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Loss of stability of a solitary wave through exciting a cnoidal wave on a Fermi-Pasta-Ulam ring
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The spatiotemporal propagation behavior of a solitary wave is investigated on a Fermi-Pasta-Ulam ring. We
observe the emergence of a cnoidal wave excited by the solitary wave. The cnoidal wave may coexist with the
solitary wave for a long time associated with the periodic exchange of energy between these two nonlinear waves.
The module of the cnoidal wave, which is considered as an indicator of the nonlinearity, is found to oscillate
with the same period of the energy exchange. After the stage of coexistence, the interaction between these two
nonlinear waves leads to the destruction of the cnoidal wave by the radiation of phonons. Finally, the interaction
of the solitary wave with phonons leads to the loss of stability of the solitary wave.
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I. INTRODUCTION

Nonlinear waves can trace their history back to Russell’s
discovery of “the wave of translation” (now known as solitary
wave or soliton) on the Union Canal in Scotland in 1834 [1,2].
About 60 years ago Fermi, Pasta, and Ulam (FPU) introduced
the FPU model to investigate the energy equipartition problem
and the ergodic hypothesis in statistical physics [3]. The
attempt to resolve the mystery of the FPU recurrence has led to
the rediscovery of solitons [4]. It is now widely accepted that
solitary waves are of great importance in diverse areas of sci-
ence and technology [5–10]. In addition to the solitary waves,
some other kinds of nonlinear waves have also been studied
in a variety of systems, such as intrinsic localized modes (or
discrete breathers) [11–16] and cnoidal waves [17–21].

The remarkable stability of the solitary waves is one of the
reasons why they have attracted much attention. An extensive
literature on the subject of stability of the solitary waves
developed. Usually stability analysis of a solitary wave is
considered with respect to the infinitesimally perturbation of
the type exp(iQx + �t) and the dispersion relation � = �(Q)
is derived. The solitary wave is said to be stable with respect
to the perturbation if the real part of � is negative, while
the solitary wave is unstable if the real part of � is positive.
Actually, for the unstable case, it is possible that the infinitesi-
mal perturbation grows into a finite perturbation which is then
stabilized by the nonlinearity [22]. The stability of solitary
wave solutions of the Korteweg-de Vries (KdV) equation was
worked out by Benjamin [23], while the asymptotic stability
of the solitary waves of the KdV and a class of generalized
KdV equations was done by Pego and Weinstein [24]. Under
the long-wavelength approximations, the FPU-α and FPU-β
lattices result, respectively, in the KdV and modified KdV
equations. The existence theorem for the solitary waves on
the FPU lattices is established in Ref. [25]. The stability of
solitary wave solutions on the FPU lattices at low energy was
proven by Friesecke and Pego [26–29]. However, there has
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been very little work done on the stability of solitary waves at
high-energy level.

In the present paper, we construct a solitary wave moving on
a FPU-β ring at high-energy level and study its spatiotemporal
propagation behavior. We observed the loss of stability of the
solitary wave. Three stages can be identified in the process
of the loss of stability of the solitary wave. In the first
stage, the solitary wave excites a cnoidal wave due to the
modulational instability of the system. These two kinds of
nonlinear waves coexist associated with the periodic exchange
of energy between them. The module of the cnoidal wave (i.e.,
the module of the corresponding Jacobian elliptic function)
oscillates with the same period of the energy exchange. In
the second stage, the interaction of the cnoidal wave with
the solitary wave leads to the radiation of phonons and the
destruction of the cnoidal wave. In the third stage, the solitary
wave loses stability due to the interaction with phonons. The
process of phonon radiation can be shown directly by the
spectral energy density (SED) method recently developed by
Thomas et al. [30].

II. MODEL AND METHOD

The Hamiltonian of the FPU-β model can be written as

H =
∑

n

[
p2

n

2
+ V (un+1,un)

]
,

(1)

V (un+1,un) = k

2
(un+1 − un)2 + β

4
(un+1 − un)4,

where pn and un denote the momentum and the displacement
from the equilibrium position of the nth particle, respectively.
In the absence of the quartic term, i.e., β = 0, the above
Hamiltonian reduces to a one-dimensional harmonic lattice,
which is integrable and can be analytically solved. The
presence of the anharmonic terms breaks the integrability and
brings forth kinds of nonlinear effects.

The momentum excitation method is widely employed
in the studies of modes excited on the lattices [31–34].
To construct a solitary wave moving on a FPU-β ring,
we first impart a momentum excitation p̃ to the left end
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particle of an initially quiescent chain consisting of N0 + N

particles (−N0 + 1,−N0 + 2, . . . ,−1,0,1, . . . ,N) with free
boundary condition. If the momentum excitation is large
enough, a solitary wave could be excited at the left-hand side
accompanied by a low-amplitude wave called the tail [32].
The solitary wave may isolate itself naturally from the tail as
it moves coherently along the chain faster than the tail. When
the solitary wave arrives at particle N/2, we reconnect particle
1 to particle N in order to form a N -particle ring. As long as
N0 is large enough and N0 � N , the tail will be wiped away
and a solitary wave moving on a FPU-β ring is constructed.
The fourth-order symplectic method is employed in order to
solve the dynamics of the FPU-β model as a high-dimensional
Hamilton dynamical system [35]. In the present paper, p̃ = 10,
N0 = 5000, N = 100, k = 0.5, β = 0.126, and integration
time step dt = 0.001 throughout the simulation (unless stated
otherwise).

III. PROPAGATION BEHAVIOR OF THE SOLITARY WAVE

To understand the dynamics of the solitary wave, we resort
to the evolution of the energy of the low-amplitude wave
initially excited on the chain or later on the ring. For the lat-
tice system (chain or ring) we are studying here, the energy
of the low-amplitude wave is defined as the residual energy of
the solitary wave. Due to the spatial localization of the solitary
wave, one can write the low-amplitude wave’s energy as

EW = E(t) −
nc+nb∑

n=nc−nb

En(t), (2)

where E(t) is the instantaneous total energy of the lattice
system. The local energy En(t) of the nth particle is defined as

En = p2
n

2 + 1
2V (un+1,un) + 1

2V (un,un−1). nc(t) is the center
position of the solitary wave at time t . nb denotes the number
of the left/right neighboring particles of the center particle of
the solitary wave packet. Numerically nb = 5 is enough due
to the energy localization of the solitary wave. The increase
of EW on the ring corresponds to the decrease of the solitary
wave energy and vice versa considering that the total energy
of the system is conserved.

Figure 1(a) presents the time evolution of EW . It is clearly
shown that the solitary wave moving on the ring may lose
stability in despite of the lack of initially excited low-amplitude
wave and boundary effects. To explore the underlying mech-
anism, we are now concerned with the evolution behavior of
EW on a relatively short time scale as shown in the left-hand
side of Fig. 1(b). The fast increase of EW at the very beginning
indicates the separation between the solitary wave and the tail.
The moment t0 corresponds to the construction of a solitary
wave moving on a ring by connecting particles 1 and N.

It is instructive to analyze the momentum evolution behav-
ior of the particles on the ring as depicted in Fig. 2. As will be
shown below, Figure 2 reveals the formation of a cnoidal wave
and the coexistence of the cnoidal wave with the solitary wave.
The equations of motion corresponding to the Hamiltonian (1)
are

ün = k(un+1 − un) + k(un−1 − un) + β(un+1 − un)3

+β(un−1 − un)3, (3)

FIG. 1. (Color online) (a) Time evolution of the energy of the
low-amplitude wave. For clarity, part of (a) is enlarged in the left-hand
side of (b). Right-hand side of (b) presents the time evolution of the
module of the cnoidal wave.

where the dots represent the time derivative ∂/∂t . For analyt-
ical consideration, we use multiple scale analysis presenting
un as the multiplication of harmonic oscillation and smooth
envelope function [36]

un = ε

2
ϕ(ξ,τ )ei(qn−ωt) + c.c., (4)

where c.c. stands for complex conjugation. The appropriate
slow variables are defined as ξ = ε(n − vt), τ = ε2t , where
ε is a formal small parameter indicating the smallness or slow-
ness of the variables before which it appears. v is the velocity
of the cnoidal waves as will be shown below. Substituting (4)

FIG. 2. (Color online) Momentum distribution profiles among the
particles for different moments t1–t6 indicated in Fig. 1(b). Vertical
axes have been adjusted appropriately to get clear observations of the
low-amplitude wave.
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into Eq. (3) and neglecting the higher harmonics in a rotating
wave approximation, in the first order over ε a well-known
dispersion relation for linear excitations in the FPU model is
obtained:

ω =
√

2k(1 − cos q). (5)

For the second order over ε, we have

v = k sin q

ω
. (6)

We get the nonlinear Schrödinger (NLS) equation for the
envelope function ϕ in the third order over ε:

i
∂ϕ

∂τ
− ω

8

∂2ϕ

∂ξ 2
− 3βω3

8k2
|ϕ|2ϕ = 0. (7)

Following the standard process in Ref. [2], a subfamily of exact
periodic solutions in the form of cnoidal waves [expressed in
terms of the Jacobian elliptic functions cn(x,m)] for the above
NLS equation can be derived as

ϕ =
√

h3cn

(√
h3 − h1

√
3βω2

2k2
ξ − C3,m

)

× exp

{
−i

[
(h3 + h1)

3βω3

16k2
τ − C4

]}
, (8)

where h1 and h3 are parameters which satisfy the relation
h1 < 0 < h3, m = h3

h3−h1
is the module of the Jacobian elliptic

function, and C3 and C4 are the constants of integration.
Physically the elliptic parameter m may be viewed as a fair
indicator of the nonlinearity with the linear limit being m → 0
and the extreme nonlinear limit being m → 1. If |h1| � h3,

then cn(x,m → 1) → sech(x) and the well-known envelope
soliton solutions to the NLS equation (7) are recovered.
If |h1| � h3, then cn(x,m → 0) → cos(x) with vanishingly
small amplitude. Substituting (8) into (4), with the help of
ξ = ε(n − vt), τ = ε2t and ε = 1, we have

un =
√

h3cn

[√
h3 − h1

√
3βω2

2k2
(n − vt) − C3,m

]

× cos

{
qn −

[
ω + 3βω3

16k2
(h3 + h1)

]
t − C4

}
. (9)

After the time derivative of un and assuming that h1 and h3 are
very small, the analytic formula for the cnoidal wave solutions
of the FPU-β model (1) is obtained:

pn(t) = u̇n ≈ A(n,t)B(n,t),

A(n,t) = ω
√

h3cn

[√
h3 − h1

√
3βω2

2k2
(n − vt) − C3,m

]
,

B(n,t) = sin

{
qn −

[
ω + 3βω3

16k2
(h3 + h1)

]
t − C4

}
. (10)

Although the solitary wave is highly localized in space, it
has an infinite span. When the solitary wave is restricted to
a ring with finite size, infinitesimal perturbations will appear.
Due to the modulational instability of the NLS equation (7)
[37], the infinitesimal perturbation grows as shown in Figs. 2(a)
and 2(b). Since a more energetic packet samples the more
anharmonic portions of the potential, one expects nonlinearity
will play a much more important role as the magnitude of
the low-amplitude wave increases. After a critical point, the
low-amplitude wave may spontaneously self-modulate and

FIG. 3. (Color online) Blue lines: time evolution data p50(t) in the neighborhoods of t4 and t6. Black lines in left panels: A(n,t) of the
analytic formula (10). Black lines in right panels: the analytic formula (10).
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split into “wave packets” as shown in Fig. 2(c). These wave
packets may coexist with the solitary wave associated with the
periodic exchange of energy between them as indicated by the
periodic oscillation of EW in the left-hand side of Fig. 1(b).
Figures 2(c)–2(f) present the transfer of the energy from the
solitary wave to these wave packets.

We shall here verify that the low-amplitude wave packets
after the self-modulation is the cnoidal wave described by
our analytic formula (10). The time evolution data of a
single particle is recorded (p50 in the present work), and its
low-amplitude part is compared with Eq. (10) as follows. Note
that A(n,t) is a periodic function of n and t with periods Tn =

4K(m)√
h3−h1

√
2k2

3βω2 and Tt = 1
v

4K(m)√
h3−h1

√
2k2

3βω2 , respectively, where

K(m) = ∫ π/2
0

dϑ√
1−m sin2 ϑ

is the complete elliptic integral of the
first kind. According to the time evolution data p50(t), both h3

and m as functions of time can be obtained. We present m in the
right-hand side of Fig. 1(b). Note that both h3 and m are slow
variables and keep invariant approximatively on a relatively
short time scale. The low-amplitude part of p50(t) and the
cnoidal wave described by Eq. (10) are plotted in Fig. 3 for
two typical time ranges, i.e., the neighborhood of t4 as shown
in Figs. 3(a) and 3(b) (linear limit with m ≈ 2.3094 × 10−5)
and the neighborhood of t6 as shown in Figs. 3(c) and 3(d)
(strong nonlinearity with m ≈ 0.51181). It is clearly seen that
the low-amplitude wave agrees well with the cnoidal wave.
The interaction of the cnoidal wave with the solitary wave has
two consequences, i.e., the slow variation of the amplitude
as shown clearly in Fig. 3(a) and a spatial shift as shown in
Figs. 3(b) and 3(d).

Till now, we have focused on the first stage of the process
of the loss of stability of a solitary wave on a FPU ring where a

FIG. 4. (Color online) Contour plot of the SED for the FPU-β ring. (a)–(f) correspond to R1–R6 indicated in Fig. 1(a), respectively. The
dark dots in (e) and (f) stand for the phonon dispersion relation of the corresponding harmonic lattice.
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FIG. 5. (a)–(d): Parts of the time evolution data p50(t) of the time
regions R3–R6 indicated in Fig. 1(a).

cnoidal wave is excited and coexists with the solitary wave. To
get a deep understanding of the following stages of the process,
the SED method is employed to predict the dispersion rela-
tions. Figure 4 presents the SED for the FPU-β ring in different
time regions R1–R6 indicated in Fig. 1(a). The shading on the

plot stands for the magnitude of the SED for each (Q,�) com-
bination corresponding to a total integration time 2.5 × 104

with sample interval 0.01. It is clear that there are no phonons
in the time regions R1 and R2, which correspond to the first
stage of the process. The straight lines in Figs. 4(a) and 4(b)
stand for the solitary wave and their slop is consistent with the
velocity of the solitary wave. In the second stage of the process,
the interaction of the cnoidal wave with the solitary wave starts
to take effect and radiate phonons [see Figs. 4(c) and 4(d)], by
which the cnoidal wave is deformed and destroyed as shown
clearly by parts of the time evolution data p50(t) of the time
regions R3 and R4 [see Figs. 5(a) and 5(b)]. In the third stage of
the process, the interaction between phonons and the solitary
wave leads to the radiation of more phonons and the collapse of
the solitary wave as shown in Figs. 4(e) and 4(f). Figures 5(c)
and 5(d) present parts of the time evolution data p50(t) of the
time regions R5 and R6. No trace of solitary wave could be
found in Fig. 5(d). In Figs. 4(e) and 4(f), the dark dots stand for
the phonon dispersion relation of the corresponding harmonic
lattice. Due to the nonlinearity, the SED for the FPU-β
ring in the equilibrium state shifts toward higher frequencies
compared with the harmonic case as shown in Fig. 4(f).

Nonlinear Hamiltonian systems may exhibit distinctly
different dynamical behaviors for different energy levels.
Since increasing the nonlinear parameter β is equivalent to
increasing the energy in our model [38], we investigated the
propagation behavior of the solitary wave for β ∈ [0.1,1]
with sample interval 
β = 0.001. Figure 6(a) presents the
time evolution of EW for β = 0.335 and the momentum
distribution profiles among the particles for t = tb and t = tc
are depicted in Figs. 6(b) and 6(c), respectively. Here, owing
to the modulational instability of Eq. (7), the formation of

FIG. 6. (Color online) (a) and (d) Time evolution of EW for β = 0.335 and β = 0.435. (b,c and e,f) Momentum distribution profiles among
the particles for tb, tc and te, tf as indicated in (a) and (d).

042901-5



YUAN, WANG, CHU, XIA, AND ZHENG PHYSICAL REVIEW E 88, 042901 (2013)

the low-amplitude wave can be clearly observed. Although
the cyclic energy exchange between the solitary and low-
amplitude waves is found to be generic for β ∈ [0.1,0.4],
the low-amplitude waves may be complicated, rather than a
simple cnoidal wave, where further studying is needed. When
β is further increased, the cyclic energy exchange is rare and
the solitary wave loses stability rapidly after the formation
of the low-amplitude (cnoidal or complicated) wave. One
typical example is shown in Figs. 6(d)–6(f) for β = 0.435.
We explained that the system has entered the strong chaos
regime and become very unstable [39–41].

IV. CONCLUSION AND DISCUSSIONS

In summary, one possible mechanism of the loss of stability
of a solitary wave on a FPU-β ring is revealed. We observed
numerically the coexistence of a solitary wave with a cnoidal
wave associated with the periodic exchange of energy between
these two nonlinear waves. Due to the interaction of the cnoidal
wave with the solitary wave, phonons can be radiated, which
destroy the cnoidal wave and finally result in the loss of
stability of the solitary wave. For some values of β in our
FPU ring, the coexistence of the solitary wave and the cnoidal
wave has no tendency to disappear up to 1 × 108 time unit
(although the energy exchange may become quasiperiodic as
time evolves). We should emphasize that these cases may
correspond to the situations where linear unstable solitary
waves are actually stable in the nonlinear sense [22], and a
more careful investigation is still needed.

In the framework of the one-dimensional NLS equation,
the interaction of solitons (envelope solitons) with radiation
(a nonsoliton part) [42], continuous waves having constant
amplitude [43], cnoidal waves [44], and continuous waves
of arbitrary shape [45] has been studied both analytically and
numerically. The bright solitons on a cnodial wave background
train of the inhomogeneous NLS equation have also been
investigated [46]. The theoretical analysis of the interaction

between the solitons and the cnoidal waves in the NLS
equation (integrable) is based on the construction of the exactly
superposed solutions of these two waves. It is reported that the
solitons can recover their original shapes and velocities after
collisions, while shapes of cnoidal waves are nearly preserved
during collisions [44]. In the FPU lattices, which are nonin-
tegrable, however, the interaction between the solitary waves
and the cnoidal waves is untouched before, to our knowledge.
In the present paper, according to our simulation results, the
interaction between these two nonlinear waves results in the
energy exchange and the radiation of phonons. These findings
might be helpful to find an appropriate approximation method
to investigate the interaction theoretically.

In regard to the experimental observation and potential
practical applications, we notice the nonlinear oscillations of
a liquid drop. A liquid drop possessed a circular geometry in
nature, and the studies of its free oscillations have a long
history [47–50]. The traveling waves on liquid drops are
observed [51] and related to traveling deformations called
“rotons” [52]. These rotons can range from small oscillations
(linearized model), to cnoidal waves, and on out to solitary
waves [52]. We hope that our results in the FPU ring might
find applications in the fundamental study of the phenomenon
in the liquid drops and also droplike systems, i.e., astronomical
objects [53–55] and atomic nuclei [56,57].

ACKNOWLEDGMENTS

We thank Jie Liu and Li-Bin Fu at the Institute of
Applied Physics and Computational Mathematics for en-
lightening discussions. Z.Y., M.C., and Z.Z. were supported
partly by the National Natural Science Foundation of China
(Grant No. 11075016) and the Research Fund for the Doc-
toral Program of Higher Education of China (Grant No.
20100003110007). J.W. and G.X. were supported partly by
the National Basic Research Program of China (Program No.
2011CB710704).

[1] J. S. Russell, Report on Waves, Report of the Meeting of
the British Association for the Advancement of Science (John
Murray, London, 1844).

[2] G. Whitham, Linear and Nonlinear Waves (Wiley, New York,
1974).

[3] E. Fermi, J. Pasta, and S. Ulam, Los Alamos Document No.
LA-1940 (1955).

[4] N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240
(1965).

[5] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763
(1989).

[6] S. Sen, J. Hong, J. Bang, E. Avalos, and R. Doney, Phys. Rep.
462, 21 (2008).

[7] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys.
83, 247 (2011).

[8] T. Dauxois and M. Peyrard, Physics of Solitons
(Cambridge University Press, Cambridge, UK,
2006).

[9] N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons
(Springer, Berlin, 2005).

[10] N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons:
From Optics to Biology and Medicine (Springer, Berlin, 2008).

[11] A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).
[12] S. Takeno, K. Kisoda, and A. J. Sievers, Prog. Theor. Phys.

Suppl. 94, 242 (1988).
[13] R. S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).
[14] S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).
[15] S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).
[16] M. Sato, B. E. Hubbard, and A. J. Sievers, Rev. Mod. Phys. 78,

137 (2006).
[17] C. F. Driscoll and T. M. O’Neil, Phys. Rev. Lett. 37, 69 (1976).
[18] J. L. Shultz and G. J. Salamo, Phys. Rev. Lett. 78, 855 (1997).
[19] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Phys. Rev. E

67, 066612 (2003).
[20] C.-C. Jeng, Y. Y. Lin, R.-C. Hong, and R.-K. Lee, Phys. Rev.

Lett. 102, 153905 (2009).

042901-6

http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1016/j.physrep.2007.10.007
http://dx.doi.org/10.1016/j.physrep.2007.10.007
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1143/PTPS.94.242
http://dx.doi.org/10.1143/PTPS.94.242
http://dx.doi.org/10.1088/0951-7715/7/6/006
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/PhysRevLett.37.69
http://dx.doi.org/10.1103/PhysRevLett.78.855
http://dx.doi.org/10.1103/PhysRevE.67.066612
http://dx.doi.org/10.1103/PhysRevE.67.066612
http://dx.doi.org/10.1103/PhysRevLett.102.153905
http://dx.doi.org/10.1103/PhysRevLett.102.153905


LOSS OF STABILITY OF A SOLITARY WAVE THROUGH . . . PHYSICAL REVIEW E 88, 042901 (2013)

[21] G. Friesecke and A. Mikikits-Leitner, arXiv:1208.2805.
[22] J. G. Berryman, Phys. Fluids 19, 771 (1976).
[23] T. B. Benjamin, Proc. R. Soc. Lond. A 328, 153 (1972).
[24] R. Pego and M. Weinstein, Commun. Math. Phys. 164, 305

(1994).
[25] G. Friesecke and J. A. D. Wattis, Commun. Math. Phys. 161,

391 (1994).
[26] G. Friesecke and R. L. Pego, Nonlinearity 12, 1601 (1999).
[27] G. Friesecke and R. L. Pego, Nonlinearity 15, 1343 (2002).
[28] G. Friesecke and R. L. Pego, Nonlinearity 17, 207 (2004).
[29] G. Friesecke and R. L. Pego, Nonlinearity 17, 229 (2004).
[30] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H.

McGaughey, Phys. Rev. B 81, 081411 (2010).
[31] G. S. Zavt, M. Wagner, and A. Lütze, Phys. Rev. E 47, 4108

(1993).
[32] B. Hu, B. Li, and H. Zhao, Phys. Rev. E 61, 3828 (2000).
[33] A. Rosas and K. Lindenberg, Phys. Rev. E 69, 016615

(2004).
[34] H. Zhao, Z. Wen, Y. Zhang, and D. Zheng, Phys. Rev. Lett. 94,

025507 (2005).
[35] M. Qin, D. Wang, and M. Zhang, J. Comp. Math. 9, 211 (1991).
[36] R. Khomeriki, Phys. Rev. E 65, 026605 (2002).
[37] Y. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117

(2000).
[38] K. Aoki and D. Kusnezov, Phys. Rev. Lett. 86, 4029 (2001).
[39] L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Lett. 74, 375

(1995).

[40] L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E 54, 5969
(1996).

[41] Z.-Q. Yuan and Z.-G. Zheng, Front. Phys. 8, 349 (2013).
[42] E. Kuznetsov, A. Mikhailov, and I. Shimokhin, Physica D 87,

201 (1995).
[43] Q.-H. Park and H. J. Shin, Phys. Rev. Lett. 82, 4432 (1999).
[44] H. J. Shin, Phys. Rev. E 63, 026606 (2001).
[45] H. J. Shin, Phys. Rev. E 67, 017602 (2003).
[46] R. Murali, K. Senthilnathan, and K. Porsezian, J. Phys. B 41,

025401 (2008).
[47] E. Trinh and T. G. Wang, J. Fluid Mech. 122, 315 (1982).
[48] Y. Tian, R. G. Holt, and R. E. Apfel, Phys. Fluids 7, 2938 (1995).
[49] R. E. Apfel, Y. Tian, J. Jankovsky, T. Shi, X. Chen, R. G. Holt,

E. Trinh, A. Croonquist, K. C. Thornton, A. Sacco, Jr. et al.,
Phys. Rev. Lett. 78, 1912 (1997).

[50] A. Ludu, A. Sandulescu, and W. Greiner, J. Phys. G 23, 343
(1997).

[51] E. Trinh, P. Marston, and J. Robey, J. Colloid Interface Sci. 124,
95 (1988).

[52] A. Ludu and J. P. Draayer, Phys. Rev. Lett. 80, 2125 (1998).
[53] L. Smarr, Phys. Rev. Lett. 30, 71 (1973).
[54] V. Cardoso and O. J. C. Dias, Phys. Rev. Lett. 96, 181601 (2006).
[55] P. Lacerda and D. C. Jewitt, Astron. J. 133, 1393 (2007).
[56] R. A. Gherghescu, A. Ludu, and J. P. Draayer, J. Phys. G 27, 63

(2001).
[57] N. Schunck, J. Dudek, and B. Herskind, Phys. Rev. C 75, 054304

(2007).

042901-7

http://arXiv.org/abs/1208.2805
http://dx.doi.org/10.1063/1.861569
http://dx.doi.org/10.1098/rspa.1972.0074
http://dx.doi.org/10.1007/BF02101705
http://dx.doi.org/10.1007/BF02101705
http://dx.doi.org/10.1007/BF02099784
http://dx.doi.org/10.1007/BF02099784
http://dx.doi.org/10.1088/0951-7715/12/6/311
http://dx.doi.org/10.1088/0951-7715/15/4/317
http://dx.doi.org/10.1088/0951-7715/17/1/013
http://dx.doi.org/10.1088/0951-7715/17/1/014
http://dx.doi.org/10.1103/PhysRevB.81.081411
http://dx.doi.org/10.1103/PhysRevE.47.4108
http://dx.doi.org/10.1103/PhysRevE.47.4108
http://dx.doi.org/10.1103/PhysRevE.61.3828
http://dx.doi.org/10.1103/PhysRevE.69.016615
http://dx.doi.org/10.1103/PhysRevE.69.016615
http://dx.doi.org/10.1103/PhysRevLett.94.025507
http://dx.doi.org/10.1103/PhysRevLett.94.025507
http://dx.doi.org/10.1103/PhysRevE.65.026605
http://dx.doi.org/10.1016/S0370-1573(99)00106-4
http://dx.doi.org/10.1016/S0370-1573(99)00106-4
http://dx.doi.org/10.1103/PhysRevLett.86.4029
http://dx.doi.org/10.1103/PhysRevLett.74.375
http://dx.doi.org/10.1103/PhysRevLett.74.375
http://dx.doi.org/10.1103/PhysRevE.54.5969
http://dx.doi.org/10.1103/PhysRevE.54.5969
http://dx.doi.org/10.1007/s11467-013-0333-9
http://dx.doi.org/10.1016/0167-2789(95)00149-X
http://dx.doi.org/10.1016/0167-2789(95)00149-X
http://dx.doi.org/10.1103/PhysRevLett.82.4432
http://dx.doi.org/10.1103/PhysRevE.63.026606
http://dx.doi.org/10.1103/PhysRevE.67.017602
http://dx.doi.org/10.1088/0953-4075/41/2/025401
http://dx.doi.org/10.1088/0953-4075/41/2/025401
http://dx.doi.org/10.1017/S0022112082002237
http://dx.doi.org/10.1063/1.868671
http://dx.doi.org/10.1103/PhysRevLett.78.1912
http://dx.doi.org/10.1088/0954-3899/23/3/005
http://dx.doi.org/10.1088/0954-3899/23/3/005
http://dx.doi.org/10.1016/0021-9797(88)90329-3
http://dx.doi.org/10.1016/0021-9797(88)90329-3
http://dx.doi.org/10.1103/PhysRevLett.80.2125
http://dx.doi.org/10.1103/PhysRevLett.30.71
http://dx.doi.org/10.1103/PhysRevLett.96.181601
http://dx.doi.org/10.1086/511772
http://dx.doi.org/10.1088/0954-3899/27/1/305
http://dx.doi.org/10.1088/0954-3899/27/1/305
http://dx.doi.org/10.1103/PhysRevC.75.054304
http://dx.doi.org/10.1103/PhysRevC.75.054304



