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Synchronization in random balanced networks
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Characterizing the influence of network properties on the global emerging behavior of interacting elements
constitutes a central question in many areas, from physical to social sciences. In this article we study a primary
model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show
how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to
synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the
spectral density of the connectivity matrix. We provide a low-dimensional approximation that shows the role of
both the structure and disorder in the dynamics.
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I. INTRODUCTION

Networks representing interactions in physical, biological,
or social systems exhibit a structured connectivity and, at the
same time, a high degree of disorder [1]. In this work, we show
how the interplay between these two leads to novel forms of
synchrony that could not exist if either one is suppressed.

Neuronal networks are a paramount example of structured
connectivity with a high degree of disorder. On the one hand,
they are highly structured. Very often a neuron is either
excitatory or inhibitory, a principle known as Dale’s law.
Moreover, beyond such physiological constraints, balanced
networks (i.e., networks where the excitatory and inhibitory
input to a given cell balance each other) are currently a
major subject of study [2–4]. On the other hand, neuronal
networks display characteristic disorder properties in the
interconnection strengths [5,6]. Studies show that certain levels
of disorder, rather than being detrimental, might be functional
[7–9].

In this article we present a detailed analysis of the behavior
of excitatory-inhibitory balanced neural networks with random
synaptic weights, and report an interesting transition related to
the level of disorder that cannot be explained only through the
properties of the spectral density. We investigate the dynamics
of a canonical model of random neural network [10,11]:

ẋi = −xi +
n∑

j=1

JijS(xj ) (1)

with random synaptic coefficients Jij . In this model, xi

represents the activity of neuron i, S(·) is a sigmoid function
accounting for the synaptic response, and Jij corresponds
to the synaptic weight from neuron j onto neuron i. The
coefficients we will consider in this article are defined as
Jij = μmj + σξij with m = (mi)1�i�n a normalized vector
with sum zero corresponding to the structure of the network
(e.g., excitatory or inhibitory), and (ξij )1�i,j�n centered weakly
correlated random variables with variance χ2

j /n satisfying the
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balance condition
∑

j ξij = 0. (This balance condition can
be relaxed; the analysis remains valid for coefficients such
that

∑
i ξij = o(1) as n → ∞.) μ and σ are two scalars

that control the presence of structure and disorder in the
connectivity. In [10], the authors studied system (1) with
μ = 0 and independent, nonbalanced Gaussian coefficients
with χj = 1. They discovered in the large n limit a phase
transition at a critical value of the disorder σ between a trivial
state where all trajectories converge to 0 and a chaotic regime
centered around 0, which was further analyzed in [12,13].
In contrast to these studies, the case of μ �= 0 has been only
partially explored. In [14], the authors investigated the spectral
properties of matrices J = σξ + μM as defined above. They
proved that when ξ is balanced, the average synaptic weight
μm has no impact on the spectrum of J , which is identical
to that of σξ (for which they computed the limit distribution
n → ∞ when ξ is Gaussian). From numerical observations,
these authors also reported that in the nonbalanced case, while
the bulk of the spectrum of J is distributed as in the balanced
case, there are a few eigenvalues, referred to as outliers, that
deviate significantly from it. Mathematical characterization of
these spectral properties for general finite rank perturbations
m of random independent identically distributed matrices was
done in [15]. None of these previous studies dwell with the full
dynamics of (1), which is the topic of the present paper. Our
motivation stems from the fact that balanced networks have the
property that the net mean-field input vanishes, and therefore
complex dynamics are likely to emerge from specific patterns
of the fluctuations around the mean activity. This mechanism is
different from the usual mean-field theory [16]. We now show
that indeed, balanced networks tend to display a surprising
regularity with highly synchronized activity.

II. NUMERICAL RESULTS

Let us start by numerically investigating the solutions to
(1) for different values of μ, synaptic disorder levels σ , and
also various network topologies (see Fig. 1). In the case
μ = 0 (Fig 1, col. 1), the dynamics analyzed in [10] persists
when considering balanced synaptic weights, different χj , and
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FIG. 1. (Color online) Solution of the network equations with S = tanh and N = 1000, for different distributions of ξ and μ, and χj

uniformly distributed in [0,1]. Red curves (front): ensemble average activity; blue shaded areas: average plus minus one standard deviation;
gray curves (background): 20 individual trajectories. Top: ξij are centered independent Gaussian variables with variances χj random, uniformly
distributed in the interval (0,1) (fully connected case) with mi = ±1/

√
n. Middle: sparse ξ (p = 0.5). Bottom: ξ has a small world structure.

In the two last rows, the nonzero coefficients of ξ are uniformly distributed in [−1,1] and m is a normalized Gaussian vector with zero sum.

sparse or small-world topologies. When taking μ > 0 in non-
balanced networks, the activity keeps displaying chaoticlike
trajectories with irregular dynamics for the mean activity and
periods of high synchronization (Fig. 1, col. 2). In contrast,
this collective behavior becomes highly regular as soon as
coefficients are balanced (Fig. 1, col. 3), which corresponds
to stationary or synchronized oscillatory dynamics. These
regular dynamics progressively lose regularity as μ is reduced
or σ increased. Surprisingly, two matrices with exactly the
same eigenvalues (cols. 1 and 3 of Fig. 1) yield extremely
different phenomenology, and therefore spectral analysis is not
sufficient.

III. REDUCED MODEL

In order to comprehend the phenomenon of synchroniza-
tion in balanced networks, we now describe the macro-
scopic activity through the empirical mean z = 1

n

∑
j xj

and the individual deviations from the mean yi = xi − z

[the vector y is given by (y1, . . . ,yn)]. Expanding S(·) we
obtain

ż = −z + S ′(z)μmt · y + ϕ(z,y) + O

(
1√
n

)
. (2)

The equation on y simply reads

ẏ = −y + σS ′(z) ξ · y + ξ · ψ(z,y) + O

(
1√
n

)
, (3)

where ξ is the matrix with elements ξij , and ϕ and ψ

correspond to higher order terms in y. In these equations, we
observe that the averaged activity is driven by a scalar quantity
μmt · y which is μ times the projection of the fluctuations onto
the vector m. This quantity is directly related to the standard
deviation of x (which is precisely |y|) through the formula:
μmt · y = μ|y| cos(θ ) where θ is the angle formed by the
vectors m and y. In order to understand the collective dynamics
of the network, we therefore need to express the angle θ and
the dynamics of the standard deviation |y|. To this end, we
need to take a further look to the matrix ξ , and in particular its
spectrum. Denoting λi the eigenvalues of ξ corresponding to
the normalized eigenvectors ei , and ci = yt · ei the coefficient
of y along the direction of ei , one can see from Eq. (3) that the
coefficients ci satisfy the equation

ċi = [−1 + λiσS ′(z)] ci + [ξ · ψ(z,y)]t · ei + O

(
1√
n

)
.

It is therefore clear that the fluctuations are dominated by the
modes corresponding to the eigenvalues with largest real part
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FIG. 2. (Color online) Comparison of the empirical average and
standard deviation of the original (dotted line) and reduced (solid
line) models. Top: Real stability exponent. Bottom: Complex stability
exponents. The right panels show the spectra of ξ ; red arrows
indicate the stability exponents. ξij are centered independent Gaussian
variables with variances χj random, uniformly distributed in the
interval (0,1) (fully connected case) with mi = ±1/

√
(n). N = 1000,

σ = 2.5, and μ = 20.

of the matrix ξ , which we call stability exponents. In order to
get a grasp on the dynamics of these processes, let us for a
moment neglect the nonlinear terms ϕ and ψ . For finite n, the
system can therefore be in one of two situations: (i) either the
stability exponent λ1 is real, or (ii) there exist two complex
stability exponents λ1 and λ2 = λ∗

1.
In situation (i), the fluctuations vector y will concentrate

along the eigenvector e1 and therefore θ is the angle formed
by m and e1 and does not vary in time. In that case, the system
reduces, for large n, to the equations

ż = −z + μ cos(θ )S ′(z)c1,
(4)

ċ1 = [−1 + λ1σS ′(z)]c1.

The origin is always a fixed point of this system, it is the unique
solution, and moreover it is stable if and only if λ1σ < 1. It
loses stability through a pitchfork bifurcation when σ exceeds
1/λ1, and two new fixed points appear. Since S is assumed
to be a sigmoid function, its differential is bell shaped and
therefore is invertible on [0,1] �→ R+, and we denote this
inverse by φ. The fixed points correspond to z± = ±φ( 1

λ1σ
) and

c±
1 = λ1σ

μ cos(θ)z
± and are both stable. In that case, the system will

therefore display a transition to a nontrivial equilibrium state
when disorder is increased. Figure 2 (top panel) displays the
solution of both the original and associated reduced systems
(4). After a transient phase, we see a clear convergence of the
empirical mean to z± and of the standard deviation to c±

1 /
√

n

in agreement with the theoretical analysis.
Situation (ii) is slightly more involved. In that case, the

eigenvalue λ1 (respectively, e1, c1) is complex and we denote
(λR

1 ,λI
1) [respectively, (eR

1 ,eI
1), (cR

1 ,cI
1)] its real and imaginary

parts. The angle θ is therefore the angle formed by m and
the direction Re(c1e1) = cR

1 eR
1 − cI

1eI
1, and may therefore now

depend on time as c1 varies. In these coordinates, the system
reduces to the three-dimensional ordinary differential equation

ż = −z + μ cos(θ )S ′(z)|c1|,
ċR

1 = −cR
1 + σS ′(z)

(
λR

1 cR
1 − λI

1c
I
1

)
, (5)

ċI
1 = −cI

1 + σS ′(z)
(
λI

1c
R
1 + λR

1 cI
1

)
.

Here again, the origin is an obvious solution, and the
eigenvalues of the Jacobian matrix at this point are (−1,−1 +
σλR

1 ± iσλI
1). The system undergoes a Hopf bifurcation at

σ = 1/λR
1 with emergence of periodic orbits with frequency

λI
1/λ

R
1 close to the bifurcation. As disorder is increased, the

system will present a transition to periodic dynamics, highly
synchronized close to the bifurcation (since the variance of
the trajectories, |y|, is |c1|/√n). The system will therefore
display a transition to synchronized oscillations as disorder is
increased. Typical trajectories are displayed in Fig. 2 (bottom
panel) and again, after a short transient phase, the original
network shows very good agreement with the periodic orbit of
the reduced system (5).

The analysis of this semilinear approximation also provides
a qualitative understanding of the behavior of the original
system, at least in a neighborhood of the transition. When
z is large enough, S ′(z) and ψ(z,y) are close to 0 and therefore
all components of y relax exponentially towards 0. This phase
of the dynamics contributes to the overall synchronization. As
y decays, the ensemble average z decays as well and S ′(z)
increases. In the case of real stability exponents, this process
leads to a stable stationary state described above. In the case
of complex stability exponents, as z approaches, say, z+ =
φ[1/(λR

1 σ )], the synchronized state y = 0 becomes unstable,
through a dynamic transition to chaos similar to [10]. In this
phase, due to the complex pair of eigenvalues, the fluctuations
y start to expand following the leading oscillatory modes. The
vector y will eventually cross the plane perpendicular to m,
provoking a change of sign of cos(θ ). The mean activity is
now attracted towards negative values until reaching z−. At
this point, y starts decaying again, producing an overshoot
of z followed by an attraction towards z−. A symmetrical
process then takes place, leading to the emergence of relaxation
oscillations.

We conclude that close to the transition, the system will
either show stationary solutions or relaxation oscillations
depending only on the nature of the eigenvalue with largest
real part of the connectivity matrix. When σ is further
increased, more complex dynamics appear due to the presence
of multiple modes driving y, essentially during the desta-
bilization phase. Although the regularity of the relaxation
oscillations is destroyed, the system still displays periods of
synchronized activity with z ∼ z±, interrupted by short periods
of desynchronization. Eventually, when σ is much larger than
μ, the system is close to a fully disordered network and
displays chaotic dynamics as in [10]. The effect of disorder
and structure parameters σ and μ is depicted in Fig. 3 where
we display the averaged standard deviation 1

T

∫ T

0 |y(t)|dt of
the trajectories, quantifying the synchronization level of the
network: increasing μ reduces the standard deviation of the
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LUIS CARLOS GARCÍA DEL MOLINO et al. PHYSICAL REVIEW E 88, 042824 (2013)

1 2 3 4 5 6
0

5

10

15

20

25

30

σ

μ

1 2 3 4 5 6

1

2

3

4

5

6

7

FIG. 3. (Color online) Averaged standard deviation of trajectories
of the balanced network after a transient regime, with N = 1000.
ξij are centered independent Gaussian variables with variances χj

random, uniformly distributed in the interval (0,1) (fully connected
case) with mi = ±1/

√
n.

trajectories, which corresponds to stronger synchronization,
whereas increasing σ has the opposite effect.

The semilinear approximation is accurate for the balanced
network because once |y| becomes small it is controlled by μ

and stays small. One can see that this is not the case in the
absence of balance in ξ . Indeed, assuming that |y| is small,
Eq. (3) becomes

ẏ = −y + S(z)
n∑

j=1

Jij + σS ′(z) ξ · y + ξ · ψ(z,y) + O

(
1√
n

)
.

The second term in the right-hand side, which vanishes in
the balanced scenario, is now of O(1) forcing |y| to grow.
This accounts for the key difference between the balanced and
nonbalanced networks, namely, that in the latter synchronized
regimes cannot persist in time.

IV. DISCUSSION

In contrast to usual nonbalanced mean-field theory, the
activity of balanced networks dramatically depends on the
properties of extremal values of the connectivity matrices
rather than on macroscopic estimates, and therefore remains
random in the large n regime. This motivates the study of the
nature of the stability exponents [17]. Numerical investigations
tend to show that, as n increases, the probability of the stability

exponent being complex increases and its imaginary part
decreases. In other words, for larger systems, the probability
of having slow periodic relaxation oscillations becomes larger,
and the period of these oscillations shorter.

This study can provide some insight on the biological func-
tionality of excitatory-inhibitory balanced networks. Balanced
connectivity accounts for a number of fundamental biological
phenomena such as maintaining a dynamic range in the face
of massive synaptic input [2], presenting a rich repertoire of
behaviors [3,4], and has been proposed as an explanation
for the selectivity to orientations in nonstructured cortical
areas [18]. Here we show that it can also play a fundamental
role in the emergence of synchrony and regular oscillatory
dynamics. We also show that disorder plays a crucial role in the
dynamics of the network. Experimental results have shown that
it significantly impacts the input-output function, rhythmicity,
and synchrony of neuronal networks [7–9]. These studies relate
disorder to transitions between physiological and pathological
behaviors, suggesting that specific levels of disorder favor
synchronization of neuronal networks. Our work provides a
theoretical approach to this question. In conclusion, we have
identified two key connectivity parameters μ and σ , which may
be interesting to measure experimentally and may be involved
in the regulatory processes controlling neuronal activity.

A new form of periodic synchronization therefore arises
in balanced networks. This surprising behavior is due to the
interaction between the structure and the disorder present in
the connectivity. It is remarkable that the extremely regular and
yet nontrivial macroscopic dynamics are driven by the chaotic
fluctuations of y rather than being driven by the ensemble
average itself. Moreover, the transition we exhibit enjoys
relatively broad universality. Indeed, our developments did
not rely on a specific structure of ξ or m, beyond balance
condition and appropriate scaling. This means that, as shown
in Fig. 1, the results hold for general distributions of ξ and m,
such as sparse or small-world-type connectivity matrices. This
phenomenon is also a novelty in the sense that many systems
that exhibit synchronized oscillations are ensembles of coupled
oscillators or excitable systems [1], whereas here individual
elements are not natural oscillators: Both the synchronization
and periodicity are emerging properties of the coupling. This
work therefore opens the way to a more detailed understanding
of the dynamics of random balanced networks, and shows that
this class of model displays interesting properties, which can
be explained through the analysis of reduced low-dimensional
models.
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