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Extraction of self-diffusivity in systems with nondiffusive short-time behavior
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We consider a toy model that captures the short-time nondiffusive behavior seen in many physical systems,
to study the extraction of self-diffusivity from particle trajectories. We propose and evaluate a simple method
to automatically detect the transition to diffusive behavior. We simulate the toy model to generate data sets
of varying quality and test different methods of extracting the self-diffusion coefficient and characterizing its
uncertainty. We find that weighted least-squares with statistical bootstrap is the most accurate and efficient means
for analyzing the trajectory data. The analysis suggests an iterative recipe for designing simulations to conform
to a specified level of accuracy.
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I. INTRODUCTION

Determination of the self-diffusivity D of a particle under-
going Brownian motion, from an analysis of particle motion,
has a long and checkered past. The first of two popular strate-
gies relies on Green-Kubo relationships; it computes D by
integrating the velocity autocorrelation function. This method
is widely used in molecular dynamics simulations [1,2]. The
second strategy involves using particle positions, rather than
velocities; it computes the mean-squared displacement (MSD)
curve, and estimates D by appealing to the Einstein relation.
This method, which forms the basis of this work, is more
commonly employed in Monte Carlo simulations [3] and in
single-particle tracking experiments [4], where accurate veloc-
ity data are not readily available. Formally, both these methods
are equivalent, and any differences in estimated diffusivities
can be traced to the numerical algorithms employed and the
treatment of “noise” in the computation. A comparison of these
two methods may be found, for example, in Ref. [5].

In its simplest, and perhaps most common, form, the
self-diffusion coefficient can be extracted by performing an
unweighted linear least-squares (LS) fit on the MSD curve.
However, more careful analyses recognize and account for
the fact that different points that make up the MSD curve
are correlated and known with different degrees of certainty
[4,6–9]. These sophisticated methods give us more accurate
estimates of D and the associated uncertainty. In other words,
these studies address the crucial question, “How much faith
should I attach to a particular estimate of self-diffusivity?” The
focus of these studies has primarily been the interpretation and
resolution of localization uncertainty that characterizes single-
particle microscopy data in experiments where the particle
undergoes Brownian motion. Naturally, the assumption of
Brownian motion is embedded deep within the machinery for
extracting self-diffusivity and its confidence intervals.

On the other hand, in many physically important systems
studied using computer simulation, a long-time diffusive
behavior is preceded by an early-time nondiffusive behavior,
which constitutes a non-negligible fraction of the observation
window. This includes diffusion of the center of mass of
polymer chains in melts and solutions [10–15], movement
of a Brownian particle trapped in an inverted colloidal
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crystal matrix [16,17], technologically important confined
fluid systems such as polyatomic molecules in nanoporous
adsorbates like zeolites and metal organic frameworks [18],
permeation of small molecules through polymeric membranes
[19], and ions in solid conductors [20,21], or, more generally,
the motion of a particle in an obstacle environment [22–24].

Unlike purely diffusive systems, the plot of MSD versus
time swings from nonlinear at short time scales to linear
at longer time scales. From a practical standpoint, both the
localization uncertainty associated with data acquisition in
experiments alluded to above and the nondiffusive early-time
behavior in molecular simulations “corrupt” the MSD at short
time scales, where the data happen to be well averaged
and most reliable. Despite this superficial resemblance, the
advanced methods developed to address the former cannot be
directly refashioned to address the latter, due to their reliance
on the assumption of Brownian motion.

A. Scope

Thus, in this work, we consider the extraction and
uncertainty quantification of D from MSD data obtained from
computer simulations, for systems with nondiffusive short-
time behavior. We propose and simulate a minimal model,
which reproduces the most relevant features of such systems.
We develop and test an algorithm to infer D automatically,
by analyzing the MSD data to estimate the transition from
nondiffusive to diffusive behavior and the weights to use
in linear regression. Further, we evaluate the validity of
bootstrapping as a data-driven technique for characterizing
the uncertainty in the computed diffusivities. Finally, we use
lessons learned from a parametric analysis to suggest ways to
improve the design of the particle simulation.

B. Background

The trajectory of a single particle, r(t), may be described
by taking snapshots at fixed time intervals �t and reporting
its position ri = r(t = (i − 1)�t). Given such a discretized
trajectory, {r1,r2, . . . ,rN }, the most common definition of the
MSD ρ̂(t) = 〈(r(t) − r(0))2〉 is [4]

ρ̂n = ρ̂(t = n�t) = 1

N − n

N−n∑
i=1

(ri+n − ri)
2,

(1)
1 � n � N − 1,
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FIG. 1. (Color online) The theoretical MSD [solid (green) line]
for the minimal model introduced in Sec. II A is nonlinear for n < 10,
after which it becomes strictly linear. The same model is used to
simulate np = 50 independent particle trajectories. The ensemble-
average MSD of the simulated trajectories and the associated standard
error, σn, are represented by filled circles.

where the hat on ρ is used to distinguish an MSD computed
from a single particle. For N � 1 and n � N , the number
of terms in the summation (N − n) is large; this results
in well-averaged values for ρ̂n. For a particle diffusing in
d-dimensional space, the Einstein relation 〈(r(t) − r(0))2〉 =
2dDt connects the self-diffusivity D and the MSD. If the
MSDs of np independent particle trajectories, ρ̂j

n , are available,
it is possible to define an ensemble-averaged MSD as

ρn = 1

np

np∑
j=1

ρ̂j
n = 1

np

1

N − n

np∑
j=1

N−n∑
i=1

(
rj

i+n − rj

i

)2
, (2)

where the superscript j,1 � j � np is used to index a particu-
lar particle trajectory. In the molecular simulation literature, D
is quite commonly inferred by a naive unweighted LS estimate
of the MSD data, via ρn = (2dD�t)n.

As mentioned earlier, many factors muddle such a straight-
forward analysis. Consider Fig. 1, which plots the theoretical
and simulated MSD (averaged over np = 50 independent runs)
of the minimal model discussed in Sec. II A. The shape of the
simulated curve beyond the early nondiffusive regime is not
unambiguously linear; it is also characterized by a relatively
large uncertainty σn [4,6–8], which is defined as the standard
error of mean of ρn via

σ 2
n = 1

np

(
1

np

np∑
j=1

(
ρ̂j

n

)2 − ρ2
n

)
. (3)

Similarly, for purely diffusive motion, it can be shown that
if only the first few ρn values are used to estimate D, then
statistically the LS estimate also corresponds to a maximum
likelihood estimate, because the MSD is approximately nor-
mally distributed in this regime. However, a closer look at
Fig. 1 clearly reveals the perils of using only the data at small
n in this case.

Another subtle issue related to the variance in the MSD is
the correlation in ρn. In LS fitting, even when σn is properly
accounted for by weighting the points, it is tacitly assumed

that ρn are uncorrelated. For pure diffusion, expressions for the
correlation matrix have been derived and can be incorporated
to properly appraise the uncertainty associated with the self-
diffusion coefficient [7].

It may be noted that these definitions of the average ρn

and σn are “trajectory-centric.” It is also possible to define
ρn and σn based purely on displacements, without regard to
the trajectory from which they originate. It is relatively easy
to show that such a definition of ρn is formally equivalent
to Eq. (2), and while such a “displacement-centric” σn is not
equivalent to Eq. (3), the primary results of this paper would
remain mostly unchanged even if this alternative definition of
σn were used.

II. METHODS

We first describe a simple one-dimensional (1D) minimal
model which is diffusive at long time scales but nondiffusive
at short time scales. Next, we propose a data-driven method to
trace this transition, based on the curvature of the MSD plot.
We then briefly describe weighted and unweighted LS and two
methods to quantify the uncertainty in the estimated D.

A. Model

Consider a particle initially at r = 0 moving at a constant
velocity of v = +1 units in a periodic lattice of “gates” sepa-
rated by a distance of L = 1 unit, as shown in Fig. 2. When the
particle “arrives” at a gate, it is reflected back instantaneously
(the direction of v is reversed) with a probability of 0.5.
If it is not reflected, it continues through the gate until it
encounters another gate, where the same scenario unfolds
again. The characteristic time between arrivals at gates is τ =
L/v = 1 unit.

At time scales much smaller than τ , the particle moves at
a uniform velocity. At much larger time scales, the particle
hops between gates, and its motion resembles simple 1D
diffusion. Let us assume that we take snapshots of the particle
at �t = 0.1τ and compute the MSD according to Eq. (1). The
theoretical MSD for this process can be computed exactly (see
the Appendix) and is depicted by the line in Fig. 1. From the
theory of 1D random walks, it can be shown that for t � τ ,

dρ(t)

dt
= 2D = L2

τ
.

Since τ = L = 1 here, D = 0.5.
The model can also be directly simulated to produce np

independent particle trajectories and, hence, MSD curves from
Eq. (1). Given the np MSD curves, one can compute ρn and
σn at each point [Eqs. (2) and (3)]; this is depicted in Fig. 1 for
np = 50 particles, with L = v = τ = 1, a simulation time of
τsim = 2τ , and �t = 0.1τ . At small n, the simulated average
has low variation and matches the theoretical curve quite well.
At large n both the variation and the potential deviation from
the theoretical ρ(t) increase.

FIG. 2. (Color online) Schematic of the minimal 1D model.
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TABLE I. Number of particles and simulation time considered
for the three data sets analyzed in this work. Throughout this paper,
τ = L = v = 1 and �t = 0.1τ .

Quality np τsim/τ

Low 50 2
Medium 100 5
High 500 10

As np and τsim become large, the simulated average MSD
curve asymptotically approaches the theoretical curve. In such
cases, where well-averaged long simulation data are available,
LS estimates of D converge, as demonstrated shortly. In such
cases, the preponderance of the data is very forgiving; it
even tolerates sloppy data analysis. Usually, however, we are
confronted with much more limited data, and this luxury is not
affordable.

In this work, we initially considered three data sets with
different np and τsim, as reported in Table I. The guiding
principle here was to construct data sets of varying “quality”
and assess the performance of different methods of data
analysis.

B. Detection of transition to a linear regime

To compute D, we first need to identify and discard the
early-time MSD (t � τ ). In the minimal model described
above, we set τ = 1. In general, the characteristic time τ

is not known and has to be inferred from the data. A
straightforward method to check whether the infinite-time
limit of the Einstein relation has been sufficiently sampled
is to compute the exponent relating the MSD to time and
retaining only the portion where the exponent is one. This
method works well when high-quality data are available, and
a log-log plot of ρn verus n reveals the characteristic time τ .
In this paper, we propose and test an alternative algorithm
for finding the transition point. It assumes that ρ(t) ∼ tα

(0 � α � 2 is a continuously varying parameter) transitions
to ρ(t) ∼ t around t ∼ τ . This procedure offers advantages
over the straightforward method for data sets of questionable
quality, where detecting a transition in slopes is notoriously
hard and prone to subjective bias.

Since the plot of ρn versus n is not linear at small n, we
numerically compute the curvature of the MSD curve and seek
to identify the point n = p at which the curvature becomes 0.
In practice, to be mindful of the error associated with the data
points, we consider the absolute value of the curvature of ρn

normalized by σn:

curvature = 1

σn

∣∣∣∣d2ρn

dn2

∣∣∣∣. (4)

This quantity has the advantage of being dimensionless and
builds on our prior expectation that the nondiffusive regime has
the highest quality data (small σn). For small n, d2ρn/dn2 is
nonzero, and σn is small, making the dimensionless curvature
[Eq. (4)] large. As n increases, d2ρn/dn2 decreases in
magnitude, even as σn increases. The net effect is that the
dimensionless curvature is a decreasing function of n.

We define the truncation point p to be the minimum
n at which the curvature as defined above, numerically

computed by the second-order difference formula d2ρn/dn2 ≈
ρn+1 − 2ρn + ρn−1, first drops below 0.01. Note that choosing
a value much smaller than 0.01 as the cutoff results in a
more conservative estimate for p, at the risk of unnecessarily
throwing away high-quality data. On the other hand, choosing
a much larger value for the cutoff results in a more aggressive
estimate of p, at the risk of letting information from the
nondiffusive regime taint the estimated D.

Note that this criterion assumes that the point at which the
“early-time nonlinear regime ends” marks the transition to the
diffusive regime. It does not explicitly test whether the data
for n > p are linear (ρn ∼ n), since it is very difficult to do
so for low-quality data sets, in any case. Presumably, the error
bars for diffusion coefficients estimated will reflect the quality
of the underlying data sets.

The overall procedure for inferring p may be summarized
as follows: (i) simulate an ensemble of np particles for time
τsim, (ii) compute the MSDs of the individual trajectories
using Eq. (1), (iii) compute ρn and σn from Eqs. (2) and (3),
(iv) compute the dimensionless curvature defined in Eq. (4)
using a second-order difference scheme for ρn, and (v) find
the n = p at which this quantity first drops below 0.01.

We applied this simple criterion to 1000 independent
simulations of ρn corresponding to the three data sets in Table I.
Figure 1, for example, corresponds to one of these independent
simulations of the low-quality data set. Histograms of p for the
three data sets are reported in Fig. 3. For the high-quality data
set, we obtained a mean value of (p + 1)�t = 1.00 ± 0.00,
where the error represents the standard deviation over the
1000 samples. Similarly, for the medium- and low-quality
data sets the corresponding mean values were 0.95 ± 0.05
and 0.93 ± 0.15, respectively. These values all compare well
with τ = 1. The slightly smaller values for the medium- and
low-quality data sets are acceptable, since the transition from
nondiffusive to diffusive behavior is not abrupt; the empirical
MSD curves often approach linearity well before τ . Changing
the cutoff criterion between 0.005 and 0.02 for Eq. (4) did
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FIG. 3. (Color online) Histograms of τ = (p + 1)�t computed
for the (a) low-, (b) medium-, and (c) high-quality data sets reported
in Table I using 1000 independent ensembles.
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not change these results significantly, and hence we stuck with
0.01 throughout this paper.

C. Least-squares

After identifying and discarding the nonlinear portion of
the MSD, we fit the rest of the data to the equation ρi =
2Di(�t) + c, where p < i � N and c is the intercept. We
begin by building the matrix A,

A =

⎡
⎢⎢⎣

1 (p + 1)�t

1 (p + 2)�t
...

...
1 N�t

⎤
⎥⎥⎦. (5)

We also construct a diagonal “weighting” matrix w, whose el-
ements are inversely proportional to the variance wii = 1/σ 2

i ,
and a column vector b = [ρp+1, . . . ,ρN ]T , which contains the
linear portion of the MSD.

We then solve the weighted linear LS problem for D using
normal equations or QR factorization [25],

AT wA
[

c

2D

]
= AT wb. (6)

Setting w = I in the equation above gives us the unweighted
estimate for D, which is also considered here because of its
prevalence in the literature. Note that we use all the points
n > p in the LS estimation; for particular subproblems where
a detailed model for ρn is available, it is possible to explore the
optimization problem of using only a subset of these points.
We have not done so in this paper, to align the treatment more
closely with standard procedures currently used in molecular
simulation research.

D. Distribution of estimated diffusivities

For a given np and τsim in Table I, we consider two
alternative methods to quantify the uncertainty in the estimated
diffusivity. In the first method, we perform 1000 independent
replicas at each np and τsim and, hence, compute a value
of D for each replica. For comparison, we compute both
the weighted, Dw, and the unweighted, Du, LS estimate for
each replica. We assume that the histograms of Dw and Du

approximate the true distribution of these quantities. While this
is a reasonable technique for analyzing the minimal model, it is
somewhat impractical in realistic simulations; the generation
of a single replica is often a computationally challenging task,
in itself (e.g., diffusion of long polymers).

Hence we consider an alternative method, based on simple
statistical bootstrap. In this method, we perform a single
independent ensemble simulation at each setting of np and τsim

in Table I. We compute individual MSDs for all the np particles
in this “original” data set and average them to estimate D.
We then generate a new “bootstrap” sample from the original
data set by randomly resampling np MSDs, with replacement.
Thus, unlike the original sample, the np MSDs in the bootstrap
sample are not all different, and in general, we expect copies of
MSDs to be present in the latter. It is easy to see that the total
number of bootstrap samples that can be constructed from np

independent particles in the original data set is n
np

p , which is a
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FIG. 4. (Color online) Histograms of D computed for the high-
quality data set with np = 500 and τsim/τ = 10. Weighted and
unweighted LS were used on 1000 independent samples to generate
the (red) histograms (a) and (c), respectively. Similarly, weighted
and unweighted LS were used on 10 000 (blue) bootstrap samples to
generate histograms (b) and (d), respectively.

huge number to sample exhaustively. In this work we consider
10 000 bootstrap samples derived from the original sample.

III. RESULTS

Figure 4 depicts the histograms, π (D), obtained for the
high-quality data set with np = 500 and τsim/τ = 10. The
top and bottom rows show the weighted and unweighted LS
estimates [Eq. (6)], respectively; the left and right columns
show the histograms using 1000 independent runs and 10 000
bootstrap samples, respectively. In all cases, π (D) shows a
narrow, approximately symmetric, distribution around the true
theoretical value of 0.5.

The agreement between the histograms deduced from
independent and bootstrapped samples, for both Dw and
Du, is quite remarkable. This observation is practically
useful. Typically, the computational effort required to simulate
particle trajectories far exceeds that required for their analysis.
In other words, generating independent samples to model the
uncertainty in D escalates the already substantial computa-
tional cost. The use of bootstrap samples avoids this escalation,
since only a single ensemble simulation is carried out; it shifts
the computational load from the generation of trajectories,
which is expensive, to their analysis, which is much cheaper.
This is apparent even in the present case: despite the simplicity
of the minimal model, the amount of effort required to generate
the distribution in Fig. 4(a) was 2.5 h, versus 13 min for that
in Fig. 4(b), on a single modern processor.

In Fig. 4, the mean (and standard deviation) for the indepen-
dent runs was D̄w = 0.499 ± 0.019 and D̄u = 0.501 ± 0.035.
The larger standard deviation of the latter is visually apparent
from the width of π (D) in Figs. 4(a) and 4(c). Similarly, the
mean for the bootstrapped samples was D̄w = 0.498 ± 0.017
and D̄u = 0.502 ± 0.033.
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FIG. 5. (Color online) Histograms of D computed for np = 100
and τsim/τ = 5. Weighted and unweighted LS were used on 1000
independent samples to generate the (red) histograms (a) and (c),
respectively. Similarly, weighted and unweighted LS were used on
10 000 (blue) bootstrap samples to generate histograms (b) and (d),
respectively.

Thus, on the basis of the high-quality data set, we can draw
two tentative conclusions: (i) bootstrapping is a convenient
and accurate alternative to uncertainty quantification via
independent simulations, and (ii) given the same trajectory
data, analysis using weighted LS is preferable to that using
unweighted LS because of the smaller variance. Next, we
examine how these tentative conclusions hold up for the
medium- and low-quality data sets.

Figure 5 depicts the histograms, π (D), obtained for the
medium-quality data set with np = 100 and τsim/τ = 5. In all
cases, the distribution is roughly symmetric around the true
value of D. The mean for the independent runs was D̄w =
0.500 ± 0.050 and D̄u = 0.512 ± 0.076 [Figs. 5(a) and 5(c)].
While the means are comparable to the high-quality data sets,
we note that the width of the corresponding distributions
has increased. This is not surprising, since the uncertainty
associated with the estimated D depends on the quality of the
underlying data set. Similarly, the mean for the bootstrapped
samples was D̄w = 0.497 ± 0.047 and D̄u = 0.485 ± 0.071
[Figs. 5(b) and 5(d)].

The low-quality data set is shown in Fig. 6. The distribution
π (D) has a spurious “void” near 0.5, which makes it
qualitatively different from the π (D) for the medium- and
high-quality data sets. This void is a direct consequence of the
simplicity of the minimal model for τsim/τ = 2. An intuitive,
albeit incomplete, explanation stems from the realization that
a single particle, with initial conditions r = 0 and v = +1,
tracks one of only two possible trajectories. It either passes
through the gate at r = L at t = τ , to end up at r = 2L at
t = τsim = 2τ , or is reflected back at the gate to end up at r = 0.
Estimates of diffusivity based on the former (latter) trajectory
overestimate (underestimate) the true diffusivity of 0.5 for this
toy model, leading to a void near the true diffusivity. In the
actual simulation, instead of a single trajectory, we have an
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FIG. 6. (Color online) Histograms of D computed for np = 50
and τsim/τ = 2. Weighted and unweighted LS were used on 1000
independent samples to generate the (red) histograms (a) and (c),
respectively. Similarly, weighted and unweighted LS were used on
10 000 (blue) bootstrap samples to generate histograms (b) and (d),
respectively.

ensemble of particles, which results in a cluster with D > 0.5
if the ensemble is rich in particles that pass through the gate,
and vice versa. In other words, the void is a “feature” of the
toy model itself.

The mean and standard deviation for the independent
runs was D̄w = 0.514 ± 0.0920 and D̄u = 0.598 ± 0.112
[Figs. 6(a) and 6(c)]. For the bootstrap runs, D̄w = 0.512 ±
0.088 and D̄u = 0.595 ± 0.108. Note that this low-quality
dataset underscores the importance of proper data analysis.

It is clear that the quality of the estimated D depends on the
quality of the underlying data set; the standard deviation, σD ,
varies inversely with np and τsim. In any case, it should be noted
that σD provides a reasonable estimate of the uncertainty in
the estimated D, regardless of the method of analysis chosen.

In summary, we find that the two tentative conclusions
drawn from the high-quality data set appear to hold remarkably
well for the medium- and low-quality data sets. This provides
strong support for the use of weighted LS with bootstrapping
to determine confidence intervals, which are applied for all the
computations that follow. As we do not use unweighted LS in
the rest of the paper, we drop the subscript in Dw and simply
use the symbol D.

A. Design of good-quality data sets

We now turn our attention to the issue of efficient simulation
design. It is obvious that increasing both np and τsim improves
the quality of the data set (Table I), as reflected in the
more accurate estimation of D̄ via a smaller σD . Here, we
decouple np and τsim and ask the question, “If I hold one of
these quantities constant, and change the other, how does my
estimate of D̄ and σD change?”

We generalize the three cases in Table I, by considering a
range of τsim and np. It should be pointed out that system-
specific considerations may impose hard constraints on the
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FIG. 7. (Color online) The uncertainty in the estimated self-
diffusivity is characterized by σD for a range of τsim/τ and np .
For simplicity, we partition the sampled parameter space into
regions of low (σD < 0.025), medium (0.025 � σD � 0.05), and high
uncertainty (σD > 0.05).

minimum np and τsim allowed. For example, in simulations of
polymers, the radius of gyration may determine the minimum
simulation box size and, hence, the minimum np, and the
reptation or relaxation time may determine an approximate τ

and, hence, a minimum τsim.
Here, we varied τsim between 2τ and 10τ , in increments

of τ (τ = 1 was held fixed), and np between 50 and 500, in
increments of 50. We used weighted LS to estimate D̄ and
σD from 10 000 bootstrap samples. In Fig. 7, we present a
bird’s-eye view of the results by dividing the np versus τsim/τ

space into regions of low (σD < 0.025), medium (0.025 �
σD � 0.05), and high uncertainty (σD > 0.05). As np and τsim

increase, σD becomes smaller.
We can interpret the data more quantitatively to address

an important practical concern: “Given a fixed computational
budget, are certain choices of np and τsim better than others?”
Note that the computational complexity of simulating the
trajectories of np particles for a simulation time τsim is
O(npτsim). For example, in molecular dynamics simulations,
the use of cell lists and neighbor lists reduces the complexity
of particles that interact via short-range pairwise potentials
from O(n2

pτsim) to O(npτsim) [3]. Thus, the computational cost
of doubling np while holding τsim constant is approximately
the same as that of doubling τsim while holding np constant
[“approximately” because prefactors like log(np) arise in
certain implementations of Ewald summation, for example].

For the systems we are interested in here, the early-
time nondiffusive behavior is not particularly useful in the
determination of the long-time self-diffusivity. Roughly, the
fraction τ/τsim of the computational effort expended is “thrown
away” during the analysis. Since τ is a constitutive property
of the material being studied, this revelation suggests that, at
the margins, increasing τsim is preferable to increasing np, as
it leads to less waste.

In other words, the amount of information in the trajectories
is proportional to np(τsim − τ ), although the computational
cost is proportional to npτsim. Figure 8 plots σD as a function
of the amount of information used to estimate D̄, np(τsim − τ ),
on a log-log scale. The data approximately appear to obey a
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FIG. 8. (Color online) The data considered in Fig. 7 are replotted
to show the variation of the uncertainty σD as a function of the “useful”
computational effort, which is quantified by np(τsim − τ ) instead of
npτsim to reflect the lack of information in the early nondiffusive part
of the simulation. Different symbols correspond to different values
of τsim/τ reported in the legend. The solid line is drawn after Eq. (7).

relationship implied by the central-limit theorem,

σD ∼ 1√
np(τsim − τ )

, (7)

as indicated by the solid line. If we assume that σD is
a good measure of the accuracy of the estimated D, this
provides a recipe for choosing np and τsim based on accuracy
requirements.

(1) Carry out a simulation with a reasonable guess for np

and τsim.
(2) Compute the MSD using Eq. (1).
(3) Estimate τ = p�t by analyzing the transition of the

MSD to linearity.
(4) Use weighted LS with statistical bootstrap to estimate

D and σD .
(5) If σD is larger than required, extrapolate Eq. (7) to

increase τsim (or np) to the required level of accuracy and
repeat the process.

IV. SUMMARY AND PERSPECTIVE

Physical systems in which a long-time diffusive behavior
is preceded by an early-time nondiffusive behavior are quite
common. Extracting the self-diffusivity of such systems using
the MSD requires special care. In this paper, we have con-
sidered a toy model, which captures these essential features,
and presented a simple method to recognize the crossover to
diffusive behavior based on the curvature of the MSD. We
then apply weighted and unweighted linear LS to estimate
self-diffusivity in the toy problem and conclude that weighted
LS was clearly superior.

Inferring confidence intervals on the estimated self-
diffusion coefficients is important, because in many physical
simulations the characteristic time τ is quite long and not
known precisely; there is always a danger of having too much
confidence in a value of self-diffusivity from relatively “short”
simulations. We found statistical bootstrap to be a valid and
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cheap alternative for characterizing the uncertainty in the
estimates.

We found that the quality of the estimated diffusivity
covaries with the quality of the underlying data set. While
the computational cost increases with system size and sim-
ulation time as O(npτsim), the uncertainty in the estimated
D measured by its standard deviation decreases according to
σD ∼ (np(τsim − τ ))−0.5. Collectively, these findings suggest
a recipe for designing simulations to a prescribed level of
uncertainty in the estimated self-diffusivity.
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APPENDIX: THEORETICAL MSD OF THE TOY MODEL

To theoretically evaluate the MSD of the toy model, we can
carry out an exact enumeration. For example, let us consider
the evaluation of the first few ρn. For concreteness, let us
assume L = 1, �t = 0.1, � = L�t = 0.1, and v = +1. Note
that no real loss of generality is incurred by making these
assumptions. To compute ρn, we have to consider all the
trajectories of n steps starting at r = 0,�,2�, . . . ,9� and
average over them.

For n = 1, all 10 different starting points lead to a
displacement of �. Thus,

ρ1 =
∑9

i=0 �2

10
= �2. (A1)

For n = 2, nine of the trajectories starting at r = 0,�, . . . ,8�

lead to a displacement of 2�. Trajectories starting at r = 9�

can either go past the gate to r = 11� (displacement of 2�)
or be reflected back at the gate with probability 1/2 for a net
displacement of 0. Thus,

ρ2 =
∑8

i=0(2�)2 + (
1
2 (2�)2 + 1

2 0
)

10
= 3.8�2. (A2)

A similar calculation for n = 3 yields

ρ3 =
∑7

i=0(3�)2 + (
1
2 (3�)2 + 1

2�2
)(

1
2 (3�)2 + 1

2�2
)

10
= 8.2�2. (A3)

As n increases, the exact enumeration becomes cumbersome,
as the number of trajectories to consider scale approximately
as 2floor(n�/L). However, the simplicity of the model allows
us to carry out the exact enumeration on a computer in a
reasonable amount of time. Computation of the theoretical
curve in Fig. 1 required less than a minute on a single modern
processor.
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