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Taming rogue waves in vector Bose-Einstein condensates
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Using gauge transformation method, we generate rogue waves for the two-component Bose-Einstein
condensates (BECs) governed by the symmetric coupled Gross-Pitaevskii (GP) equations and study their
dynamics. We also suggest a mechanism to tame the rogue waves either by manipulating the scattering length
through Feshbach resonance or the trapping frequency, a phenomenon not witnessed in the domain of BECs, and
we believe that these results may have wider ramifications in the management of rogons.
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I. INTRODUCTION

Rogue waves are nonlinear single oceanic waves of ex-
tremely large amplitude, much higher than the average wave
crests around them and are localized both in space and time.
Similar to the properties of the solitary waves, rogue waves are
also known as “rogons” if they reappear virtually unaffected in
size or shape shortly after their interactions [1]. Rogue waves
have caused tremendous havoc and have contributed to several
maritime disasters [2]. In contrast to tsunamis [3], which can
be predicted hours (sometimes days) in advance, the danger
of oceanic rogue waves is that they appear from nowhere and
disappear without even a trace [4].

Even though their existence has now been confirmed by
several observations, the grim reality is that their generating
mechanism is not yet fully understood. The recent studies
argue that they arise due to modulation instability [5–7],
and their occurrence has been reported in optics [8], plasma
[9], and Bose-Einstein condensates (BECs) [10]. To date,
several nonlinear partial differential equations derived from
different branches of physics have been shown to admit
rogue waves. Among these, the nonlinear Schrodinger (NLS)
equation represents the most elegant model to describe rogue
waves. Recently, using NLS equation, a generating mechanism
for multiple rogue waves has been proposed [11,12]. The
collision of two or more Akhmediev breathers (ABs) resulting
from modulation instability can lead to rogue waves in these
systems [12]. At the same time, the discrete integrable systems
like generalized Ablowitz-Ladik-Hirota (ALH) lattice with
variable coefficients supports the nonautonomous discrete
rogue solutions [13]. Since the lifetime of rogue waves is
very short, their systematic investigation is very complicated.
Penetrating deep into the domain of rogue waves not only helps
in understanding their dynamics but also in controlling their
size and lifetime for technological applications, particularly in
the realm of nonlinear optics and BECs.

The recent theoretical investigations predict that the rogue
wave phenomenon can be observed in integrable multicom-
ponent systems like Manakov model [14], spinor F = 1
condensates [15], etc., and have also confirmed the existence
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of new types of bright- and dark-rogue wave solutions. The
possible mechanism for the formation of rogue waves in
the two-dimensional coupled NLS equations describing the
nonlinearly interacting two-dimensional waves in deep water
has also been proposed [16,17]. The numerical study on the
two-component BECs with variable scattering lengths shows
that rogue wave solutions generated by phase and/or density
engineering can exist only for certain combinations of the
nonlinear coefficients describing two-body interactions [18].
Motivated by these observations, in this paper, we identify
a simple mechanism to generate and control the evolution
of rogue waves in vector BECs. It should be mentioned that
even though rogue waves have been manipulated in nonlinear
optics [12,19] and BECs [20], their observation in vector BECs
characterized by the symmetric coupled Gross-Pitaevskii (GP)
equation has not yet been fully understood. In this paper,
we generate rogue waves for the vector BECs governed by
the coupled GP equation and manipulate either the scattering
length through Feshbach resonance or the trapping frequency
to tame them, a new phenomenon not observed in the territory
of BECs.

II. THEORETICAL MODEL AND LAX PAIR

Considering a spinor BEC comprising two hyperfine states
|F = 1,mf = −1 > and |F = 1,mf = 1 > of the same atom,
say 87Rb [21] confined at different vertical positions by
parabolic traps, the dynamics in the mean-field approximation
is described by the coupled dimensionless GP equation [22]
of the following form (for cigar-shaped BECs)

iψ1t + ψ1xx + 2η(t)(|ψ1|2 + |ψ2|2)ψ1 + λ(t)2x2ψ1

+ iG(t)ψ1 = 0, (1)

iψ2t + ψ2xx + 2η(t)(|ψ1|2 + |ψ2|2)ψ2 + λ(t)2x2ψ2

+ iG(t)ψ2 = 0, (2)

where ψj (j=1,2) represents the order parameter of the
condensates, η(t) is the temporal scattering length, λ(t) is
the trap frequency, and G(t) accounts for the feeding of
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FIG. 1. (Color online) Density profiles of rogue waves for η(t) =
0.0006, g2 = 0, e1 = 0.1, �(t) = 0.01t, f (t) = 0.001.

atoms (loss/gain) from the thermal cloud. The above coupled
GP equation has already been investigated [23,24] and the
collisional dynamics of bright solitons has been studied.

Equations (1) and (2) admit the following Lax pair:

�x = Q1� (3)

�t = Q2�, (4)

and

Q1 =

⎛
⎜⎝

−iζ (t) q1 q2

−q∗
1 iζ (t) 0

−q∗
2 0 iζ (t)

⎞
⎟⎠ , (5)

Q2 =

⎛
⎜⎝

Q2(11) Q2(12) Q2(13)

Q2(21) Q2(22) Q2(23)

Q2(31) Q2(32) Q2(33)

⎞
⎟⎠ , (6)

where

Q2(11) = −2iζ (t)2 + 2ζ (t)i�(t)x + i(|q1|2 + |q2|2)

Q2(12) = 2ζ (t)q1 + i[q1x + 2i�(t)xq1]

Q2(13) = 2ζ (t)q2 + i[q2x + 2i�(t)xq2]

Q2(21) = −2ζ (t)q∗
1 + i[q∗

1x − 2i�(t)xq∗
1 ]

Q2(22) = 2iζ (t)2 − 2ζ (t)i�(t)x − i|q1|2
Q2(23) = −iq2q

∗
1

Q2(31) = −2ζ (t)q∗
2 + i[q∗

2x − 2i�(t)xq∗
2 ]

Q2(32) = −iq∗
2 q1

Q2(33) = 2iζ (t)2 − 2iζ (t)�(t)x − i|q2|2

q1(x,t) =
√

η(t)e(−i�(t)x2/2)ψ1(x,t), (7)

q2(x,t) =
√

η(t)e(−i�(t)x2/2)ψ2(x,t). (8)
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FIG. 2. (Color online) Taming of the rogue waves by manipulat-
ing the scattering length for η(t) = 0.006 and f (t) = 0.01 with the
other parameters, as described in the legend of Fig. 1.
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FIG. 3. (Color online) Stabilization of rogue waves for η(t) =
0.06 and f (t) = 0.1, with the other parameters as described in the
legend of Fig. 1.

In Eqs. (3) and (4), � represents the eigenfunction denoted
by (φ1,φ2,φ3)T while (Q1,Q2) denotes the Lax operators
described by (3 × 3) matrices while ζ (t) represents the
nonisospectral parameter obeying the following equation:

ζ (t) = μe[−2
∫

�(t)dt]. (9)

In the above equation, μ is a complex constant and �(t) is
an arbitrary function of time. The compatibility condition
Q1t − Q2x + [Q1,Q2] = 0 generates Eqs. (1) and (2) with
the following constraints

G(t) = �(t) + 1

2

η′(t)
η(t)

,

and

λ(t)2 = �(t)2 + (�′(t)/2), (10)

subject to the integrability condition

λ(t)2 = G(t)2 + 1

2

η′(t)2

η(t)2
− G(t)

η′(t)
η(t)

+ 1

2
G′(t) − 1

4

η′′(t)
η(t)

.

(11)

To obtain the exact solution of Eqs. (1) and (2), we introduce
the following dependent variable transformation:

ψ1(x,t) = 	(x,t)U (X,T ), (12)

ψ2(x,t) = 	(x,t)V (X,T ), (13)

with the coordinates governed by the following equations:

X =
√

2r0η(t)x − 2
√

2br3
0

∫
η(t)2dt, (14)

T = r2
0

∫
η(t)2dt, (15)

and

	(x,t) =
√

2r2
0 η(t)ei[− η(t)t

2η(t) x
2+2br2

0 η(t)x−2b2r4
0

∫
η(t)2dt]

, (16)
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FIG. 4. (Color online) Density profiles of two rogue waves for
η(t) = 0.12t , f (t) = 0.05t g2 = 0.9,e1 = 0.1, and �(t) = 0.1t .
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FIG. 5. (Color online) Stabilization of two rogue waves by
manipulating the time-dependent scattering length for η(t) = 0.168t

and f (t) = 0.07t , with the other parameters as described in the legend
of Fig. 4.

where r0 and b are arbitrary constants so that Eqs. (1) and (2)
reduce to the celebrated Manakov model.

III. CONSTRUCTION OF ROGUE WAVES

To construct rogue waves, we start from the following
nonzero plane wave solution as the seed solution given by

ψ1[0] = c1exp[iθ1],ψ2[0] = c2exp[iθ2], (17)

where

θ1 = g1x + (
2c2

1 + 2c2
2 − g2

1

)
t (18)

θ2 = g2x + (
2c2

1 + 2c2
2 − g2

2

)
t. (19)

Feeding the above seed solution into the Lax-pair governed
by Eqs. (3) and (4), we obtain

�1x = (MQ1M
−1 + MxM

−1)�1 = Q̂1�1

�1t = (MQ2M
−1 + MtM

−1)�1 = Q̂2�1,

where the iterated eigenfunction �1 = M�,M =
diag[exp[− i

3 (θ1 + θ2)], exp[ i
3 (2θ1 − θ2)], exp[ i

3 (θ1 + θ2)]],
with

Q̂1 =

⎛
⎜⎝

χ11 c1 c2

−c1 χ22 0

−c2 0 χ33

⎞
⎟⎠ , (20)

Q̂2 = iQ̂1
2 −

[
2

3
(g1 + g2) − 2ζ1

]
Q̂1 + mI

χ11 = −2iζ1 − i

3
(g1 + g2)
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FIG. 6. (Color online) Stabilization of two rogue waves by
fine-tuning the time-dependent scattering length for η(t) = 0.36t and
f (t) = 0.15t , with the other parameters as described in the legend of
Fig. 4.
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FIG. 7. (Color online) Density profile of two rogue waves
for η(t) = 2cos(0.15t), g2 = 0.5, e1 = 0.5

3 , �(t) = 0.15t, and f (t) =
cos(0.15t).

χ22 = iζ1 − i

3
(2g1 − g2)

χ33 = iζ1 + i

3
(2g2 − g1), (21)

and the new parameter m = 2iζ 2
1 + 2i

3 [c2
1 + c2

2 + 2i
9 (g2

1 −
g1g2 + g2

2) + 2iζ1

3 (g1 + g2)].
In order to look for the rational solutions, we choose

a new parameter σ = g2 + 3ζ1R,g1 = g2 − 2σ,c1 = c2 = 2σ ,
where g2 and ζ1R are arbitrary real numbers. The fundamental
solution matrix for Lax pair equations at ζ (t) = ζ1 and ψ =
ψj [0](j = 1,2) are � = M−1, where

 =

⎛
⎜⎝

φ11 4σ 2ν + 2
√

3σ 4σ

φ21 −2(
√

3 − i)ν − 2σ −2σ 2(
√

3 − i)

φ31 φ∗
22 φ∗

23

⎞
⎟⎠ , (22)

with

φ11 = 4σ 2(ν + 2it) + 4
√

3σν + 2

φ21 = −2(
√

3 − i)σ 2(ν2 + 2it) − 4σν

φ31 = −2(
√

3 + i)σ 2(ν2 + 2it) − 4σν,

and ν = x + 2
√

3(σ − i
√

3ζ1R)it . To obtain the rational
solution of the coupled GP equation, we exploit the gauge
transformation approach [25], employing the following trans-
formation:

ψ1[1] = ψ1[0] − 2i(ζ1 − ζ̄1)
φ1φ

∗
2

|φ1|2 + |φ2|2 + |φ3|2

ψ2[1] = ψ2[0] − 2i(ζ1 − ζ̄1)
φ1φ

∗
3

|φ1|2 + |φ2|2 + |φ3|2 .

(23)
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FIG. 8. (Color online) Contour plots of Fig. 7.
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The explicit forms of the first-order rogue wave solution have
the following form

ψ1 =
√

2

η(t)
ε

(1)
1 β(t)[−1 − i

√
3 + a]

× exp[iθ1 − ξ1 + �(t)x2/2], (24)

ψ2 =
√

2

η(t)
ε

(2)
1 β(t)[−1 − i

√
3 + a]

× exp[iθ2 − ξ1 + �(t)x2/2], (25)

where a = f1/f2

f1 = −6δσ
√

3 − 36tσ 2
√

3 − 3 + i(36tσ 2 + 6δσ + 5
√

3),

f2 = 12σ 2δ2 + 8δσ
√

3 + 144t2σ 4 + 5,

where δ = x + 6ζ1Rt . The gauge transformation approach [25]
can be easily extended to generate a multiple rogue wave
solution. For example, the second-order rogue wave solution
has the following form:

ψ1 =
√

2

η(t)
ε

(1)
1 β(t)[−1 − i

√
3 + a1]

× exp[iθ1 − ξ1 + �(t)x2/2] (26)

ψ2 =
√

2

η(t)
ε

(1)
1 β(t)[−1 − i

√
3 + a2]

× exp[iθ1 − ξ1 + �(t)x2/2], (27)

where

a1 = J1 + iK1

D

a2 = J2 + iK2

D

J1 = − 864
√

3σ 6t3 − 144
√

3σ 5δt2 − 72
√

3σ 4δ2t − 216σ 4t2 − 12
√

3σ 3δ3 − 144σ 3δt − 18σ 2δ2 − 12
√

3σ 2t + 3

J2 = + 864
√

3σ 6t3 − 144
√

3σ 5δt2 + 72
√

3σ 4δ2t − 216σ 4t2 − 12
√

3σ 3δ3 + 144σ 3δt − 18σ 2δ2 + 12
√

3σ 2t + 3

K1 = + 864σ 6t3 + 144σ 5δt2 + 72σ 4δ2t + 312
√

3σ 4t2 + 12σ 3δ3 + 96
√

3σ 3δt + 18
√

3σ 2δ2 + 108σ 2t + 12σδ +
√

3

K2 = + 864σ 6t3 − 144σ 5δt2 + 72σ 4δ2t − 312
√

3σ 4t2 − 12σ 3δ3 + 96
√

3σ 3δt − 18
√

3σ 2δ2 + 108σ 2t − 12σδ −
√

3

D = + 1728σ 8t4 + 384
√

3σ 5δt2 + 12σ 4δ4 + 432σ 4t2 + 16
√

3σ 3δ3 + 24σ 2δ2 + 4
√

3σδ + 1,

where η(t) = 2σf (t), α(t) = α0σ exp[−2
∫

�(t)dt], and
β(t) = β0σ exp[−2

∫
�(t)dt].

IV. STABILIZATION OF ROGUE WAVES

Figure 1 shows the density profiles of first-order rogue
waves governed by the scattering length for η(t) = 0.0006
and f (t) = 0.001. It is obvious from Fig. 1 that the density of
rogue waves is enormous, which means that it would collapse
or disappear in a short interval of time during time evolution.
To stabilize (reduce the density) the rogue waves and thereby
increase its lifespan, we harness the fact that their densities
|ψj |2(j = 1,2) are inversely proportional to the scattering
length η(t) [of course, η(t) varies directly with f (t)]. Hence,
we manipulate (increase) the scattering length η(t) through
Feshbach resonance suitably to stabilize the first-order rogue
waves as shown in Fig. 2. Rogue waves can be stabilized
further for η(t) = 0.06 and f (t) = 0.1, as shown in Fig. 3. This
process of stabilizing the amplitude of rogue waves and thereby
increasing the lifetime is called “taming.” Figure 4 shows
the density profile of second-order rogue waves for time-
dependent scattering lengths η(t) = 0.12t and f (t) = 0.05t .
Again, one can tame the rogue waves further by fine-tuning the
time-dependent scattering lengths as shown in Figs. 5 and 6.
From Figs. 4–6, one understands that the density of the rogue
waves decreases by fine-tuning the time-dependent scattering

lengths. This means that one can delay the inevitable (the
collapse or disappearance of the condensates) by manipulating
the time-dependent scattering lengths as well. In addition, the
fact that it stretches over a finite interval of time compared to
Figs. 1–3 means that one finally ends up increasing the lifespan
of BECs.

It should also be mentioned that the trapping frequency λ(t),
which is related to �(t) by virtue of Eq. (10), can also suitably
changed to tame rogue waves. Figure 7 shows the density
profile of second-order rogue waves for periodically varying
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FIG. 9. (Color online) Evolution of two rogue waves with an
increased lifespan by fine-tuning the trapping frequency for �(t) =
0.1t .
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FIG. 10. (Color online) Profile of rogue waves with an increased
lifespan by fine-tuning the trapping frequency for �(t) = 0.03t .

scattering lengths η(t) = 2cos(0.15t) and f (t) = cos(0.15t)
and Fig. 8 depicts the corresponding contour plot. The contour
plot shown in Fig. 9 depicts the time evolution of second-
order rogue waves shown in Fig. 8 by maneuvering the trap
frequency �(t) = 0.1t . Further evolution of the second-order
rogue waves shown in Fig. 10 shows that one can certainly
enhance the lifespan of the rogue waves by manipulating the
trap frequency for �(t) = 0.03t

V. CONCLUSION

In this paper, we discuss the dynamics of the rogue waves
of the vector BECs governed by the symmetric coupled
GP equation. We observe that we are able to stabilize (or
tame) the rogue waves by either manipulating the scattering
length (both constant and time-dependent) through Feshbach
resonance or the trapping frequency. In the process, we end
up increasing the lifespan of rogue waves, a phenomenon
that may have wider ramifications in BECs and nonlinear
optics.

ACKNOWLEDGMENTS

P.S.V. thanks UGC and DAE-NBHM for financial sup-
port. R.R. acknowledges the financial assistance received
from DAE-NBHM (Refs. No. 2/48(1)/2010/NBHM/-R and
No. DII/4524 dated May 11, 2010), UGC (Ref. No. F.No
40-420/2011(SR) dated July 4, 2011), and DST (Ref. No.
SR/S2/HEP-26/2012). K.P. acknowledges DST and CSIR,
Government of India, for financial support through major
projects. Authors thank the anonymous referees for their
suggestions to improve the readability of the paper.

[1] Z. Y. Yan, Phys. Lett. A 374, 672 (2010).
[2] R. Smith, J. Fluid Mech. 77, 417 (1976); R. G. Dean, in

Water Wave Kinetics, edited by A. Torum and O. T. Gudmestad
(Kluwer Academic, Dordrecht, 1990), p. 609; I. V. Lavrenov,
Nat. Hazards 17, 117 (1998).

[3] E. Pelinovsky and C. Kharif, Extreme Ocean Waves (Springer,
Berlin, 2008).

[4] N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373,
675 (2009).

[5] D. H. Peregrine, J. Aust. Math. Soc. Ser. B, Appl. Math. 25, 16
(1983).

[6] T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
[7] V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).
[8] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London)

450, 1054 (2007); M. Erkintalo, G. Genty, and J. M. Dudley,
Opt. Lett. 34, 2468 (2009).

[9] W. M. Moslem, P. K. Shukla, and B. Eliasson, Europhys. Lett.
96, 25002 (2011).

[10] Y. V. Bludov, V. V. Konotop, and N. Akhmediev, Phys. Rev. A
80, 033610 (2009).

[11] L. H. Wang, K. Porsezian, and J. S. He, Phys. Rev. E 87, 053202
(2013); Boling Guo, Liming Ling, and Q. P. Liu, ibid. 85, 026607
(2012).

[12] N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, Phys.
Rev. A 80, 043818 (2009).

[13] Z. Yana and D. Jiang, J. Math. Anal. Appl. 395, 542 (2012).

[14] G. Bo-Ling and L. Li-Ming, Chin. Phys. Lett. 28, 110202
(2011).

[15] Z. Qin and G. Mu, Phys. Rev. E 86, 036601 (2012).
[16] M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96,

014503 (2006).
[17] P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and

L. Stenflo, Phys. Rev. Lett. 97, 094501 (2006).
[18] Yu.V. Bludov, V. V. Konotop, and N. Akhmediev, Eur. Phys. J.

Special Topics 185, 169 (2010).
[19] Yu.V. Bludov, R. Driben, V. V. Konotop, and B. A. Malomed,

J. Optics. 15, 064010 (2013).
[20] Lin Wen, L. Li, Z. D. Li, S. W. Song, X. F. Zhang, and W. M.

Liu, Eur. Phys. J. D 64, 473 (2011).
[21] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M. J.

Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell, Phys.
Rev. Lett. 83, 3358 (1999).

[22] C. J. Pethick and H. Smith, Bose Einstein Condensation in
Dilute Gases (Cambridge University Press, Cambridge, 2003);
L. Pitaeveskii and Stringari, Bose Einstein Condensation
(Oxford University Press, Oxford, 2003).

[23] S. Rajendran, P. Muruganandam, and M. Lakshmanan, J. Phys.
B: At. Mol. Opt. Phys. 42, 145307 (2009).

[24] V. Ramesh Kumar, R. Radha, and M. Wadati, Phys. Lett. A 374,
3685 (2010).

[25] L.-L. Chau, J. C. Shaw, and H. C. Yen, J. Math. Phys. 32, 1737
(1991).

042906-5

http://dx.doi.org/10.1016/j.physleta.2009.11.030
http://dx.doi.org/10.1017/S002211207600219X
http://dx.doi.org/10.1023/A:1007978326982
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1364/OL.34.002468
http://dx.doi.org/10.1209/0295-5075/96/25002
http://dx.doi.org/10.1209/0295-5075/96/25002
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevE.87.053202
http://dx.doi.org/10.1103/PhysRevE.87.053202
http://dx.doi.org/10.1103/PhysRevE.85.026607
http://dx.doi.org/10.1103/PhysRevE.85.026607
http://dx.doi.org/10.1103/PhysRevA.80.043818
http://dx.doi.org/10.1103/PhysRevA.80.043818
http://dx.doi.org/10.1016/j.jmaa.2012.05.058
http://dx.doi.org/10.1088/0256-307X/28/11/110202
http://dx.doi.org/10.1088/0256-307X/28/11/110202
http://dx.doi.org/10.1103/PhysRevE.86.036601
http://dx.doi.org/10.1103/PhysRevLett.96.014503
http://dx.doi.org/10.1103/PhysRevLett.96.014503
http://dx.doi.org/10.1103/PhysRevLett.97.094501
http://dx.doi.org/10.1140/epjst/e2010-01247-6
http://dx.doi.org/10.1140/epjst/e2010-01247-6
http://dx.doi.org/10.1088/2040-8978/15/6/064010
http://dx.doi.org/10.1140/epjd/e2011-20485-4
http://dx.doi.org/10.1103/PhysRevLett.83.3358
http://dx.doi.org/10.1103/PhysRevLett.83.3358
http://dx.doi.org/10.1088/0953-4075/42/14/145307
http://dx.doi.org/10.1088/0953-4075/42/14/145307
http://dx.doi.org/10.1016/j.physleta.2010.07.016
http://dx.doi.org/10.1016/j.physleta.2010.07.016
http://dx.doi.org/10.1063/1.529235
http://dx.doi.org/10.1063/1.529235

