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We consider three distinct and well-studied problems concerning network structure: community detection by
modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning.
Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix
representations of the network. We show that with certain choices of the free parameters appearing in these
spectral algorithms the algorithms for all three problems are, in fact, identical, and hence that, at least within the
spectral approximations used here, there is no difference between the modularity- and inference-based community
detection methods, or between either and graph partitioning.
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I. INTRODUCTION

Networked systems, such as social, biological, and tech-
nological networks, have been the subject of much recent
research activity [1,2]. Along with many studies focusing on
local properties of networks, such as clustering [3], degree
distributions [4,5], and correlations [6,7], there have also been
studies that examine large-scale properties such as path lengths
[3], percolation [8,9], or hierarchy [10,11]. Among large-scale
network properties, however, the one attracting by far the most
attention has been community structure [12]. Many networks
are found to possess communities or modules, groups of nodes
within which connections are relatively dense and between
which they are sparser. Communities are of fundamental
interest in networked systems because of their functional
implications—communities in a social network, for instance,
may indicate factions, interest groups, or social divisions;
communities in a metabolic network might correspond to
functional units, cycles, or circuits that perform certain tasks.

The detection of communities in network data is also of
interest from an algorithmic point of view. It is a remarkably
challenging and subtle task for which a large number of
approaches have been proposed. In this paper we examine
two of the most widely used, the modularity maximization
method [13] and the method of statistical inference by
maximum likelihood [14,15]. In both of these approaches the
community detection problem is mapped to one of optimizing a
given objective function (either modularity or likelihood) over
possible divisions of a network into groups, but the resulting
optimization problem is, in general, a computationally hard
one [16], so one typically employs one of a range of
polynomial-time heuristics to find approximate optima, such as
Markov chain Monte Carlo [14,17,18], extremal optimization
[19], or greedy algorithms [20].

In this paper we study one of the most elegant classes
of heuristics for network optimization problems, the spectral
algorithms, inherently global methods based on the eigen-
vectors of matrix representations of network structure. We
show that both the maximum modularity and maximum
likelihood methods for community detection can be formulated
as spectral algorithms that rely on the eigenvectors of the
so-called normalized Laplacian matrix. We also describe a
standard spectral algorithm for a third network problem, the
well-known problem of normalized-cut graph partitioning.

Our primary finding is that the spectral algorithms for all three
of these problems are identical. At least within the spectral
approach taken here, there is no difference between the detec-
tion of community structure using the methods of maximum
modularity and maximum likelihood, or between either and
normalized-cut graph partitioning. The latter equivalence is of
particular interest because graph partitioning has been studied
in depth for several decades and a broad range of results both
applied and theoretical have been established, some of which
can now be applied to the community detection problem as
well.

The outline of this paper is as follows. In Secs. II, III,
and IV we derive in turn our spectral algorithms for the
maximum modularity, maximum likelihood, and normalized-
cut partitioning problems, which, as we have said, turn
out all to be the same. In Sec. V we give a selection of
applications of the method to example networks, including
both computer-generated benchmark networks and real-world
networks, demonstrating its efficacy in community detection.
In Sec. VI we give our conclusions.

II. MODULARITY MAXIMIZATION

In its most basic form, the problem of community detection
in networks is one of dividing the vertices of a given network
into nonoverlapping groups such that connections within
groups are relatively dense while those between groups are
sparse. As it stands, this definition is imprecise and leaves
room for interpretation, and there have, as a result, been
a large number of different methods proposed for solving
the problem [12]. Of these probably the most widely used is
the method of modularity maximization, in which the objective
function known as modularity is optimized over possible
divisions of the network [13]. The modularity for a given
division of a network is defined to be the fraction of edges
within groups minus the expected fraction of such edges in a
randomized null model of the network. Various null models
have been used, but the most common by far is the so-called
configuration model [21,22], a random graph model in which
the degrees of vertices are fixed to match those of the observed
network but edges are in other respects placed at random. The
expected number of edges falling between two vertices i and
j in the configuration model is equal to kikj /2m, where ki is
the degree of vertex i and m is the total number of edges in
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the observed network. The actual number of edges observed to
fall between the same two vertices is equal to the element Aij

of the adjacency matrix A, so that the actual-minus-expected
edge count for the vertex pair is Aij − kikj /2m. Giving integer
labels to the groups in the proposed network division and
denoting by gi the label of the group to which vertex i belongs,
the modularity Q is then equal to

Q = 1

2m

∑
ij

[
Aij − kikj

2m

]
δgigj

, (1)

where δij is the Kronecker delta. The leading constant 1/2m

is purely conventional; it has no effect on the results presented
here.

High values of the modularity correspond to good divisions
of a network into groups and low values to bad, so the
modularity maximization method finds good divisions by
maximizing the modularity over divisions. Discussion of the
background to the method, including past work and various
pros and cons of the approach, can be found, for example,
in Refs. [12] and [23]. The modularity can be calculated for
divisions of a network into any number of groups, but for
the purposes of this paper we will focus on the simplest case
of division into just two groups, which is probably the most
widely studied case.

Consider, then, a network of n vertices and m edges, which
is to be divided into two groups of any size so as to maximize
the modularity, Eq. (1). The modularity can be conveniently
rewritten in terms of a set of n Ising spin variables si , one for
each vertex, having values

si =
{+1 if vertex i belongs to group 1,

−1 if vertex i belongs to group 2.
(2)

Then δgigj
= 1

2 (sisj + 1) and

Q = 1

4m

∑
ij

[
Aij − kikj

2m

]
(sisj + 1). (3)

We define the quantity

Bij = Aij − kikj

2m
(4)

to be an element of a symmetric n × n matrix B, called the
modularity matrix [24]. The modularity matrix has the crucial
property that the sums of all its rows and columns are zero:∑

j

Bij =
∑

j

Aij − ki

2m

∑
j

kj = ki − ki

2m
2m = 0, (5)

where we have made use of
∑

j Aij = ki and
∑

j kj = 2m.
Thus Eq. (3) can be written as

Q = 1

4m

∑
ij

Bij (sisj + 1) = 1

4m

∑
ij

Bij sisj , (6)

the second term in the brackets vanishing because of (5).
The matrix elements Bij are fixed once the network is given,

while the spins si represent the division of the network into
groups. Our task is to maximize Q over the possible choices of
the si—the values of si that achieve the maximum indicate the
optimal division of the network into communities. This is still
a difficult computational task, known to be NP complete in

general [16], so the maximization is usually performed using
approximate heuristics. In this paper we consider a spectral
optimization strategy, similar in spirit to the spectral method
proposed previously in Ref. [24], but differing from it in one
crucial detail.

Maximization of (6) is difficult because the variables si

are discrete valued. The problem can be made much easier
by relaxing the discreteness and allowing the si to take any
real values. This is an approximation—we will be solving a
somewhat different problem from the one we really want to
solve—but in practice it often gives good results. When we
relax the si , however, we must still impose at least a minimal
constraint on them to prevent them from becoming arbitrarily
large, which would make Q large but only in a trivial way
that yields no information about community structure. Most
commonly one applies a constraint of the form

∑
i s

2
i = n,

which limits any individual si to the range −√
n � si � √

n

and fixes the mean-square value at 1.
In the language of spin models, this would be called a

“spherical model” [25]. One can think of it in geometric terms,
as shown in Fig. 1. If we consider the variables si to be the
elements of an n-element vector s, then the allowed values
si = ±1 in the original unrelaxed problem restrict the vector
to the corners of an n-dimensional hypercube centered on the
origin, while the relaxed values

∑
i s

2
i = n of the spherical

model fall on the bounding hypersphere of radius
√

n that
touches the hypercube at each of its corners. Thus the relaxed
values include all the allowed values in the original problem,
but also include many other values as well.

While this spherical relaxation is the commonest approach
to the spectral method, it is only one of an infinite number
of possible relaxations, differing from one another in the
details of the constraint used to prevent the values of the si

from diverging. For instance, rather than relaxing onto the
bounding hypersphere, we can relax onto any hyperellipsoid
that touches the hypercube at all of its corners. In other words,
we can choose a constraint of the form

∑
i ais

2
i = ∑

i ai for
any set of nonnegative constants ai . It is trivially the case that
this constraint is satisfied by the unrelaxed values si = ±1.

s

FIG. 1. (Color online) Geometric representation of the relaxation
method employed here. The true optimization is over values of the
vector s falling at the corners of a hypercube centered on the origin.
The most common relaxation involves generalizing to values that
lie anywhere on the bounding hypersphere that touches the cube at
the corners (blue). In this paper, however, we generalize instead to a
bounding hyperellipsoid, which also touches the cube at its corners
(green).
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(The possibility of alternative relaxations has been touched
upon previously in the literature, for example in Ref. [26].)
The standard hypersphere corresponds to ai = 1 for all i, but in
this paper we will find it convenient to make a different choice,
leading to a spectral modularity optimization algorithm that is
different in some important respects from previous algorithms.

Our choice is to set ai equal to ki , the observed degree of
vertex i, so that our constraint takes the form∑

i

kis
2
i = 2m, (7)

where m is again the number of edges in the network and we
have made use of

∑
i ki = 2m.

Although the original unrelaxed modularity maximization
problem is a hard one to solve, this relaxed problem is much
easier. It can be solved exactly by simple differentiation.
Applying the constraint (7) with a Lagrange multiplier λ, the
maximum is given by

∂

∂sl

[ ∑
ij

Bij sisj − λ
∑

i

kis
2
i

]
= 0. (8)

Performing the derivatives and rearranging, we find that∑
j

Bij sj = λkisi, (9)

or, in matrix notation,

Bs = λDs, (10)

where D is the diagonal matrix with elements equal to the
vertex degrees Dii = ki . In other words s is a solution of a
generalized eigenvector equation, with λ being the eigenvalue.

To determine which eigenvector we should take, we
multiply Eq. (9) by si and sum over i, making use of (6)
and (7), to get an expression for the modularity:

Q = 1

4m

∑
ij

Bij sisj = λ

4m

∑
i

kis
2
i = λ

2
. (11)

To achieve the highest value of the modularity, therefore, we
should choose λ to be the highest (most positive) eigenvalue
of the generalized eigenvector equation (10).

Since all rows of the modularity matrix B sum to zero, it
follows that Eq. (10) always has a solution s = (1,1,1, . . .) with
eigenvalue λ = 0. This solution, with all si = +1, corresponds
to putting all vertices in group 1 and none in group 2, i.e., not
dividing the network at all. This tells us that if λ = 0 is the
highest eigenvalue then the best modularity is achieved by not
dividing the network at all—the calculation is telling us that
there is no good division of the network into groups, so we
should leave it undivided. In our previous work we called such
networks “indivisible.”

If, however, there is even a single strictly positive eigen-
value, then there will exist some nontrivial solution vector s
that achieves a higher modularity than the undivided network.
Almost all networks do have such a strictly positive eigenvalue
and we will assume this to be the case here—the only
exceptions are unrealistically dense networks such as the
complete graph.

The solution above can be simplified further. Using the
definition (4) of the modularity matrix, we can rewrite

Eq. (9) as

∑
j

Aij sj = ki

(
λsi + 1

2m

∑
j

kj sj

)
, (12)

or in matrix notation as

As = D

(
λs + kT s

2m
1

)
, (13)

where k is the vector with elements ki and 1 = (1,1,1, . . .).
Noting that A1 = D1 = k and kT 1 = 2m, we now multiply
Eq. (13) throughout by 1T to get λkT s = 0, which implies
either that the largest eigenvalue λ is zero or that

kT s = 0. (14)

Since we are assuming there exists a nontrivial eigenvalue
λ > 0, we know that λ �= 0 and hence (14) applies, which in
turn means that Eq. (13) simplifies to

As = λDs. (15)

Thus our solution vector s is also a solution of this generalized
eigenvector equation, involving only the standard adjacency
matrix. Again we should choose the largest allowed value of λ.
Now, however, the most positive eigenvalue is disallowed—it
is straightforward to see that the uniform vector 1 is an
eigenvector and by the Perron-Frobenius theorem it must have
the most positive eigenvalue, since it has all elements positive.
But this choice of eigenvector fails to satisfy Eq. (14) and
hence is forbidden, in which case the best we can do is choose
the eigenvector corresponding to the second most positive
eigenvalue [which can easily be shown to satisfy (14), as
indeed do all the remaining eigenvectors]. This eigenvector
is precisely equal to the leading eigenvector of Eq. (10), and
hence either (10) or (15) will give us the solution we seek.

This is an exact solution of our relaxed modularity maxi-
mization problem. To get a solution to the original unrelaxed
problem, in which si is constrained to take only the values ±1,
the normal approach is simply to round the si to the nearest
allowed value ±1. In practice, this just means that positive
elements get rounded to +1 and negative elements to −1.
Thus our final algorithm is a simple one: we calculate the
eigenvector s of Eq. (15) corresponding to the second-highest
eigenvalue, then divide the vertices of our network into two
groups according to the signs of the elements of this vector.
This is an approximation. It is not guaranteed to give an exact
solution to the unrelaxed problem, but in many cases it does a
good job, as we will later see.

As a practical matter, the solution of the generalized
eigenvector equation (15) is most straightforwardly achieved
by defining a rescaled vector u = D1/2s, where D1/2 is
the diagonal matrix with diagonal elements equal to

√
ki .

Substituting into Eq. (15) and rearranging, we then find that

(D−1/2AD−1/2)u = λu. (16)

The matrix D−1/2AD−1/2 is symmetric, and thus u is an
ordinary eigenvector of a symmetric matrix, with elements
having the same signs as those of s, and with the same
eigenvalue. The spectral algorithm is thus a simple matter of
calculating the eigenvector for the second-highest eigenvalue
of this symmetric matrix and then dividing the vertices
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according to the signs of its elements. For sparse networks
this can be done efficiently using sparse matrix methods such
as the Lanczos method.

The matrix

L = D−1/2AD−1/2 (17)

is sometimes called the normalized Laplacian of the network
and we will use that terminology here. (The normalized
Laplacian is sometimes defined as I − D−1/2AD−1/2, where
I is the identity, but the two matrices differ only in a trivial
transformation of their eigenvalues and the eigenvectors are
the same for both.) Connections between the normalized
Laplacian and modularity maximization have been pointed
out previously, for example by Delvenne et al. [27], who
showed that maximum modularity divisions and Laplacian
eigenvectors appear in different limits of a certain random
walk process on networks.

III. STATISTICAL INFERENCE

We now turn to a second method for community detection in
networks, the method of statistical inference using stochastic
block models. This method has attracted attention in recent
years for the excellent results it returns and because of the
solid mathematical foundations on which it rests, which have
allowed researchers to prove rigorously a range of results
about its expected performance. Indeed the method is provably
optimal for certain classes of networks, in the sense that no
other method will classify more vertices into their correct
groups on average [28,29].

The simplest form of the method is based on the standard
stochastic block model [14], sometimes also called the planted
partition model [30], a random graph model of a network
containing community structure. The model does not itself
constitute a method for community detection. Instead it
provides a way of generating synthetic networks. To perform
community detection, one fits the model to observed network
data using a maximum likelihood method in much the same
way as one might fit a straight line through a set of points to
estimate their slope.

While formally elegant, however, this method has been
found to work poorly in practice. The standard stochastic
block model generates networks whose vertices have a Poisson
degree distribution, quite unlike the degree distributions of
most real-life networks, which means that the model is not,
typically, a good fit to observed networks for any values of
its parameters. The situation is akin to fitting a straight line
through an inherently curved set of points—even the best fit
will be a poor one because all fits are poor.

We can get around this problem by employing a slightly
more sophisticated model, the degree-corrected block model
[31], which incorporates additional parameters that allow the
model to fit non-Poisson degree distributions, improving the
fit to real-world data to the point where the model appears to
give good community inference in practical situations.

The problem of fitting the degree-corrected block model
to network data by likelihood maximization is, like the
modularity maximization problem, a computationally difficult
one in general, but it too can be tackled using approximate
spectral methods, as we now describe. Indeed, as we will

see, the spectral algorithm for the degree-corrected model is
ultimately identical to the one we derived for the maximum
modularity problem in the previous section.

In the degree-corrected block model n vertices are divided
into groups and edges placed between them independently
at random with probabilities that depend on the desired
degrees of the vertices and on their group membership. Let
gi again denote the label of the group to which vertex i

belongs. Then between each pair i,j of vertices we place
a Poisson-distributed number of edges with mean equal to
kikjωgigj

, where ki is the desired degree of vertex i and
ωrs is a set of parameters whose values control the relative
probabilities of connections within and between groups.

If Aij is again an element of the adjacency matrix of the
observed network, equal to the number of edges between
vertices i and j , then the probability, or likelihood, that this
network was generated by the degree-corrected stochastic
block model is

L =
∏
i<j

(
kikjωgigj

)Aij

Aij !
exp

(−kikjωgigj

)
, (18)

where the desired degrees ki are equal to the actual degrees of
the vertices in the observed network. Thus the likelihood of
observing the network that we did in fact observe, assuming
it was generated by this model, depends on the assignment of
the vertices to the groups. For some assignments the network
would be highly unlikely to have occurred; for others it is
more likely. In the maximum likelihood approach, we assume
that the best assignment of vertices to groups is the one that
maximizes the likelihood. This again turns the community de-
tection problem into an optimization problem which, although
hard to solve exactly, often has good approximate solutions
that can be found with relative ease.

Typically, in fact, we maximize not the likelihood itself but
its logarithm L , which has its maximum in the same place:

L = 1

2

∑
ij

[
Aij ln ωgigj

− kikjωgigj

]
, (19)

where we have switched to a sum over all i,j and compensated
with the leading factor of 1

2 , and we have assumed that the
observed number of edges Aij between any pair of vertices is
either one or zero so that Aij ! = 1 for all i,j .

As in Sec. II, we will concentrate on the simplest case of a
network with just two groups, and in addition we will assume
(as most other authors also have) that there are just two differ-
ent values for the model parameters: ωin for pairs of vertices
that fall in the same group and ωout for pairs in different groups,
with ωin > ωout for traditional community structure (so-called
assortative structure). Introducing indicator variables si = ±1
to denote group membership as we did in Sec. II, we note that

ωgigj
= 1

2
[(ωin + ωout) + sisj (ωin − ωout)], (20)

ln ωgigj
= 1

2

[
ln(ωinωout) + sisj ln

ωin

ωout

]
. (21)

Substituting these expressions into Eq. (19), we then find that

L =
∑
ij

(Aij − νkikj )sisj , (22)

042822-4



SPECTRAL METHODS FOR COMMUNITY DETECTION AND . . . PHYSICAL REVIEW E 88, 042822 (2013)

where ν is a positive constant given by

ν = ωin − ωout

ln ωin − ln ωout
, (23)

and we have dropped unimportant additive and multiplicative
constants, which have no effect on the position of the likelihood
maximum.

Our goal is now to maximize Eq. (22) with respect to the
variables si , but there is a problem: in most cases we don’t
know the values of the parameters ωin and ωout and hence we
don’t know ν either. Let us, however, suppose for the moment
that we do know ν and see where it leads us. Equation (22) is
closely similar in form to the modularity of Eq. (6), the only
differences being a trivial leading constant, and the substitution
of ν in the place of 1/2m when compared to the modularity
matrix of Eq. (4). The similarities are sufficiently strong that
we can use the same spectral approach to maximize (22) as
we did for the modularity, and it turns out to give the same
answer. We relax the variables si , allowing them to take any
real values subject only to the elliptical constraint of Eq. (7),
then introduce a Lagrange multiplier λ and differentiate to get∑

j

(Aij − νkikj )sj = λkisi, (24)

or, in matrix notation,

(A − νkkT)s = λDs, (25)

where D is the diagonal matrix of degrees as previously.
Thus the solution to our relaxed maximization problem is an
eigenvector of the matrix A − νkkT and, by the same argument
as before, we should choose the leading eigenvector.

Multiplying (25) on the left by 1T and making use of
A1 = D1 = k and kT 1 = 2m, we get

kT s − 2mνkT s = λkT s, (26)

which implies either that kT s = 0 or that λ = 1 − 2mν. We
are not at liberty, however, to choose any of the quantities λ, ν,
or m, and hence cannot in general satisfy the latter condition.
Hence we must have kT s = 0 and Eq. (25) simplifies to

As = λDs, (27)

which is identical to Eq. (15) for the maximum modularity
problem. Note that the constant ν has dropped out of the
equation, so the fact that its value is unknown is, after all,
not a problem.

From this point onward, the argument is the same as for the
maximum modularity problem and leads to the same result,
that the optimal division of the network is given by the signs
of the elements of the eigenvector of the normalized Laplacian
matrix of Eq. (17) corresponding to the second most positive
eigenvalue.

Thus, within the spectral approximation used here, the
maximum modularity and maximum likelihood methods for
community detection are functionally identical and give
identical results.

IV. GRAPH PARTITIONING

We now turn to the third of the three problems men-
tioned in the introduction, the problem of normalized-cut

graph partitioning, which, when tackled using the spectral
method, we will show to be identical to the community
detection problems of the previous sections. In a previous
paper [32] we noted a mapping between maximum-likelihood
community detection and the slightly different problem of
minimum-cut partitioning, although that mapping requires
an extra computational step not required by the mapping
presented here. Connections between graph partitioning and
modularity maximization have also been noted previously
[33,34], although only for modified forms of the modularity
and not for the standard modularity studied in this paper.

Traditional graph partitioning is the problem of dividing
a network into a given number of parts of given sizes such
that the cut size R—the number of edges running between
parts—is minimized. In the most commonly studied case the
parts are taken to be of equal size. In many situations, however,
one is willing to tolerate a little inequality of sizes if it allows
for a better cut. Focusing once more on the case of division into
two parts, a standard way to achieve this kind of tolerance is to
minimize not the cut size but the ratio cut R/n1n2, where R is
again the cut size and n1 and n2 are the sizes of the two groups.
The minimization is now performed with no constraint on the
group sizes, but since n1n2 is maximized when n1 = n2 = 1

2n,
the minimization still favors equally sized groups, but it
balances this favoritism against a desire for small cut size,
and the compromise seems to work well in many practical
situations.

Another variant on the same idea, which is particularly
effective for networks that have broad degree distributions,
as do many real-world networks, is minimization of the
normalized cut R/κ1κ2, where κ1 and κ2 are the sums of
the degrees of the vertices in the two groups. This choice
favors divisions of the network where the groups contain equal
numbers of edges, rather than equal numbers of vertices, which
is desirable in certain applications. It is on this normalized-cut
partitioning problem that we focus in this section.

The normalized-cut problem, like the other problems we
have studied, is hard to solve exactly, but good approximate
solutions can be found using spectral methods. The spectral
approach given here is a standard one and is not new to this
paper—see, for example, Zhang and Jordan [35]. As before,
we define index variables si to denote the group membership of
each vertex, but rather than the ±1 values we used previously,
we define

si =
{ √

κ2/κ1 if i is in group 1,

−√
κ1/κ2 if i is in group 2,

(28)

where κ1 and κ2 are again the sums of the degrees of the
vertices in each group. Note that this means that the values
denoting the two groups change when the composition of the
groups changes.

With this choice for the si , and using our previous notations
k and D for the vector and diagonal matrix of degrees
respectively, we have

kT s =
∑

i

kisi =
√

κ2

κ1

∑
i∈1

ki −
√

κ1

κ2

∑
i∈2

ki

= √
κ2κ1 − √

κ1κ2 = 0, (29)
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and

sT Ds =
∑

i

kis
2
i = κ2

κ1

∑
i∈1

ki + κ1

κ2

∑
i∈2

ki

= κ2 + κ1 = 2m, (30)

where m is the number of edges in the network as before
and the notation i ∈ 1 indicates that vertex i is a member of
group 1.

Note also that

si +
√

κ1

κ2
= 2m√

κ1κ2
δgi ,1, (31)

meaning this quantity is nonzero only if i belongs to group 1.
Similarly

si −
√

κ2

κ1
= − 2m√

κ1κ2
δgi ,2. (32)

Using these results, we have∑
ij

Aij

(
si +

√
κ1

κ2

)(
sj −

√
κ2

κ1

)

= − (2m)2

κ1κ2

∑
ij

Aij δgi ,1δgj ,2 = − (2m)2

κ1κ2
R, (33)

where, as before, R is the cut size between the two groups. But
the quantity on the left can also be written in matrix form as(

s +
√

κ1

κ2
1
)T

A
(

s −
√

κ2

κ1
1
)

= sT As − 2m, (34)

where we have made use of k = A1, 1T A1 = 2m, and Eq. (29).
Combining Eqs. (33) and (34), we now have a matrix

expression for the normalized cut:

R

κ1κ2
= 2m − sT As

(2m)2
. (35)

Thus minimizing the normalized cut is equivalent to maximiz-
ing sT As over choices of si satisfying (28).

This hard optimization problem is once more made easier
by relaxation. We relax the requirement that the si take the
values in Eq. (28), allowing them to take any real values subject
only to the constraints (29) and (30). The relaxed problem
can then be solved straightforwardly by introducing Lagrange
multipliers λ,μ for the two constraints and differentiating,
which gives

As = λDs + μk. (36)

Multiplying on the left by 1T and making use of 1T A = 1T D =
kT gives

kT s = λkT s + 2mμ, (37)

which implies that μ = 0 because of Eq. (29), and hence
we find once again that s is a solution of the generalized
eigenvector equation

As = λDs. (38)

Using Eqs. (30) and (35), the optimal value of the
normalized cut is then

R

κ1κ2
= 2m − λsT Ds

(2m)2
= 1 − λ

2m
, (39)

which is minimized by choosing λ as large as possible. The
leading eigenvalue, however, is ruled out, since its eigenvector
1 fails to satisfy Eq. (29), so once again our solution of the
relaxed problem is given by the eigenvector corresponding to
the second largest eigenvalue of Eq. (38) [which does satisfy
(29), as do all the other eigenvectors].

Reversing the relaxation process is a little more complicated
in this case than in the previous cases we have studied, because
the discrete values of si that we are rounding to, given by
Eq. (28), are not constant, but depend on the composition of
the groups themselves. In principle, the most correct way to do
it is to go through every possible division of the elements of the
leading eigenvector, of which there are n + 1, and find the one
that gives the smallest value of the normalized cut. In practice,
however, since we are looking for solutions with roughly equal
group sizes, the values of κ1 and κ2 are also roughly equal,
meaning that the discrete values of si are approximately ±1,
and we can usually get good solutions by rounding to these
values, which is equivalent to dividing vertices according to the
signs of the vector elements. As we show in the next section,
the divisions returned by the method are typically insensitive
to the precise threshold value at which we divide the vector
elements, so the results do not depend strongly on the rounding
strategy chosen.

With this choice, which is the most common one, the
algorithm becomes the same as the algorithms we have given
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FIG. 2. (Color online) Results from the application of the al-
gorithm described here to networks generated using the stochastic
block model with two communities. (a) Each curve shows the values,
plotted in increasing order, of the elements of the second eigenvector
of Eq. (15) for single networks with n = 10 000 vertices and within-
group and between-group edge probabilities ωin = 75/n and ωout =
25/n respectively. The curves are, from left to right, for networks
in which group 1 has size 1000, 2000, 3000, . . . ,9000. (b) Similar
curves for networks of 10 000 vertices and equally sized groups, but
with varying edge probabilities. The edge probabilities are given by
nωin = 60, 65, 70, 75, 80, 85, and 90 and nωout = 100 − nωin.
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FIG. 3. (Color online) The fraction of vertices classified into the
correct groups by the algorithm described in this paper (blue circles)
and by a standard spectral algorithm based on the leading eigenvector
of the modularity matrix (red stars) for networks of n = 10 000
vertices generated from a stochastic block model with two equally
sized groups and mean degree 50. The vertical dashed line represents
the position of the detectability threshold below which all community
detection algorithms must fail this test [28,37–40].

for community detection, either by modularity maximization
or the method of maximum likelihood.

V. EXAMPLES

We have shown that three different problems—two-way
community detection by maximum modularity and maximum

likelihood, and normalized-cut bisection of a graph—can all
be solved using the same spectral algorithm. We compute the
eigenvector of the normalized Laplacian matrix corresponding
to the second-largest eigenvalue and divide vertices according
to the signs of the vector elements. In this section we give
some example applications of the algorithm to both computer-
generated and real-world networks.

Figure 2 shows results from the application of the method
to networks generated using the stochastic block model of
Sec. III, which in addition to its use in community inference
is also widely used as a benchmark test for community
detection methods [30,36]. Figure 2(a) shows a series of curves
representing the elements of the second eigenvector of Eq. (15)
in increasing order for single networks with two communities
of varying sizes. The horizontal dashed line indicates the point
at which the values of the elements pass zero—vertices on one
side of this line are placed in the first group and vertices on the
other side are placed in the second. Each curve passes briskly
through zero at a point close to the sizes of the two groups
planted in the network—the size of the first group in this test
was 1000, 2000, 3000, and so on for each successive curve.
This shows that the algorithm is capable of the accurate unsu-
pervised detection of groups of a wide range of different sizes.
Moreover detection is robust against fluctuations—because
the line is close to vertical as it passes zero, the division of the
network is insensitive to changes in the cut point. If the dashed
line were moved up or down, even by quite a large amount, very
few vertices would change group membership. This observa-
tion provides some justification for our contention at the end
of Sec. IV that the exact choice of the cut point is unimportant.

Figure 2(b) shows similar curves for stochastic block model
networks with two equally sized groups (which is the most

Dolphin social network Political books

FIG. 4. (Color online) Left: results of applying the algorithm to a network of frequent association among a group of bottlenose dolphins
studied by Lusseau et al. [43], which is believed to divide into two clear communities. The top panel shows the values of the eigenvector
elements in increasing order. The bottom panel shows the resulting division of the network. Right: equivalent plots for a copurchasing network
of books about US politics in which vertices represent books and edges connect books frequently purchased by the same purchaser. This
network is thought to split strongly along lines of political ideology.
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challenging case) but varying strength of community structure.
When the structure is strongest the curves show a pronounced
step at the halfway point, indicating robust detection of the
equally sized communities, but the step becomes progressively
smaller as the planted structure gets weaker, and eventually
disappears completely, so that the curve becomes featureless.
The point at which the step disappears coincides with the
“detectability threshold” below which it is believed that all
algorithms (including this one) must fail to detect community
structure [28,37–40].

Figure 3 further quantifies the algorithm’s success at
detecting community structure in block model networks. The
figure shows the fraction of vertices classified into the correct
groups for the same situation as in Fig. 2(b)—block model
networks with n = 10 000, two equally sized groups, and
varying strength of community structure. For most of the
parameter range spanned by the figure the algorithm does a
good job of putting vertices in the right groups. The vertical
dashed line in the figure shows the position of the detectability
threshold, below which we expect the algorithm to return
results no better than a random guess (which means 50% of
vertices classified correctly). As we can see, the algorithm does
better than random all the way down to the transition point (if
only by a small margin in the region close to the threshold),
which agrees with previous theoretical results finding that
other spectral algorithms do the same [39], at least on networks
with sufficiently high average degree [41]. Also shown in Fig. 3
are results for tests on the same networks of the standard
spectral community detection method of Ref. [24], in which
one examines the leading eigenvector of the modularity matrix.
As the figure shows, the performance of the two algorithms,
at least in this test, is essentially identical, although some
previous studies have found small differences in performance
between algorithms [42].

Figure 4 shows example applications to two well-studied
real-world networks, the dolphin social network of Lusseau
et al. [43] and the political book network of Krebs [24], both of
which are believed to break clearly into two communities. The
top two panels in the figure show the equivalent of the curves
in Fig. 2—values of the elements of the second eigenvector in
increasing order. Each shows a clear step where it crosses the
zero line (dashed lines in the plots) and the groups generated
by dividing the vertices at this point are shown in the lower
panels. In both cases the groups correspond closely to the
accepted ground truth for these networks.

A further interesting example is given in Fig. 5, which
shows an application of the method to a network of US political
weblogs compiled by Adamic and Glance [44]. Again this
network is believed to divide strongly into two communities
(along lines of political outlook), and the algorithm finds
the accepted division to a good approximation. In this case,
however, the division was found by examining the third
eigenvector of the normalized Laplacian, not the second, as the
developments of this paper would suggest. An examination of
the second eigenvector reveals that it is entirely uncorrelated
with the community structure in the network, instead being
strongly localized around a few of the highest-degree vertices
in the network—very large vector elements for these few hub
vertices and small and apparently random elements for all
other vertices. It is known that very high-degree vertices in

FIG. 5. (Color online) Eigenvector elements and community
division found by application of the algorithm described in this paper
to a network of weblogs about US politics, and the web hyperlinks
between them, compiled by Adamic and Glance [44]. Again the
algorithm finds clear two-way community structure that corresponds
closely to the acknowledged division of the network, but in this case
the community structure was obtained from the third, not the second,
eigenvector of the normalized Laplacian.

networks can give rise to high-lying, localized eigenvectors
[45], by mechanisms quite different from those that produce
the eigenvectors containing community structure, and the two
types of high-lying eigenvectors may compete to be the highest
in the overall spectrum. The network of political blogs has a
particularly broad distribution of vertex degrees, with some
degrees far above the network mean, which in this case is
apparently enough to create an additional eigenvector with
eigenvalue above that of the vector containing the community
structure. Nonetheless, the community structure is still there,
clearly present in the third eigenvector. In practice, this means
that application of the algorithm may not be quite as simple
as our derivations suggest: it may require some finesse to
extract useful community structure, particularly in the case
of networks with very high-degree hubs. Anecdotally, based
on our experiments, we believe that the replacement of the
second eigenvector with a localized vector related to network
hubs may occur more frequently in the algorithm described in
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this paper than it does in more conventional algorithms based
on the eigenvectors of the modularity matrix [24], but this at
present is merely conjecture.

VI. CONCLUSIONS

In this paper we have given spectral algorithms for the
solution of three distinct network problems: community
detection by modularity maximization, community detection
by likelihood maximization using the degree-corrected block
model, and normalized-cut graph partitioning. As we have
shown, the algorithms for all three of these problems turn out
to be the same, so that there is no difference, at least within the
spectral formulation we use, between these three problems,
although the algorithm described is different from standard
spectral algorithms for modularity maximization that have
appeared in the previous literature. We have given results from
applications of the algorithm to a range of computer-generated
and real-world networks, and it appears to perform well in
practice.

One clear possibility for extension of the calculations
outlined here is their generalization to the case of networks
containing more than two groups or communities. The fun-
damental techniques needed for such a generalization are
known [35,46]—one replaces the index variables si of Eq. (2)
with vectors pointing to the corners of a (possibly irregular)
simplex and the objective function (modularity, likelihood, or
normalized cut) with the trace of a quadratic form involving the
appropriate matrix. At present, however, a good all-purpose
approach for community detection using such methods has
yet to be found, and so the generalization to more than two
communities must be considered an open problem.
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