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Nonlinear vibrational resonance
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We examine the nonlinear response of a bistable system driven by a high-frequency force to a low-frequency
weak field. It is shown that the rapidly varying temporal oscillation breaks the spatial symmetry of the
centrosymmetric potential. This gives rise to a finite nonzero response at the second harmonic of the low-frequency
field, which can be optimized by an appropriate choice of vibrational amplitude of the high-frequency field close
to that for the linear response. The potential implications of the nonlinear vibrational resonance are analyzed.
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I. INTRODUCTION

It is well-known that noise can play a constructive role in
improving a weak signal in a nonlinear dynamical system.
Stochastic resonance [1,2] is the first example of its kind,
where the response of a bistable system to a weak determin-
istic signal gets enhanced by an external noise of optimal
strength. Over the years the subject has grown in various
directions with the observation of several variants of stochastic
resonance and related phenomena in model zero-dimensional
and spatially extended systems. The examples include, among
others, resonant activation [3,4], coherence resonance [5,6],
noise-induced transitions [7], pattern formation [8], and wave
propagation [9].

An interesting related phenomenon analogous to stochastic
resonance is vibrational resonance [10–17], which can occur
when the noise is replaced by a high-frequency periodic
force. Vibrational resonance is observed as resonant behavior
of a response function of a nonlinear system driven by a
high-frequency force toward a low-frequency signal. The first
numerical observation by Landa and McClintock [10] has been
corroborated by theory [11,12] and experiment [13–15] in
analog electronic circuit and has been the subject of several
subsequent investigations [16,17]. Vibrational resonance con-
cerns linear response toward a weak probe field. An issue that,
however, escaped the attention of the aforesaid investigations,
to our knowledge, is the examination of nonlinear response of
the system. The focus of the present paper is the observation of
an interesting symmetry-breaking effect due to high-frequency
force, manifested as a nonlinear response of the bistable system
to a low-frequency field. We examine both over-damped and
under-damped cases to show that the nonlinear response at the
second harmonic of the low-frequency field can be optimized
by the appropriate choice of the amplitude of the high-
frequency field close to that for the linear response. The origin
of the second harmonic generation, which is forbidden by
virtue of possession of a center of symmetry, lies on the loss
of spatial symmetry by high-frequency temporal oscillation.
Keeping in view of its immediate relevance to nonlinear
optics [18], we emphasize that the conspicuous feature of
this phenomenon is the excitation of second harmonic in a
centrosymmetric system in sharp contrast to second harmonic
generation in strong laser field in a noncentrosymmetric
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environment. Because of these distinctive characteristics we
refer to it as nonlinear vibrational resonance.

The role of symmetry breaking had been examined earlier
in several related contexts. For example, Borromeo et al. [19]
have pointed out that nonlinear mixing of additive and
multiplicative zero-mean periodic or random signals can be
effective in localizing a Brownian particle in one well of a
symmetric double-well potential. The idea got an extension to
noise rectification [20]. Furthermore, it has been shown [21]
that stochastic resonance may occur in absence of symmetry
breaking, which is a resonant synchronization effect of the
switching mechanism, where nonlinearity plays a crucial role
[22,23]. Another related issue is the control of transport in
Brownian ratchet devices using nonlinear signal mixing of two
incommensurate driving forces [22,24]. A common element
of all these works is the presence of noise in additive or
multiplicative form. The major and primary content of the
present analysis is the realization of a resonance effect of
nonlinear response in absence of stochasticity per se. Second,
the symmetry breaking arises here due to the shift of steady
state of the unperturbed dynamical system and therefore may
be attributed to a nonlinear dynamical mechanism.

The paper is organized as follows: In Sec. II we derive
the nonlinear response functions for an overdamped bistable
oscillator and its extension to an underdamped situation.
Theoretical estimates have been compared with the results
of numerical simulations. The paper is concluded in Sec. III.

II. NONLINEAR RESPONSE AMPLITUDE

A. Overdamped oscillator

We consider vibrational resonance [10] in the simplest
model of an overdamped bistable oscillator as described by
the equation

ẋ − f (x) = c cos(ωt) + g cos(�t), (2.1)

where f (x) = − ∂V
∂x

and V(x) is a symmetric double-well
potential of the form V (x) = − 1

2x2 + 1
4x4. c cos(ωt) is

the low-frequency input signal and g cos(�t) corresponds
to the rapidly oscillating periodic force with frequency � � ω.
The linear response of the system is evaluated by calculating
the sine and cosine components Bs(ω) and Bc(ω), respectively,
of the output signal or the state of the system denoted by x(t)
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as follows:

Bs(ω) = 2

nT

∫ nT

0
x(t)sin(ωt),

(2.2)

Bc(ω) = 2

nT

∫ nT

0
x(t)cos(ωt),

where T = 2π
ω

with integer n. Solving Eq. (2.1) followed by
extraction of its sine and cosine components yields the linear
response function

QL(ω) =
√

B2
s (ω) + B2

c (ω)/c (2.3)

and phase shift θ (ω) = tan−1{Bs (ω)
Bc(ω) } of the response function

with respect to input signal.
It is quite straightforward to extend the definition of linear

response amplitude to nonlinear domain by calculating the
sine and cosine components of x(t) at the second harmonic
frequency of the input signal,

Bs(2ω) = 2

nT

∫ nT

0
x(t)sin(2ωt),

(2.4)

Bc(2ω) = 2

nT

∫ nT

0
x(t)cos(2ωt),

where T is now redefined as T = π
ω

. Similarly, we may define
the phase shift θ (2ω) = tan−1{Bs (2ω)

Bc(2ω) } of the response function
at the second harmonic frequency. The nonlinear response
amplitude at the second harmonic can be determined by
calculating

QNL(2ω) =
√

B2
s (2ω) + B2

c (2ω)/c2. (2.5)

We now emphasize a pertinent point at this stage. Because
of the presence of inversion symmetry of the potential field
V (x) governing the dynamics Eq. (2.1), the response at 2ω,
i.e., the second harmonic generation is forbidden in absence of
high-frequency field (g = 0). In what follows we show that an
optimal range of g can make the system respond at the second
harmonic of the low-frequency field.

To obtain an appropriate theoretical estimate of the non-
linear response amplitude QNL(2ω) we identify, following
standard technique, two time scales of the dynamics and seek
for a solution of the form

x = X(t,ωt) + ψ(t,�t). (2.6)

Here X(t,ωt) and ψ(t,�t) correspond to the slow and the
fast motion components, respectively. ψ is 2π periodic and
therefore has zero mean as

〈ψ(t,τ )〉 = 1

2π

∫ 2π

0
ψ(t,τ )dτ. (2.7)

Here τ = �t refers to the fast time scale. Making use of the
decomposition Eq. (2.6) and averaging over the fast time scale
we obtain, for slowly moving variable X,

Ẋ − X + X3 + 3X〈ψ2〉 + 3X2〈ψ〉 = c cos(ωt), (2.8)

and for fast motion,

ψ̇ − ψ + ψ3 + 3X[ψ2 − 〈ψ2〉] + 3X2[ψ − 〈ψ〉]
= g cos(�t), (2.9)

ψ being a rapidly changing field we assume further ψ̇ �
ψ,ψ2, ψ3. The dynamics of ψ can be written down as ψ̇ =
g cos(�t) so that its solution yields ψ = g

�
sin(�t),

〈ψ〉 = 〈ψ3〉 = 0 and 〈ψ2〉 = 1
2 ( g

�
)2.

The motion of the slow component then becomes

Ẋ − α(g)X + X3 = c cos(ωt), (2.10)

where, α(g) = 1 − 3
2 ( g

�
)2.

A look into Eq. (2.10) reveals that the effect of high-
frequency oscillation due to rapidly changing force g cos(�t)
in Eq. (2.1) is included in α(g). Equation (2.10) describes the
over-damped dynamics of a particle in a double-well potential
where the potential is modified by the strength and frequency
of the high-frequency field. The steady states of the system are

Xs = 0 for g �
√

2
3� and Xs = ±

√
1 − 3

2 ( g

�
)2 for g <

√
2
3�.

Thus, the fixed points can be controlled by the ratio ( g

�
) of the

rapidly varying field. The evolution of the dynamics around the
steady state can be determined by introducing the perturbation
variable Y = X − Xs , so that Eq. (2.10) becomes

Ẏ + 2α(g)Y + 3XsY
2 + Y 3 = c cos(ωt). (2.11)

We now emphasize two pertinent points. First, we do not
consider here the perturbation to be small. This makes it
possible to calculate the nonlinear response of the system.
Second, a comparison between Eqs. (2.1) and (2.11) shows
that the center of symmetry of the potential V (x) is destroyed
in the effective dynamics of Y due to the appearance of the

term 3XsY
2 for g <

√
2
3�, which assures a nonzero value of

the steady state Xs . The effective potential corresponding to
slow motion away from equilibrium is described by Veff(Y ) =
αY 2 + XsY

3 + 1
4Y 4. The loss of symmetry arises due to the

interference of high-frequency temporal oscillation and as we
show here, allows us to calculate the response of the system at
the second harmonic of the low-frequency probe in addition to
the usual linear response function. An inspection of Eq. (2.11)
shows that the term 3XsY

2 gives rise to a component oscillating
at 2ω. Therefore, we assume the solution for Y (t) in the form

Y (t) = k1 cos(ωt) + k2 sin(ωt) + k3 cos(2ωt) + k4 sin(2ωt).

(2.12)

Substituting the last expression into Eq. (2.11) and equating
the coefficients of cos(ωt), sin(ωt), cos(2ωt), and sin(2ωt), we
finally obtain

Y (t) = YL(t) + YNL(t), (2.13)

where

YL = A cos(ωt − γ ) and YNL = B cos(2ωt − φ), (2.14)

and

A =
√

k2
1 + k2

2 = c√
ω2 + {2α(g)}2

. (2.15)

The usual linear response amplitude is given by

QL(ω) = A

c
= 1√

ω2 + {2 − 3 (g/�)2}2
. (2.16)
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The nonlinear response YNL(t), on the other hand, assumes a
similar form:

YNL = B cos(2ωt − φ), (2.17)

where

B =
√

k2
3 + k2

4 = (3Xs/2) c2√
(2ω)2 + {3c2/2 + 2α(g)}2

. (2.18)

The response amplitude at the second harmonic is therefore
given by

QNL(2ω) = B

c2
= (3Xs/2)√

(2ω)2 + {(3c2/2) + 2 − 3 (g/�)2}2
.

(2.19)

We now discuss some notable features of the nonlinear
vibrational resonance:

(i) The expressions for linear and second harmonic response
amplitudes QL(ω) and QNL(2ω) show that the resonances
appear at nearly the same values of g since the magnitude
of 3

2c2 is small.
(ii) A quantity of interest is the ratio of the relative

magnitudes of the linear to nonlinear response amplitudes. It

FIG. 1. (Color online) (a) Linear response amplitude Q(ω) and
(b) nonlinear response amplitude Q(2ω) of the overdamped bistable
system to low-frequency signal c cos(ωt) under the influence of high-
frequency vibrational force g cos(�t) for three values of � and for
a fixed parameter set c = 0.01 and ω = 0.1. Numerical simulation
results are based on Eqs. (2.1), (2.3), and (2.5); analytical estimates
are based on Eqs. (2.16) and (2.19).

appears that the ratio QL(ω)
QNL(2ω) ∼ 1

Xs
, for g <

√
2
3�. This implies

that the magnitude of the nonlinear response is ameable to
experimental investigation for the same set of parameters for
which the linear response is studied.

(iii) Another distinctive feature of the nonlinear response
is the following. The traditional way of generating second
harmonic response is to use ultrastrong field in a noncen-
trosymmetric environment. In the present case, the second
harmonic frequency is generated for the weak probe field in a
centrosymmetric environment, where the loss of spatial sym-
metry originates from the high-frequency temporal oscillation.

In order to confirm our theoretical observations, we have
carried out direct numerical simulation of Eq. (2.1). The
representative results are shown for linear and nonlinear
response amplitude by solid lines in Figs. 1(a) and 1(b),
respectively, for different values of �; the fixed set of
parameters used are ω = 0.1 and c = 0.01. The variations
of the linear response amplitude QL(ω) [Eq. (2.3)] and the
second harmonic response amplitude QNL(2ω) [Eq. (2.5)] with
amplitude g of the high-frequency force demonstrate the reso-
nant behavior for optimal values of g. These numerical results
are compared with the corresponding analytical estimates of
QL(ω) [Eq. (2.16)] and QNL(2ω) [Eq. (2.19)] as shown by

FIG. 2. Numerical results on the variation of the position of the
maximum gmax of the second harmonic response amplitude of the
overdamped bistable system (a) as a function of high frequency �

for c = 0.01 and ω = 0.1, (b) as a function of low-frequency signal
amplitude c for ω = 0.1 and � = 2.0.
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dotted lines in Figs. 1(a) and 1(b). The agreement is found to
be fairly satisfactory. In Figs. 2(a) and 2(b), we have shown
the numerical results on the dependence of the positions of the
maximum amplitude (gmax) on � and c for nonlinear response
amplitude QNL(2ω). The variations are qualitatively similar
to what is seen in the corresponding variations for the linear
response amplitude QL(ω).

B. Underdamped oscillator

The above analysis can be extended to establish that
nonlinear vibrational resonance can arise also in underdamped
systems. To this end we consider

ẍ + 2δẋ − x + x3 = c cos(ωt) + g cos(�t), (2.20)

where δ is a positive damping constant. We proceed as
before. By separating x into the fast and slow motion
components ψ(t,�t) and X(t,ωt), respectively, we derive the
effective dynamics of X after averaging over high-frequency
oscillations:

Ẍ + 2δẊ − β(g)X + X3 = c cos(ωt), (2.21)

FIG. 3. (Color online) (a) Linear response amplitude Q(ω) and
(b) nonlinear response amplitude Q(2ω) of the underdamped system
to low-frequency periodic signal c cos(ωt) under the influence of
high-frequency vibrational force g cos(�t) for three values of � and
for a fixed parameter set c = 0.01, ω = 0.1, and δ = 0.5. Numerical
simulation results are based on Eqs. (2.20), (2.3), and (2.5); analytical
estimates are based on Eqs. (2.24) and (2.25).

where

β(g) = 1 − 3〈ψ2〉 and 〈ψ2〉 = g2

2

[
1 + (2δ/�)2

{(2δ)2 + �2}2

]
.

(2.22)

The steady states Xs of the dynamics are now modified as

Xs = 0 for g �
√

2
3 [ {(2δ)2+�2}2

1+(2δ/�)2 ] and Xs = ±√
β(g) for g <√

2
3 [ {(2δ)2+�2}2

1+(2δ/�)2 ]. The equation for the deviation from the steady
state, Y is given by

Ÿ + 2δẎ + 2β(g)Y + 3XsY
2 + Y 3 = c cos(ωt). (2.23)

By using the solution of Eq. (2.12), it is quite straightforward
to calculate the linear and nonlinear amplitudes QL(ω) and
QNL(2ω), respectively:

QL(ω) = A

c
= 1√

(2δω)2 + {2β(g) − ω2}2
(2.24)

and

QNL(2ω) = B

c2
= (3Xs/2)√

(2ω)2(1 + 2δ)2 + {2β(g)}2
. (2.25)

FIG. 4. Numerical variation of the position of the maximum gmax

of the second harmonic response amplitude (a) as a function of high-
frequency � for c = 0.01, ω = 0.1, and δ = 0.5, and (b) as a function
of low-frequency signal for ω = 0.1, � = 4.0, and δ = 0.5.
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In Figs. 3(a) and 3(b) we show the numerical simulation
results (solid lines) on the linear and nonlinear response
amplitudes of the underdamped system [Eq. (2.20)] given
by Eqs. (2.3) and (2.5), respectively, to varying amplitude
of the high-frequency field, g for a fixed set of parameters:
c = 0.01, ω = 0.1, and δ = 0.5. The responses clearly reveal
the resonant behavior as expected from theoretical results
depicted by dotted lines in Figs. 3(a) and 3(b). The agreement
is found to be quite satisfactory. Figure 4(a) shows that the
numerical variation of gmax (for nonlinear response amplitude)
with � for c = 0.01, ω = 0.1, and δ = 0.5 is very weakly
nonlinear. The variation of gmax with c is illustrated in Fig. 4(b)
for the parameter set c = 0.01, � = 4.0, and δ = 0.5. The
dependence is found to be relatively stronger compared to the
over-damped case. A further comparison between the second
harmonic response amplitudes [Eqs. (2.19) and (2.25)] for
the overdamped and underdamped cases shows the absence
of explicit dependence of probe amplitude in the resonance
denominator in the underdamped situation.

Before conclusion, we emphasize that the origin of the
nonlinear vibrational resonance lies on effective reduction of
stiffness of the oscillator induced by high-frequency oscillation
as in the case of usual vibrational resonance. This reduction
results in amplification of the weak signal not only at
the fundamental frequency but also at the higher harmonic
frequency.

III. CONCLUSION

The essence of vibrational resonance is the amplification
of weak low-frequency signal by a nonlinear system driven by
a high-frequency force. We have extended this idea to show

that the excitation of the system can be made even at the
second harmonic of the low-frequency signal. The nonlinear
response at the second harmonic is crucially dependent on
the noncentrosymmetric nature of the underlying potential.
In nonlinear optics the traditional way of generation of
second harmonic is to use degenerate three-wave mixing in a
noncentrosymmetric medium where a strong pump field with
a frequency excites the medium at its second harmonic. The
present scenario, however, is clearly distinct on two accounts.
First, a high-frequency field can destroy the center of symmetry
of the centrosymmetric medium. Second, because of reduction
of stiffness, which makes the system more polarizable, the
low-frequency signal can excite the medium at the second
harmonic of the weak field for an optimal strength of the
high-frequency field. In view of these considerations, we
conclude this paper by suggesting an interesting application of
the results presented above to nonlinear optics. We envisage
a (high-frequency) pump and (low-frequency) probe set up
for the present purpose. A suitable centrosymmetric crystal
can be made to interact with the pump field. The secondary
radiation due to nonlinear polarization can be detected by the
weak probe at its second harmonic. To observe the resonance
it is necessary to tune the strength of the pump field over an
appropriate range. Nonlinear vibrational resonance has thus
promising implications in nonlinear optics.
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and F. Sagués, Phys. Rev. Lett. 87, 078302 (2001).

[10] P. Landa and P. McClintock, J. Phys. A 33, L433
(2000).

[11] C. Jeevarathinam, S. Rajasekar, and M. A. F. Sanjuán,
Phys. Rev. E 83, 066205 (2011).

[12] W. Can-Jun, Chin. Phys. Lett. 28, 090504 (2011).
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