics of the synaptic conductance g is
triggered by a presynaptic spike and relaxes in accordance
with the dynamics of the following one-dimensional iteration
process (a map):

gn+1 = γgn + (1 − γ )gmaxH (xpre
n − θ ). (5)

Here γ (0 < γ < 1) defines a relaxation rate for the conduc-
tance, gmax is a maximum synaptic conductance, and θ is a
threshold parameter. Such a model reflects the main dynamic
properties of a real chemical synapse [25]. When a presynaptic
neuron displays only subthreshold behavior, a synapse is silent,
thus a postsynaptic neuron does not receive any input current
from that neuron. In the opposite case, when the presynaptic
neuron shows some activity above the threshold, e.g. fires
action potentials, the synapse affects the postsynaptic neuron.
Transitions between subthreshold activity and spiking of the
presynaptic neuron result in switching off and on of the
synapse with some rate of transient captured by (5). In terms
of variables, when the value of the presynaptic membrane
potential x

pre
n is above θ , the map (5) has a unique stable

fixed point g∗ = gmax and the value of gn tends towards g∗
exponentially with the rate 1 − γ . This produces synaptic
current for postsynaptic neuron [see (4)]. When x

pre
n < θ ,

a trivial stable solution in (5) g∗ = 0; after g approaches
this state the neurons are uncoupled. Thus the variable g

varies within the interval 0 < g < gmax attracting alternately
to g∗ = 0 and g∗ = gmax, demonstrating transient dynamics
with the rate 1 − γ .

In order to model stochastic spiking of individual neurons
we set the parameter values a = 0.1, ε = 10−4, β = 0.5, and
d = 0.4 and choose the values of the parameter J within
the interval (0.03,0.049). Under these conditions the model
reproduces the excitable regime, i.e., it does not generate
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FIG. 2. (Color online) (a) Phase portrait of the map (1) for a =
0.1, ε = 10−4, β = 0.5, d = 0.4, and J = 0.04. (b)–(d) Waveforms
of the map (1) for (b) J = 0.04, (c) J = 0.044, and (d) J = 0.048.

any action potentials if it does not receive any external
perturbations (an input current). If the external perturbation
pushes the model state above the threshold value, the model
generates an action potential and then returns to an equilibrium
state. To generate spikes at random moments of time we add
a term I rand

n to the first equation of (1). The input sequence
I rand
n is a white Gaussian noise with zero mean and a standard

deviation σcur equal to 0.001.
A phase portrait illustrating the trajectories of stochastic

spiking is shown in Fig. 2(a). One can see that the system has
a unique stable fixed point O [the crossing of the nullclines:
the curve y = F (x), consisting of two branches (left F+ and
right F−), and the line x = J ]. A trajectory moves in the
neighborhood of O while the noise intensity is small enough.
When the noise generates some high values, the trajectory
reaches the discontinuity line x = d and returns to F+. Such
a phase trajectory corresponds to a spike generation.

When model (1) with such properties receives a fluctuating
input current I rand

n , the model generates a sequence of spikes
at random moments. Depending on the value of J and on
the noise intensity σcur, there can be irregular sequences with
different mean spike frequencies. Figures 2(b)–2(d) show
waveforms for the same noise level and for three different
values of the threshold parameter J . In this example we choose
the sampling frequency equal to 1000 (i.e., we regard 1 s to
be equal to 1000 iterations). It is seen that the larger J is, the
higher the average spike frequency. This dynamics of spiking
rate is summarized in Fig. 3, where the average spike rate 〈R〉
as a function of J is plotted for several noise intensities σcur.
One can see that the sharp transition from silence to spike
generation observed in the pure deterministic case (σcur = 0)
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FIG. 3. (Color online) Spike rate 〈R〉 versus the threshold
parameter J for different levels of the additive noise σcur.

smoothes out into a monotonic increase of 〈R〉(J ) when noisy
input is applied and increased.

A crucial dynamical property of neuron model required
in our study is the ability of model to replicate the effect of
PIR, which is a generation of a spike or a burst of spikes
after the action of a hyperpolarizing stimulus, for example,
I

syn
n = −A, with t0 � n � t1 and A > 0. This property is

achieved through the appearance of a new (shifted) nullcline
y = F (x) − A located below y = F (x) in the phase plane
during stimulation t0 � n � t1. As a result, a new stable
fixed point Õ appears below O during this time. A disturbed
trajectory moves to the left from the point [Jmin,F (Jmin)],
providing hyperpolarization, and then follows down the curve
y = F (x) − A until the stimulus terminates. After that the
nullcline y = F (x) and point O return to the phase plane. The
trajectory does not return to the equilibrium O directly, but
quickly moves towards the line x = d and after one or several
jumps around x = d returns to F+. The resulting trajectory
forms a spiking response to the inhibitory stimulus. Figure 4
shows neural responses produced by the model in reaction to
negative pulses of input currents with different duration. The
strength of PIR activity is proportional to the number of spikes
in the evoked burst. As one can see, the longer the model gets
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FIG. 4. (Color online) Effect of bursting rebound. After an
inhibitory constant external current terminating, the neuron generates
a spike or sequence of them depending on the duration and value.
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FIG. 5. Number of spikes in the neural response to a rectangular
stimulus with amplitude A and duration �T . The threshold parameter
is J = 0.044.

hyperpolarized, the stronger the effect of PIR activity. The
mechanism underlying such an effect is the following. For
longer stimuli, the trajectory in the phase plane (x,y) spends
more time moving down the shifted nullcline y = F (x) − A

and reaches a lower point before the stimulus terminates. This
results in a lower starting point for moving up when the trajec-
tory jumps around the discontinuity line x = d. The lower the
trajectory begins moving up, the more jumps around x = d

it makes and the more spikes in a corresponding burst. Note
that for a long enough hyperpolarizing stimulus the trajectory
reaches the disturbed fixed point so further prolongation no
longer affects the number of spikes in a response.

The analysis of transient spiking activity caused by PIR
for a hyperpolarizing stimulus and spike generation for a
depolarizing stimulus is summarized in Fig. 5. The numbers
next to the border indicate the number of spikes produced by
the stimuli. Only some borders corresponding to 2N spikes
are shown. The general conclusion of this analysis is that
the longer the duration �T of a rectangular stimulus and/or
the larger the absolute magnitude A, the more spikes are
generated in a sequence for both hyperpolarizing (A > 0) and
depolarizing (A < 0) stimuli (see Fig. 5). A narrow region
(colored gray) covers the parameter values for which there is
no spike generated in the model response.

III. GROUP DYNAMICS

To discuss the population dynamics let us consider a
network of two groups, each of which contains 100 neurons
as described above. A qualitative scheme of coupling between
the groups is illustrated schematically in Fig. 1(a), where each
neuron in one group inhibits all neurons in the other group and
vice versa.

The diversity of neurons in each group is introduced by
dispersion of the baseline states controlling the excitability
properties, i.e., by the values of J that are taken to be normally
distributed with mean Jmean (0 < Jmean < 0.1) and standard
deviation σJ = 10−2. In this case the elements individually
generate stochastic spikes with different mean firing rates.
Coupling into the network [Fig. 1(a)] evokes a new type of
collective behavior in the form of antiphase oscillations that
produce regular modulation of group activities. As will be
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FIG. 6. (Color online) (a), (c), and (e) Rastrograms of the spiking activity in two neuron groups consisting of 100 elements each and (b), (d),
and (f) corresponding waveforms of the average activity. The three cases presented differ by the mean excitability level: (a) and (b) Jmean = 0.03,
(c) and (d) Jmean = 0.05, and (e) and (f) Jmean = 0.07. The standard deviation is σJ = 10−2 and the maximum coupling gmax = 5 × 10−3 in all
cases.

shown below, these oscillations of the system respond to an
external stimulation in a predictable manner.

A. Emergent bursting

First we consider the collective dynamics of the network
operating autonomously. The results of network simulations
in this case are shown in Fig. 6 for different levels of mean
excitability Jmean of the network population. Figures 6(a), 6(c),
and 6(e) show the occurrence of spikes in both groups. One
can see that irregular action potentials of one group arise
in time intervals that do not overlap with those of another
group, causing the alternation of group activities. Therefore,
the waveforms of the average activities of the two groups are
antiphase bursts [Figs. 6(b), 6(d), and 6(f)]. It is also shown
that an increase of the value of Jmean leads to an increase of
the bursting period.

To study how the excitability level of the network and
the strength of inhibitory coupling affect the parameters of
collective activity, we have calculated spectrograms of group

bursting oscillations for different Jmean and gmax. We set
the sampling frequency equal to 500. The main results are
illustrated in Figs. 7(a) and 7(b), which present two different
values of the coupling strength gmax. One can clearly see
that there is a threshold value of Jmean corresponding to the
emergence of bursting activity. This threshold level decreases
as the value of gmax increases. Another property of these
oscillations is that the average bursting frequency decreases
with an increase of the excitation level of the network, Jmean.

The results are summarized in Figs. 7(c) and 7(d), where
the bursting rate and the level of activity within each burst
are shown in the parameter plane (Jmean,gmax). We measure
the burst rate as an average number of group bursts per
second. Note that the number of individual spikes per group
burst increases with increasing Jmean and/or gmax, as seen in
Fig. 7(d). The white areas in Figs. 7(c) and 7(d) correspond
to the no-bursting regimes that take place below the network
threshold level discussed above.

To complete the description of the group dynamics in
the half-center oscillator network we examine the average
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FIG. 7. (Color online) Spectrograms of group bursting for (a) gmax = 10−3 and (b) gmax = 5 × 10−3, with σJ = 10−2. (c) Average bursting
frequency and (d) average number of individual spikes per group burst, depending on the mean excitability level Jmean and the average maximum
conductivity gmax. Also shown are spectrograms of one of the two coupled spiking neurons with the same parameters for (e) gmax = 0.1 and (f)
gmax = 0.5.

group behavior using its trajectories in the phase space
analysis. Consider how a representative point (xmean

n ,ymean
n )

where (xmean
n = ∑N

k=1 x(1)
n ,ymean

n = ∑N
k=1 y(1)

n ) moves in the
projection on the plane (x,y). Here N = 100 is the number of
neurons in one group. To be specific, we take the first group
[which is indicated by the index (1)]; for the second group the
result will be the same due to the symmetry of the network
configuration. Figure 8 shows that such averaged trajectories
form a noisy limit cycle attractor that evolves with increasing
values of Jmean, getting closer to the limit cycle typical for
the cases of fast and slow oscillations in a low-dimensional
system.

An interesting question that we address in this study is how
the model of such a large network of reciprocally inhibiting
groups of neurons can be replaced with a pair of reciprocally

inhibiting neurons. Further, we ask whether the neurons in
the pair have parameters similar to the neurons in the group.
Here we will demonstrate a simple case in which the network
consists of just two spiking neurons mutually inhibiting each
other. The parameters of the neurons are set to be the same
as the mean parameters of the neurons used in a group. The
simulations show that there are no such pronounced oscillatory
properties in Fig. 8(d) and the bursting in the corresponding
spectrograms look rather faded with different dynamics of
the threshold [see Figs. 7(e) and 7(f)]. The neurons that
produce a robust rhythm of bursting operating in networks
generate irregular bursts with fluctuating duration operating
in the case of a reduced network model. We will focus
more on this comparative analysis in the remainder of the
paper.
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FIG. 8. Averaged trajectory (xmean
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n ) over N = 100 neurons in one group for gmax = 5 × 10−3 and different values of Jmean: (a) 0.03,
(b) 0.05, and (c) 0.07. (d) Phase portrait corresponding to one neuron in a pair of reciprocally inhibiting spiking neurons; the parameters are
gmax = 0.3 and J = 0.05.

FIG. 9. (a) Phase reset in two reciprocally inhibiting groups. The average activity of one group is shown for different moments of stimulation.
(b) Corresponding phase resetting curve. (c) Stimulation of one neuron in a pair of reciprocally inhibiting spiking neurons. Note that a new
phase depends on a moment of stimulation in a rather chaotic manner. (d) Definition of phase resetting.
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B. Phase reset

One of the most important elements in capturing the
behavior of CPGs is the dynamics of its response to

the external sensory or control stimulus. In the case of
the half-center oscillator network this dynamics is related to the
phase reset properties. Considering the effects of phase reset
in the network, we apply a short stimulus with A = −0.01 and
�T = 20 ms to all the elements in one group and examine
the phase of new bursting oscillations after the transient
is complete. Figure 9(a) shows that the network responds
differently depending on the network state when it receives a
stimulus. There are some moments (during the active phase
of bursts) when the stimulus hardly disturbs the network
oscillations; however, there are moments (during the passive
phase of bursts) when the stimulus can lead to a significant
phase shift. To quantify this property we plotted the phase
resetting curve (PRC) (see, e.g., [26]) shown in Fig. 9(b).
We define the phase of stimulation as ϕs = ts/T0 and the
phase difference after the reset as � ϕ = (T0 − T1)/T0 [see
Fig. 9(d)]. Note that in the case of a reduced network model
with only a pair of spiking reciprocally inhibiting neurons
with the same intrinsic behavior as the neurons in a group, the
post-transient oscillations have no clear reset phase and the
reset curve observed for the large network is not reproduced
[Fig. 9(c)].

IV. REDUCTION TO A PAIR OF BURSTING NEURONS

We have shown above that the emergence of antiphase
bursts in the interacting groups cannot be reduced to the dy-
namics of two interacting spiking elements (see Figs. 7 and 8).
Nor can the phase reset effect be explained by considering
only a pair of neurons (Fig. 9) that generate irregular spikes.

FIG. 11. (Color online) Spectrograms for one of the two coupled bursting neurons for (a) gmax = 0.3 and (b) gmax = 0.7, with β = 0.2,
d = 0.5, and ε = 0.002. (c) Bursting frequency and (d) average number of spikes per burst as functions of J and gmax.
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FIG. 12. (a) Phase reset in two reciprocally inhibiting bursting neurons. The activity of one neuron is shown for different moments of
stimulation. (b) Corresponding phase resetting curve.

However, if one wishes to study a complex network including
more than two large populations, it is useful to find reduced
models where the group dynamics can be approximated by the
dynamics of some simple unit. In our case, it is reasonable
to consider two mutually inhibiting neurons [Fig. 1(b)] with
spike-bursting behavior that is observed in the group average
activity [Figs. 6(b), 6(d), 6(f), and 8(a)–8(c)]. To replicate this
regime, we choose values of β and d in such a way that each
neuron generates a sequence of spikes (a burst).

Thus we have the following map describing the dynamics
of the two coupled neurons:

x
(i)
n+1 = x(i)

n + F
(
x(i)

n

) − y(i)
n − βH

(
x(i)

n − d
) + I i

n,

y
(i)
n+1 = y(i)

n + ε
(
x(i)

n − J
)
, I (i)

n = −g(i)
n (x(i)

n − ν), (6)

g
(i)
n+1 = γg(i)

n + (1 − γ )gmaxH (xpre
n − θ ),

where the index i (i = 1,2) denotes the first and the second
neuron and pre corresponds to a presynaptic neuron (the first
neuron is presynaptic for the second one and vice versa). We
set a = 0.1, ε = 0.002, β = 0.2, d = 0.5, γ = 0.5, ν = −0.6,
and θ = 0.15 and take J from the interval (0,0.1) and gmax

from the interval (0,0.7).
The phase portrait for one neuron in the pair is shown in

Fig. 10(a) and corresponding waveforms for both elements
are shown in Fig. 10(b). Note that the effect of one element
on the other can be described in terms of switching between
two phase portraits in the phase plane (x,y) corresponding to a
single element dynamics. When the postsynaptic neuron (to be
specific, consider the first one) is isolated, i.e., the presynaptic
neuron is below the threshold value x

pre
n < θ and does not

inhibit the first one, the dynamics in (x,y) is determined by
the stable fixed point O1 and the stable invariant curve Ws

1 .
During this stage phase trajectories are in the area a1. When
the postsynaptic neuron is under inhibition, i.e., the presynaptic
neuron is over the threshold x

pre
n > θ , the dynamics in (x,y) is

governed by another stable invariant curve Ws
2 [Fig. 10(a)] and

phase trajectories enter the area a2. After this stage terminates,
the trajectories leave a2 and move to a3 and this motion
determines the PIR burst. After many repetitions of these
switchings we have the waveforms of two antiphase bursting
oscillations shown in Fig. 10(b).

As we did for the network dynamics in Sec. III, now we
analyze the influence of the excitability level and the coupling

intensity on the bursting properties. We calculate spectrograms
for different J and gmax. The results are shown in Figs. 11(a)
and 11(b) for two different values of the coupling strength. It
is seen that there is a threshold value of J corresponding to the
bursting appearance and it becomes lower for increasing gmax

[see Figs. 7(a) and 7(b)].
The bursting rate and the number of spikes per burst as

functions of J and gmax are shown in Figs. 7(c) and 7(d),
respectively. A remarkable feature is the qualitative similarity
of these characteristics with those of group bursts [see
Figs. 7(c) and 7(d)]. There are threshold values of burst
generation and the larger J and gmax result in smaller burst
frequencies and the greater number of spikes per burst. The
main difference with Figs. 7(c) and 7(d) is that for J > Jmin ≈
0.05 there is no lower gmax threshold for burst generation
because in this regime neurons generate bursts in the individual
dynamics.

The phase reset effect for two bursting neurons (Fig. 12)
is similar to that of the groups [Figs. 9(a) and 9(b)], except
that now the PRC has a ruptured shape due to the bursting
nature of the individual element, which has larger variation of
sensitivity to the stimulus at different phases of burst.

V. CONCLUSION

We have considered the collective behavior of two recip-
rocally coupled populations of spiking neurons. This system
provides a basis for the functioning of many CPGs. We found
that stochastic spiking elements with the PIR property, when
coupled into such a network, exhibit emergent antiphase bursts
in the average group activity. It should be noted that the
emergence of bursting behavior in large neural networks of
nonbursting elements takes place not only in systems with
reciprocal inhibition. There may be other dynamic or structural
mechanisms of this activity. For example, in [27] the collective
bursting behavior was found in a large network of intrinsically
nonbursting neurons. The mechanism responsible for the
bursting is a combination of excitatory feedback received
from neighboring neurons together with an activity-dependent
adaptation mechanism that slows down spiking. Another
example is a population of nonbursting cells coupled via the
mean field [28]. It was shown in such a system that emergent
bursting is due to coupling alone and is very robust to changes

042907-8



EMERGENCE OF ANTIPHASE BURSTING IN TWO . . . PHYSICAL REVIEW E 88, 042907 (2013)

in the coupling strength and that heterogeneity in the model
parameters does not play a role.

We have shown that the nonlinear collective dynamics
of a large-scale network can be studied in some aspects by
means of a simplified model. The dynamic similarity between
group averaged activity and spike-bursting single-element
behavior allows us to analyze the emergence of antiphase
bursting and the properties of phase reset in a pair of mutually
inhibiting bursting units. Another supporting detail is that in
the network model irregular spikes appear due to the PIR
and in the reduced model bursts alternate due to the same
mechanism.

A reduction of the network activity to simplified (mean-
field) models describing average dynamics has been utilized
for biological networks [29–31]. A common requirement
for applying this method is that a network does not have
complex connectivity structure. In our network consisting of

two homogeneous subnetworks, the ad hoc reducing procedure
is based on similar phase portraits that lead to similar
phase resets. The result obtained provides a starting point
for modeling multipopulation networks of CPGs. Interaction
and synchronization mechanisms for network functioning
can be basically understood in terms of average-activity
units.
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