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Extracting connectivity from dynamics of networks with uniform bidirectional coupling
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In the study of networked systems, a method that can extract information about how the individual nodes are
connected with one another would be valuable. In this paper, we present a method that can yield such information
of network connectivity using measurements of the dynamics of the nodes as the only input data. Our method is
built upon a noise-induced relation between the Laplacian matrix of the network and the dynamical covariance
matrix of the nodes, and applies to networked dynamical systems in which the coupling between nodes is uniform
and bidirectional. Using examples of different networks and dynamics, we demonstrate that the method can give
accurate connectivity information for a wide range of noise amplitude and coupling strength. Moreover, we can
calculate a parameter � using again only the input of time-series data, and assess the accuracy of the extracted
connectivity information based on the value of �.
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I. INTRODUCTION

The study of networked systems, namely, systems that
consist of a number of elementary components, known as
nodes, interacting with one another, has become increasingly
important in many disciplines including physics, biology, and
social science (see, for example, reviews [1–3]). The collective
behavior of these systems would arise from the interactions of
the nodes. Thus to understand these systems or networks, it
is important to know how the individual nodes interact. When
the dynamics of a node depend explicitly on that of another
node, the latter node is connected or linked to the former
node. For many biological networks, knowing the network
connectivity, i.e., how the nodes are connected and interacting
with one another, is a significant first step for understanding
the functionality of the networks. Hence extracting network
connectivity from measurements of the dynamics of the nodes
has become an active area of research and has direct relevance
in many fields.

The problem is generally difficult and efforts have been
mostly focused on networks that are modeled by dynamical
systems with the time evolution described by a set of dif-
ferential equations. A method exploiting stationary response
properties of networks to applied external driving has been
proposed [4]. It was shown that this method could yield net-
work connectivity by measuring the responses to sufficiently
many suitable driving conditions in networks of coupled phase
oscillators. In another method [5], a second network with
the same intrinsic dynamics of the individual nodes and the
same interaction dynamics among the nodes as the original
network of interest is introduced. The network connectivity
of the second network is varied such that its dynamics
synchronizes with the original one then the connectivity of the
second network is recognized as that of the original network.
This method thus requires the functional forms of both the
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intrinsic dynamics and interaction dynamics to be known. It
has later been shown that [6] when these functional forms are
known, network connectivity can be obtained directly from the
measured time-series data of the nodes. In a related study [7],
a coupled leaky integrate-and-fire model of neurons is used.
The parameters of the model, including those describing the
connectivity, are determined by minimizing the difference
between the spiking data generated from this model and
the measured spike train data of a neuronal network. The
resulting model with its connectivity information is taken to
represent the original neuronal network of interest. A recent
work [8] shows that the presence of noise in certain networked
systems leads to a relation between the dynamical covariance
of the measurements of the nodes and the connectivity of the
nodes. This noise-bridging relation has been exploited [8,9] for
network reconstruction with an explicit use of the amplitude of
the noise and the strength of the coupling between nodes. Thus
all these earlier studies require information in addition to the
dynamics of the nodes for the extraction of the connectivity of
the network.

In this paper, we shall present a method that extracts net-
work connectivity using solely measurements of the dynamics
of the nodes. Our present study focuses on networked dynam-
ical systems in which coupling between nodes is bidirectional
and with uniform coupling strength. Our method is built upon
the mathematical relation between the dynamical covariance
and the connectivity discussed above. The paper is organized
as follows. In Sec. II, we shall set up the problem and review
the work presented in [8]. In particular, an exact mathematical
relation between dynamical covariance and connectivity can
be derived for networks with linear diffusive coupling between
nodes and individual nodes having no intrinsic dynamics.
The direct derivation is given in the Appendix. Then, in
Sec. III, we shall discuss how we can eliminate any explicit
reference to the noise amplitude σ and coupling strength g

in the mathematical relation to devise a method that extracts
network connectivity using measurements of the dynamics as
the only input data. Moreover, we can calculate a parameter
� using again only the measured dynamical data, and assess
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the accuracy of the extracted connectivity information based
on the value of �. We have applied our method to different
types of networks with linear diffusive coupling between nodes
including systems whose nodes have intrinsic dynamics. The
performance of such a method can be evaluated by comparing
the extracted connectivity against the actual one. In Sec. IV,
we compare the extracted and the actual connectivity using
different measures, and assess quantitatively the performance
of our method. Our results demonstrate that the method can
give accurate connectivity information for a wide range of
values of σ and g even for systems with intrinsic nonlinear
dynamics. We also explore the possibility of estimating σ 2/g

again using only the measured dynamical data. Finally, we
end the paper with a conclusion and outlook for future
work.

II. PROBLEM

We consider a networked dynamical system of N nodes,
whose time evolution is described by the following set of
coupled differential equations:

ẋi = f (xi) +
N∑

j=1

gijAijh(xi,xj ) + ηi (1)

for i = 1,2,3 . . . ,N . Here, xi denotes the state variable of
the ith node, and the time series xi(t) can be measured. The
function f describes the intrinsic dynamics of the individual
nodes and is taken to be identical for all the nodes. When
ẋi is a function of xj (t) with j �= i, the j th node is said to
be connected or linked to the i node, then Aij = 1 and the
interaction between the two nodes i and j is described by
the coupling function h(xi,xj ). Otherwise, Aij = 0. Together
with the definition Aii ≡ 0, Aij gives the component of the
adjacency matrix Â. gij is the coupling strength of the link
from the j th node to ith node. ηi is a Gaussian white noise
with zero mean and variance σ 2:

ηi(t)ηj (t ′) = σ 2δij δ(t − t ′), (2)

where the overbar is an average over noise. In this paper,
we confine our study to networked dynamical systems with
uniform bidirectional coupling such that Â is symmetric
and gij = g. Moreover, we consider networks whose graphs
have only one connected component. The problem that
we would like to address is the following. How can Â,
which specifies the connectivity of the network, be extracted
solely from the measurements xi(t) of the dynamics of the
system?

For the case of linear diffusive coupling, h(xi,xj ) = xj −
xi , and negligible intrinsic dynamics, f (xi) ≈ 0, Eq. (1)
becomes

ẋi = g

N∑
j=1

Aij (xj − xi) + ηi = −g

N∑
j=1

Lijxj + ηi. (3)

Dynamics described by Eq. (3) is known as the consensus
dynamics [10], and Lij are the components of the Laplacian

matrix L̂, defined by

Lij ≡ kiδij − Aij (4)

and

ki ≡
N∑

j=1

Aij (5)

is the in degree of the ith node measuring the number of
connections or links to the ith node, which is also the out
degree of the ith node for bidirectional networks. Thus we
refer ki simply as the degree of the ith node. Note that

N∑
j=1

Lij =
N∑

i=1

Lij = 0. (6)

Thus L̂ has a null eigenvalue and is not invertible. Define the
components Cij of the dynamical covariance matrix Ĉ by

Cij = 〈[xi(t) − X(t)][xj (t) − X(t)]〉, (7)

where X(t) ≡ (1/N )
∑N

i=1 xi(t), 〈· · · 〉 is an average over a
time period T with T → ∞, and · · · denotes an average over
the noise. A relation between L̂ and Ĉ,

Ĉ = σ 2

2g
L̂+, (8)

was presented in Ref. [8]. Here, the superscript + denotes
the pseudoinverse of a matrix. This result is exact for the
specific case of a networked system with consensus dynamics
described by Eq. (3). We shall give a direct derivation in the
Appendix.

Equation (8) implies

L̂ = σ 2

2g
Ĉ+, (9)

which shows that the network connectivity, as specified by
Aij = −Lij for i �= j , is given by −σ 2/(2g)C+

ij . This result
is exact in the limit of averaging over infinite time. In any
practical calculation of Cij , the time averaging is, however,
carried out over a finite period of time and only for data
obtained in one particular realization of the noise. As a result,
the calculated values of σ 2/(2g)C+

ij instead display a bimodal
distribution with two peaks around 0 and −1 and an overlap
between the two peaks is possible. An approximate result
for the degree of a node has been used [8] to separate the
calculated values of σ 2/(2g)C+

ij for i �= j into two groups,
one associated with Aij = 1 and the other with Aij = 0. As σ

and g appear explicitly in the calculations of both σ 2/(2g)C+
ij

and the approximate result for the degree of a node, this method
thus requires the knowledge of the noise strength as well as
the coupling strength. However, such knowledge is likely to
be lacking in practical problems. Thus a desirable method
would be one that extracts network connectivity using only
the measurable time-series data xi(t), i = 1,2, . . . ,N of the
nodes. To devise such a method, one needs to eliminate any
reference to the a priori unknown quantities σ and g. We shall
discuss how this can be achieved in the next section.
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III. METHOD

From Eqs. (4) and (9), we have

σ 2

2g
C+

ii = ki, (10)

σ 2

2g
C+

ij = −Aij , i �= j. (11)

As the factor σ 2/(2g) appears in both Eqs. (10) and (11),
it can be eliminated by taking the ratio of the diagonal and
off-diagonal elements of Ĉ+. Defining

rij ≡ C+
ij

C+
ii

, i �= j, (12)

then

rij =
{

0, nodes i and j are not connected,

− 1
ki

, nodes i and j are connected.
(13)

Thus the information about the connectivity is contained
completely in the rij ’s, which can be calculated using only
the dynamical time series xi(t) of the nodes. For a given node
i, the values of rij ’s would separate into two groups: group 1
of values close to 0 and group 2 of negative values close to
−1/ki . With this separation, the nodes j with rij ’s in group 2
can be deduced to be connected to node i, while those in group
1 are not connected to node i. As discussed earlier, in realistic
situations, the calculation of the elements Cij would be done
with an averaging in time over a finite interval and without
any average over the noise. Because of this, Eq. (9) and thus
Eq. (13) would not hold exactly. As a result, the separation of
the rij ’s into two groups could be much less distinct. We outline
a procedure below that allows us to make such a separation in
realistic situations.

(1) Calculate rij for i = 1, . . . ,N and j �= i.
(2) For a given node i, arrange the N − 1 values of rij in

ascending order and denote them as ri(m), with ri(1) being the
smallest value of rij . From Eq. (13), we expect that for nodes
that are connected to i, ri(m) < 0 and are close to one another.
Then when we get to nodes that are unconnected to node i, we
expect to see a big difference in ri(m) of the order 1/ki . Thus
a relatively big difference between ri(m + 1) and ri(m) should
occur at a certain value m = m0(i). By identifying m0(i),
we can deduce that nodes j with rij corresponding to ri(m)
for 1 � m � m0(i) [m0(i) + 1 � m � N − 1] are connected
(unconnected) to node i. We identify m0(i) as the value
m at which the largest value of di(m) ≡ ri(m + 1) − ri(m)
occurs provided the following two conditions are satisfied:
(i) the largest value of di(m) is larger than two times the
second-largest value and (ii) ri[m0(i)] < 0. These conditions
are set to avoid getting spurious result.

(3) In the event that the above two conditions are not all
satisfied, we take m0(i) to be the value m such that

∑m
n=1 ri(n)

is closest to −1. This is based on the result that Eq. (13) implies
that the sum of rij over those nodes j that are connected to
node i is −1.

(4) We can measure how well the values of rij are separated
into two groups by comparing di[m0(i)] with the average
separation, which is given by [ri(N − 1) − ri(1)]/(N − 2).

Thus we define

δ(i) ≡ ri[m0(i) + 1] − ri[m0(i)]

[ri(N − 1) − ri(1)]/(N − 2)
. (14)

The accuracy of the extracted connectivity information for
node i is expected to be high when δ(i) is large enough.

(5) For any pair of nodes i and j , it is possible that their
mutual connectivity information deduced using rim, m �= i,
is different from that deduced using rjm, m �= j . In such an
event, we compare δ(i) and δ(j ) and follow the deduction
information obtained from the node with the higher value of
δ.

Using this method, we can then extract the connectivity of
a network with uniform bidirectional coupling, based only on
the input of the dynamical time series of its nodes. The actual
connectivity is unknown in realistic problems, it is thus useful
to have a measure of the expected accuracy of an extracted
result of connectivity. As discussed, we expect the method to
work well and give accurate extraction when δ(i) is large for
all the nodes. Thus we measure the overall accuracy of the
extracted connectivity for the whole network by

� ≡ 1

N

N∑
i=1

δ(i). (15)

IV. RESULTS AND DISCUSSION

We have first applied the method for systems described
by Eq. (3) on three different networks: a random network of
N = 100 with probability p = 0.2, the network of C. elegans
neurons with N = 279 obtained from the Wormatlas database
[11], and the BA scale-free network introduced by Barabási
and Albert [12] with N = 1000 and a new node connecting
to two existing nodes in each step. We take g = σ = 1. To
investigate how the accuracy of the method might depend on
the coupling and noise strength, we have studied additional
different values of g and σ for the random network. We
integrate Eq. (3) in time using the Euler method and obtain the
time series xi(t) for i = 1,2, . . . ,N . In the calculation of Cij ,
we average over a total time Tav with a sampling time interval
of 5 × 10−4. Unless otherwise stated, we use Tav = 1000 with
a total of 2 × 106 data points for the average. To mimic real
situations, no average over the noise is taken. Thus Eq. (13)
only holds approximately as discussed in Sec. III. We have
calculated the values of rij and arrange them in ascending
order as ri(m), m = 1, . . . ,N − 1, for each node i as discussed.
In Fig. 1, typical results for a certain node i for the random
network with g = σ = 1 are shown. A clear separation of
the values ri(m) into two groups can be seen. In this case,
δ(i) = 21.0.

Our method is based on the separation of the values of
rij , i �= j , into two groups according to whether nodes i and
j are connected or not. Equation (9), which is derived for
networked systems with consensus dynamics described by
Eq. (3), provides the mathematical basis for such a separation.
Although Eq. (9) has not been proved for systems with general
dynamics, the work in Ref. [8] showed that there is an
approximate separation of the values of σ 2/(2g)C+

ij into two
groups even for systems with intrinsic Rössler dynamics [13].
This suggests that our method can be applicable even for
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FIG. 1. Values of ri(m) as a function of m for a certain node i of
the random network with σ = 1 and g = 1.

systems with nontrivial intrinsic dynamics. To investigate
this, we have studied the same three networks with the
FitzHugh-Nagumo (FHN) dynamics [14], which is commonly
used to model oscillatory or excitable systems such as neurons
or cardiac cells:

u̇i = 1

ε

(
ui − u3

i

3
− vi

)
+ g

N∑
j=1

Aij (uj − ui) + ηi, (16)

v̇i = ui + a, (17)

with ε = 0.01 and two values of a: 1.05 and 0.95. For
the noise-free case with no coupling, i.e., ηi = g = 0, the
nodes display excitable dynamics for |a| > 1 and oscillatory
dynamics if |a| < 1. Coupled excitable FHN networks under
noise display many interesting phenomena, such as coherence
resonance [15,16] in which the nodes can exhibit rather regular
periodic oscillations in some suitable noise regimes, and
frequency enhancement [17] in which the interplay of coupling
and noise give rise to nontrivial frequency variations. We
denote excitable dynamics for |a| > 1 as FHN1 dynamics and
oscillatory dynamics (|a| < 1) as FHN2 dynamics. We take
g = 10 and σ = 1. For the random network, two additional
sets of values, g = 10, and σ = 0.1 and g = σ = 1, have been
studied. For the FHN1 and FHN2 dynamics, the equations of
motion are similarly integrated, and we calculate the elements
of the dynamic covariance matrix Cij using ui(t)’s, the time
series for the fast variables, only.

Carrying out the procedure described in Sec. III, we
have extracted the connectivity of the networks for all the
cases studied. To assess the performance of the method, we
compare the extracted values for the elements of the adjacency
matrix, denoted as A

(e)
ij , with the actual values of Aij using

different measures. First, we focus on each node i and measure
the accuracy of the method by psen(i) and pspec(i), which
are respectively the percentage of nodes that are correctly
extracted to be connected to node i and the percentage of nodes
that are correctly extracted to be unconnected to node i. That
is, psen(i) and pspec(i) measure the sensitivity and specificity
of the method for node i in percentage. Denote the number of
nodes that are correctly extracted to be connected to node i by
nc(i) and the number of nodes that are correctly extracted to
be unconnected to node i by nu(i). The number of connected
nodes to node i is given by the degree of node i, ki , while the
number of nodes unconnected to node i is N − 1 − ki . Thus

TABLE I. Overall sensitivity and specificity of the method for the
different networks and dynamics.

Network N Dynamics σ g PSEN PSPEC

Random 100 Consensus 1 1 99.80 99.95
Random 100 FHN1 1 10 100 100
Random 100 FHN2 1 10 99.80 99.37

C. elegans 279 Consensus 1 1 99.87 99.98
C. elegans 279 FHN1 1 10 96.28 99.70
C. elegans 279 FHN2 1 10 98.21 99.32

BA scale-free 1000 Consensus 1 1 100 99.9996
BA scale-free 1000 FHN1 1 10 97.49 99.998
BA scale-free 1000 FHN2 1 10 96.69 99.999

psen(i) and pspec(i) are defined as

psen(i) = nc(i)

ki

× 100 =
∑

j �=i A
(e)
ij Aij∑

j �=i Aij

× 100, (18)

pspec(i) = nu(i)

N − 1 − ki

× 100

=
∑

j �=i

(
1 − A

(e)
ij

)
(1 − Aij )∑

j �=i(1 − Aij )
× 100. (19)

As Aij is either 0 or 1, A2
ij = Aij and thus when A

(e)
ij = Aij ,

we have psen(i) = pspec(i) = 100 as it should be. The overall
sensitivity and specificity of the method for the whole network
are

PSEN =
∑

i nc(i)∑
i ki

× 100 =
∑

i

pc(i)psen(i), (20)

PSPEC =
∑

i nu(i)∑
i N − 1 − ki

× 100 =
∑

i

pu(i)pspec(i). (21)

Thus the overall sensitivity and specificity, PSEN and PSPEC,
are the weighted averages of the sensitivity and specificity of
the individual nodes, psen(i) and pspec(i), with weights of pc(i)
and pu(i), respectively:

pc(i) ≡ ki∑
i ki

, (22)

pu(i) ≡ N − 1 − ki∑
i N − 1 − ki

. (23)

Therefore, PSEN is more affected by nodes with large degree,
while PSPEC is more affected by nodes with small degree. In
Table I, we present the values of PSEN and PSPEC for the various
cases studied. It can be seen that the accuracy of the method is
generally very good with both PSEN and PSPEC being greater
than 96. Moreover, PSPEC is generally larger than PSEN partly
due to the average degree of the nodes being less than N/2 in
all the three networks studied.

Next we look at psen(i) and pspec(i) of the individual nodes
in detail. In Fig. 2, we show the results for the three different
types of dynamics for the random network. Similar results
for the C. elegans and BA scale-free networks are shown
in Figs. 3 and 4, respectively. The method is expected to
work well particularly for networks with consensus dynamics.
Almost perfect extraction is indeed obtained for all the three
networks studied. For the random network, the method works
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FIG. 2. psen(i) (circles) and pspec(i) (triangles) for random net-
work with (a) consensus dynamics with σ = g = 1, (b) FHN1
dynamics with σ = 1 and g = 10, and (c) FHN2 dynamics with
σ = 1 and g = 10.

very well too for the FHN1 and FHN2 dynamics. In particular,
we have perfect extraction of psen(i) = pspec(i) = 100 for the
case of FHN1 dynamics. Thus the method can be applicable
for general systems including systems whose nodes have
nonlinear intrinsic dynamics. For the C. elegans and BA
scale-free networks psen(i) is still larger than 70 for over 90%
of the nodes for FHN1 and FHN2 dynamics.

We now discuss how psen(i) and pspec(i) depend on the de-
gree of the nodes. From Eq. (13), one expects δ(i) ∼ 1/ki , and
we have checked that this is the case on average using results
for the BA scale-free network. A larger δ(i) would give rise to a
smaller number of errors in the prediction. Thus we expect the
number of errors to increase with the degree ki on average. We
can write psen(i) and pspec(i) in terms of the number of errors.
Specifically, psen(i) = [1 − (number of errors)/ki] × 100 and
pspec(i) = [1 − (number of errors)/(N − ki)] × 100. For the
same number of errors, since N − ki > ki in the networks that
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FIG. 3. Same as Fig. 2 for the C. elegans network.

we have studied, pspec(i) would be closer to 100 than psen(i).
As can be seen in Figs. 2–4, this is indeed observed. Moreover,
when psen(i) is plotted as a function of ki , the data points would
lie on curves of [1 − (number of errors)/ki] × 100 with the
number of errors increasing with ki . As shown in Fig. 5, these
features are confirmed.

Using the random network with consensus dynamics, we
study how PSEN and PSPEC vary with g and σ . We find
that the method works well for a wide range of σ and g.
In particular, perfect extraction with psen(i) = pspec(i) = 100
for all the nodes and thus PSEN = PSPEC = 100 is found for
g � 10 and 0.1 � σ � 100. We classify the result of extraction
as satisfactory if both PSEN and PSPEC are greater than 95 and
as unsatisfactory otherwise. In Fig. 6, we show the “phase
diagram”of the performance of the method in the parameter
space. It can be seen that the method works well when σ is
larger than some threshold and when g is large. The threshold
value of σ decreases as g increases. When g is small, one needs
to average over very long time in order for Eq. (8) to hold.
Therefore, for any value of σ and some fixed and finite Tav, we
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FIG. 4. Same as Fig. 2 for the BA scale-free network.

expect the values of PSEN and PSPEC to decrease as g decreases.
Moreover, in the small-g regime, we expect the values of PSEN

and PSPEC to increase when we increase Tav. As can be seen in

0 10 20 30 40 50 60
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90

100

p se
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FIG. 5. Dependence of psen(i) on ki for the BA scale-free network
and FHN1 dynamics with σ = 1 and g = 10. The dashed lines are
plots of 100[1 − (number of errors)/ki] with the number of errors
being 1, 2, 3, 4, 6, 8, and 13 from left to right.
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FIG. 6. Phase diagram showing the performance of the method in
the parameter space for the random network with consensus dynamics
with Tav = 1000. Satisfactory results (both PSEN and PSPEC greater
than 95) are represented by open circles, while unsatisfactory results
are represented by closed circles.

Table II, all these expectations are confirmed. We have further
checked that the value of δ(i), defined in Eq. (14), is indeed
a good indicator of the accuracy of the extracted connectivity
information of node i in general: psen(i) and pspec(i) are close
to 100 whenever δ(i) is sufficiently large. Hence the method is
expected to give accurate extracted connectivity of the whole
network when the value of � is sufficiently large. In the ideal
situation when Eq. (13) holds, δ(i) = � = N − 2. We find that
a good guideline of an accurate extraction is � > 0.2N .

The measures psen(i) and pspec(i) give the accuracy of the
method in extracting local connectivity information at each
node. It would be interesting to study also the accuracy of
the method in extracting the global features of a network. We

TABLE II. Dependence of PSEN and PSPEC on the parameters for
the random network with consensus dynamics.

σ g Tav PSEN PSPEC �

0.01 0.1 1000 49.4 96.2 2.7
0.01 1 1000 87.7 98.0 7.1
0.01 10 1000 91.0 98.8 18.0
0.01 100 1000 97.7 99.3 30.1

0.1 0.1 1000 59.5 96.5 2.6
0.1 1 1000 99.6 99.7 17.1
0.1 10 1000 100.0 100.0 47.6
0.1 100 1000 100.0 100.0 72.6

1 0.1 1000 52.3 96.7 2.9
1 1 1000 99.8 99.95 22.2
1 10 1000 100.0 100.0 66.6
1 100 1000 100.0 100.0 80.4
1 0.1 10000 99.9 99.9 21.3
1 1 10000 100.0 100.0 67.1

10 0.1 1000 58.1 96.3 2.6
10 1 1000 99.7 99.9 22.1
10 10 1000 100.0 100.0 65.3
10 100 1000 100.0 100.0 80.4

100 0.1 1000 58.2 96.3 2.6
100 1 1000 99.7 99.9 22.1
100 10 1000 100.0 100.0 65.3
100 100 1000 100.0 100.0 80.4
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concentrate on two global features: the degree distribution
P (k), which gives the fraction of nodes having degree k,
and the eigenvalue spectrum, which gives the density of
the eigenvalues of the adjacency matrix of the network. For
scale-free networks, P (k) has a power-law dependence on k:
P (k) ∼ k−α . Thus it is especially interesting to study how
accurately the method can reproduce this power-law behavior
of P (k) for scale-free networks. The extracted degree of node
i, denoted by k

(e)
i , is given by

∑
j A

(e)
ij . The fractional error of

k
(e)
i is related to psen(i) and pspec(i) as follows:

k
(e)
i

ki

− 1 =
(

N − 1

ki

− 1

) [
1 − pspec(i)

100

]

−
[

1 − psen(i)

100

]
. (24)

Therefore, with the same psen(i) and pspec(i), the fractional
error would be larger for nodes with smaller degree ki . As a
result, it is generally more difficult to extract accurately P (k)
in the small-k regime. We compare P (k) using the extracted
k

(e)
i with the actual distribution using the actual ki . As shown in

Fig. 7, the extracted degree distribution resembles very well the
actual degree distribution for all the three dynamics studied.

Next we study the accuracy of the method in obtaining the
spectrum of eigenvalues of the adjacency matrix of a network.
The eigenvalue spectrum gives important information about
the topology of a network. The eigenvalues close to zero
are shown to be related to weakly connected nodes, nodes
that have a small degree [18]. On the other hand, the largest
eigenvalue plays a significant role in determining whether an
epidemic can spread on a network [19,20] and the value of
the critical coupling for the onset of coherent behavior [21].
For the random network with N → ∞, the density ρ(λ) of the
eigenvalues λ is given analytically by semicircle law [22]:

ρ(λ) =
{√

4Np(1−p)−λ2

2πNp(1−p) , |λ| < 2
√

Np(1 − p),
0, otherwise,

(25)

with the largest eigenvalue being pN . The eigenvalue spectrum
of the BA scale-free network has been studied [23–25]
numerically. The density of eigenvalues close to zero is found
to be significantly larger than the semicircle law, and decays
exponentially near the central peak and as a power law in the
tail regions. The exponent of the power-law tail in the spectrum
has been found [18] to be related to the power-law exponent α

in the degree distribution P (k). We check that the calculated
actual eigenvalue spectrum for the random network and the
BA scale-free network used in this work is in good agreement
with the analytical semicircle law and the numerical spectrum
obtained in Ref. [25], respectively. We calculate the extracted
eigenvalue spectrum using A

(e)
ij , and compare it with the actual

eigenvalue spectrum of Â. Results for the random network, the
C. elegans network, and the BA scale-free network are shown
in Figs. 8, 9, and 10, respectively. There is strikingly good
agreement of the extracted eigenvalue spectrum with the actual
one for all the cases shown in Table I. As a comparison, we
show also the extracted eigenvalue spectrum from consensus
dynamics in the small-g limit when the method does not give

100 101 102

k
10-4

10-3

10-2

10-1

100

P(
k)

(a)

100 101 102

k
10-4

10-3

10-2

10-1

100

P(
k)

(b)

100 101 102

k
10-4

10-3

10-2

10-1

100

P(
k)

(c)

FIG. 7. Comparison of the degree distribution P (k) calculated
using k

(e)
i (triangles) against the one calculated using the actual ki

(circles) for the BA scale-free network with (a) consensus dynamics
with g = σ = 1, (b) FHN1 dynamics with σ = 1 and g = 10, and
(c) FHN2 dynamics with σ = 1 and g = 10.

accurate results in Fig. 10. It can be seen that the density
of small eigenvalues is underestimated while the density of
intermediate eigenvalues is overestimated.

Finally, we explore the possibility to use the method to
estimate the value of σ 2/g. If Eq. (10) holds, a straight line
passing through the origin with a slope σ 2/(2g) would be
obtained when ki is plotted against C+

ii . The least-square-fit
value of the slope is then given by

∑N
i kiC

+
ii /

∑N
i (C+

ii )2. Thus
we can obtain an estimate of σ 2/g using this expression with
ki replaced by the extracted value k

(e)
i :

(
σ 2

g

)
est

= 2

∑N
i k

(e)
i C+

ii∑N
i (C+

ii )2
. (26)
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λ
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ρ(
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FIG. 8. (Color online) Comparison of the actual eigenvalue
spectrum (circles) for the random network with N = 100 with the
extracted eigenvalue spectrum for consensus dynamics with g = σ =
1 (squares), FHN1 dynamics with σ = 1 and g = 10 (triangles), and
FHN2 dynamics with σ = 1 and g = 10 (diamonds), respectively.
The analytical result for the actual spectrum for N → ∞ is also
shown as the solid line.

Such an estimate would be accurate if (i) Eq. (10) holds and
(ii) the extracted values of k

(e)
i are accurate. As discussed, the

extracted values of k
(e)
i are expected to be accurate when δ(i)

are sufficiently large. Thus we measure how good condition
(ii) holds using the value of �. It is clear that the validity
of condition (i) cannot be checked as both ki and σ 2/g are
unknown in the first place. Thus we instead measure the
goodness of fit of

k
(e)
i = 1

2

(
σ 2

g

)
est

C+
ii (27)

using the coefficient of determination R2, defined by

R2 ≡ 1 −
∑

j

[
k

(e)
j − (1/2)(σ 2/g)estC

+
jj

]2

∑
i

[
k

(e)
i − (1/N )

∑
j k

(e)
j

]2 . (28)

The closer R2 is to 1, the better is the fit of Eq. (27). Thus the
necessary conditions for the estimate of σ 2/g to be accurate
are � being large and R2 close to 1. In Table III, we show
the values of � and R2 and the percentage error of the estimate
(σ 2/g)est. We see that, except for the three cases of scale-free
networks studied, the estimate (σ 2/g)est is indeed accurate
with a percentage error of less than 10% when both � is
larger than 0.2 N and R2 > 0.9. For the exceptional cases of

-10 0 10 20 30 40
λ

0.00

0.05

0.10

0.15

ρ(
λ)

FIG. 9. (Color online) Same symbols as in Fig. 8 for the C. elegans
network.

-12 -8 -4 0 4 8 12
λ

0.0

0.1

0.2

0.3

ρ(
λ)

FIG. 10. (Color online) Same symbols as in Fig. 8 for the
BA scale-free network. The solid line is the spectrum obtained
numerically in Ref. [25]. As a comparison, we show also the extracted
spectrum from consensus dynamics with a small g = 0.1 and the same
σ = 1 (dashed line) for which our method does not give an accurate
extraction.

the scale-free network, Eq. (27) is a good fit but the value of
(σ 2/g)est deviates from the actual value of σ 2/g for more than
10%.

V. CONCLUSION AND OUTLOOK

We have proposed an efficient method to extract the connec-
tivity of networks in which the coupling is uniform and bidirec-
tional using solely the dynamical time-series data of the nodes.
Unlike earlier attempts, no additional input like the response
dynamics to perturbations of the system [4] is needed. This ap-
pealing feature allows one to use the method in solving practi-
cal problems. Our method makes use of the separation of the ra-
tio of the off-diagonal and diagonal terms of the pseudoinverse
of the dynamic covariance matrix C+

ij into two groups accord-
ing to whether the nodes i and j are connected or not [Eq. (13)].
A noise-induced relation between the Laplacian matrix of the
network and the dynamical covariance matrix of the nodes
Eq. (8) provides the mathematical basis for such a separation.
We have presented a direct derivation of Eq. (8) for networks
with the consensus dynamics, that is, networks with nodes

TABLE III. Percentage error of the estimate (σ 2/g)est.

Network Dynamics σ g � R2 Error (%)

Random Consensus 1 10 66.6 0.996 5.8
Random Consensus 1 1 22.2 0.994 0.2
Random Consensus 1 0.1 2.9 0.140 38.2
Random Consensus 0.01 1 7.1 0.530 3.1
Random FHN1 1 10 48.5 0.989 1.4
Random FHN1 1 1 2.4 0.698 52.2
Random FHN1 0.1 10 9.0 0.708 9.4
Random FHN2 1 10 30.7 0.790 27.8
C. elegans Consensus 1 1 78.5 0.999 0.1
C. elegans FHN1 1 10 72.1 0.960 0.3
C. elegans FHN2 1 10 60.5 0.924 6.5
BA scale-free Consensus 1 1 546.8 0.977 13.0
BA scale-free FHN1 1 10 444.3 0.980 19.3
BA scale-free FHN2 1 10 466.7 0.979 26.6
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having no intrinsic dynamics and with linear diffusive coupling
to one another. We have shown how the reference to the noise
amplitude σ and coupling strength g in Eq. (8) can be elimi-
nated to give Eq. (13), which forms the basis of our method.

We have demonstrated that our method can successfully
extract both the local connectivity information of individual
nodes as measured by the sensitivity and specificity, psen(i)
and pspec(i), and the global network properties of the degree
distribution and eigenvalue spectrum of the adjacency matrix
for a wide range of values of σ and g, when σ is larger than
some threshold and when g is large. In the small-g regime,
the accuracy of the method is only limited by the length of
the time-series data. Although Eq. (8) has not been proved for
systems with general dynamics, it has been found [8] that there
is an approximate separation of the values of σ 2/(2g)C+

ij into
two groups even for systems with chaotic Rössler dynamics
[13]. [We have verified that our method works also for Rössler
dynamics (results not shown).] This points to the general
applicability of our method. Indeed, we have shown that our
method works as well for networks with the nontrivial intrinsic
FHN dynamics. Moreover, we can calculate the parameter
� [or δ(i) for individual node i] using again only the input
of time-series data, and assess the accuracy of the extracted
information based on the value of �. Our results show that
the method generally gives accurate results when � > 0.2N .
We have also explored the possibility of estimating σ 2/g by
using Eq. (26). The estimate is generally accurate when both
� is large (� > 0.2N ) and R2 is close to 1 (R2 > 0.9), but
exceptions have been found for the BA scale-free network.

We anticipate that our method will be of value for
application in realistic complex networked systems in which
noise is inevitable practically. For example, in cultured cardiac
cells or tissues, application of our extraction scheme to the
time-series data on beating dynamics [26] or multielectrode
array measurements can provide useful information on the
structure and the noise-to-coupling ratio of the network. In
the present work, we have considered networks with uniform,
bidirectional linear-diffusive coupling. In realistic situations,
coupling strength and/or noise amplitude can be different for
different nodes and the coupling function can be nonlinear.
Moreover, the connections can be directional as in networks of
neurons. In addition, it is often impossible to collect data from
all the nodes in the network. All these issues of heterogeneity
of the network, directionality of coupling, and partial or
missing information would make the extraction of networks in
realistic problems more challenging. We are currently studying
whether and how our method can be extended to tackle
each of these complications. We have studied some simple
forms of nonlinear coupling function such as (xj − xi)3 and
tanh[α(xj − xi)], for some constant α, and found good results
as well. We have found that it is possible to extend our method
to networks with bidirectional coupling but with nonuniform
coupling strength. Details of these results will be presented
elsewhere.
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APPENDIX: DERIVATION OF EQ. (8)

Equation (8) has been reported in [8] but, in the original
derivation, Ĝ(t) = exp(−gL̂t) was mistakenly taken to be
zero for t → ∞, which leads to the erroneous result of
L̂Ĉ + ĈL̂T = σ 2Î /g, with the superscript T denoting the
transpose of a matrix and Î the identity matrix; then the
solution of L̂Ĉ + ĈL̂T = σ 2Î /g was incorrectly taken to be
Eq. (8). Here we present a direct derivation of Eq. (8). In vector
form, Eq. (3) can be written as

ẋ = −gL̂x + η. (A1)

Since L̂ is real and symmetric, it can be diagonalized by an
orthogonal matrix P̂ :

P̂ T L̂P̂ = �̂, (A2)

where �̂ is the diagonal matrix with �ii = λi , and 0 = λ1 <

λ2 � · · · � λN are the eigenvalues of L̂ in ascending order. As
we consider networks whose graphs have only one connected
component, L̂ has only one null eigenvalue. Equation (A2)
implies

L̂ = P̂ �̂P̂ T ⇒ L̂+ = P̂ D̂P̂ T , (A3)

where D̂ is the diagonal matrix with D11 = 0 and Dii = 1/λi

for i �= 1. Thus

L+
ij =

N∑
k=2

PikPjk

λk

. (A4)

Moreover, Eq. (6) implies

⇒ 0 =
∑
ij

Lij =
∑

i

∑
k

Pikλk

∑
j

Pjk

=
∑

k

λk

⎛
⎝∑

j

Pjk

⎞
⎠

2

⇒
∑

j

Pjk = 0, ∀k �= 1. (A5)

The solution of Eq. (A1) is given by

x(t) = e−gtL̂x(0) +
∫ t

0
dt ′e−g(t−t ′)L̂η(t ′)

= P̂ e−gt�̂P̂ T x(0) +
∫ t

0
dt ′P̂ e−g(t−t ′)�̂P̂ T η(t ′) (A6)

or

xi(t) =
∑
k,s

e−gtλkPikPskxs(0)

+
∑
k,s

∫ t

0
dt ′ηs(t

′)e−g(t−t ′)λkPikPsk. (A7)

Using Eq. (A7), we get

X(t)2 = 1

N2

[∑
l,k,s

e−gtλkPlkPskxs(0)

]2

+ σ 2

N2

∑
k

Ik(t)
∑

l

(Plk)2, (A8)
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xixj =
∑

k,k′s,s ′
e−gt(λk+λk′ )PikPjk′PskPs ′k′xs(0)xs ′ (0)

+σ 2
∑

k

Ik(t)PikPjk, (A9)

xi(t)X(t) = 1

N

∑
l,k,k′s,s ′

e−gt(λk+λk′ )PikPlk′PskPs ′k′xs(0)xs ′ (0)

+σ 2

N

∑
k

Ik(t)
∑

l

PlkPik, (A10)

where

Ik(t) ≡
∫ t

0
dt ′e−2gλk (t−t ′). (A11)

Here we have used Eq. (2) and the orthogonality of P̂ .

As a result, [xi(t) − X(t)][xj (t) − X(t)] can be written as
the sum of two terms, S

(1)
ij (t) and S

(2)
ij (t). The latter contains

all the terms proportional to σ 2 and the former contains the
remaining terms. That is,

S
(1)
ij (t) =

∑
k,k′,s,s ′

e−g(λk+λk′ )tPskPs ′k′xs(0)xs ′ (0)

×
(

Pik − 1

N

∑
l

Plk

) (
Pjk′ − 1

N

∑
l

Plk′

)
(A12)

and

S
(2)
ij (t) = σ 2

∑
k

Ik(t)

{
1

N2

∑
l

(Plk)2 + PikPjk

− 2

N

∑
l

Plk(Pik + Pjk)

}

= σ 2
N∑

k=1

Ik(t)

(
Pik − 1

N

∑
l

Plk

)

×
(

Pjk − 1

N

∑
l

Plk

)
. (A13)

Using Eq. (A5) and Pm1 = 1/
√

N for all m, we get

Pik − 1

N

∑
l

Plk =
{

0, k = 1,

Pik, k �= 1.
(A14)

Therefore,

S
(1)
ij (t) =

∑
k,k′=2

e−g(λk+λk′ )tPikPjk′

×
∑
s,s ′

PskPs ′k′xs(0)xs ′ (0), (A15)

S
(2)
ij (t) = σ 2

2g

N∑
k=2

1 − e−2gλkt

λk

PikPjk. (A16)

In the limit t → ∞,

S
(1)
ij (t) → 0 (A17)

and

S
(2)
ij (t) → σ 2

2g

N∑
k=2

PikPjk

λk

= σ 2

2g
L+

ij (A18)

using Eq. (A4). Hence we finally get

Cij = 〈[xi(t) − X(t)][xj (t) − X(t)]〉

= S
(1)
ij (t → ∞) + S

(2)
ij (t → ∞) = σ 2

2g
L+

ij , (A19)

which is just Eq. (8). This result is exact in the limit of long-
time averaging.
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