
PHYSICAL REVIEW E 88, 042812 (2013)

Structural and functional discovery in dynamic networks with non-negative matrix factorization

Shawn Mankad and George Michailidis
Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109-1107, USA

(Received 3 February 2013; revised manuscript received 21 May 2013; published 17 October 2013)

Time series of graphs are increasingly prevalent in modern data and pose unique challenges to visual
exploration and pattern extraction. This paper describes the development and application of matrix factorizations
for exploration and time-varying community detection in time-evolving graph sequences. The matrix factorization
model allows the user to home in on and display interesting, underlying structure and its evolution over time. The
methods are scalable to weighted networks with a large number of time points or nodes and can accommodate
sudden changes to graph topology. Our techniques are demonstrated with several dynamic graph series from
both synthetic and real-world data, including citation and trade networks. These examples illustrate how users
can steer the techniques and combine them with existing methods to discover and display meaningful patterns in
sizable graphs over many time points.
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I. INTRODUCTION

Due to advances in data collection technologies, it is
becoming increasingly common to study time series of net-
works. An important research question is how to discover the
underlying structure and dynamics in time-varying networked
systems. In this work we propose a matrix factorization-based
approach for community discovery and visual exploration
within potentially weighted and directed network time series.
We review and discuss this work in relation to popular
approaches for addressing the key problems of community
detection and visualization of time series of networks.

There have been many important contributions for com-
munity detection in network time series, extensively reviewed
in [1,2], from the fields of physics, computer science, and
statistics. The basic goal of community detection is to extract
groups of nodes that feature relatively dense within-group
connectivity and sparser between-group connections [3,4]. A
common strategy is to embed the graphs in low-dimensional
latent spaces. For instance, Leicht et al. [5] use latent variables
to capture groups of papers that evolve similarly in citation
network data. Sarkar and Moore [6] extend to the dynamic
setting a popular latent space model for static data [7] by
utilizing smoothness constraints to preserve the coordinates
of the nodes in the latent space over time. This article also
utilizes a similar low-dimensional embedding strategy. A
key difference between this work and [6] is that community
membership itself is subject to smoothness conditions in our
approach, hence removing the need for a two-stage procedure.
This article is also in contrast to previous works that use
temporal smoothness constraints for nonoverlapping (hard)
community detection [8], estimating time-varying network
structure from covariate information [9], predicting network
(link) structure [10], or anomaly detection [11,12].

A sequence of non-negative factorizations discovers over-
lapping community structure, where node participation within
each community is quantified and time varying. Other works
that consider a single-network cross section have shown
advantages of non-negative matrix factorization (NMF) for
community detection [13,14]. In addition to a quantification of
how strongly each node participates in each community, NMF
does not suffer from the drawbacks of modularity optimization
methods, such as the resolution limit [15], and can help

discover latent structure as shown in the synthetic cell phone
network example in this article.

Another advantage of sequential matrix factorization is with
large data sets, where data reduction for visualization can help
yield additional insights. We use the NMF to transform the time
series of networks to a time series for each node, which can be
used to create an alternative to graph drawings for visualization
of node dynamics. Much of the visualization literature aims
to enhance static graph drawing methods with animations that
move nodes (vertices) as little as possible between time steps
to facilitate readability [16]. However, the reliability of these
methods rely on the human ability to perceive and remember
changes [17]. Moreover, experiments have discovered that the
effectiveness of dynamic layouts is strongly predicted by node
speed and target separation [18]. Thus dynamic graph drawings
encounter difficulties when faced with a large number of time
points, larger graphs that feature abrupt, nonsmooth changes,
or if the user is interested in detailed analysis, especially at
the individual node level [19,20]. In contrast, static displays
facilitate detailed analysis and avoid difficulties associated
with animated layouts. This highlights a main advantage
our NMF model, namely, creating static displays of node
evolutions.

The remainder of this article is organized as follows. We
introduce a model for static network data in Sec. II, followed
by an extension for dynamic networks in Sec. III. We then
test the matrix factorization model on several synthetic and
real-world data sets in Sec. IV. In Sec. V we close the article
with a brief discussion.

II. NON-NEGATIVE MATRIX FACTORIZATION FOR
NETWORK CROSS SECTIONS

The most common factorization is the singular value
decomposition (SVD), which has important connections to
community detection, graph drawing, and areas of statistics
and signal processing [21]. For instance, in classical spectral
layout, the coordinates of each node are given by the SVD
of graph-related matrices and can be calculated efficiently
using algorithms in [22,23]. Recently, there has been extensive
interest in spectral clustering [24–26], which aims to discover
community structure in eigenvectors of the graph Laplacian
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matrix. The method proposed in this paper is similar in spirit,
as it also relies on low-rank approximations to adjacency
matrices (instead of Laplacian matrices). However, we search
for low-rank approximations that satisfy different (relaxed)
constraints than orthonormality, namely, that the approximat-
ing decompositions are composed of non-negative entries.
Such factorizations, referred to as NMF, have been shown
to be advantageous for visualization of non-negative data
[27–30]. Non-negativity is typically satisfied with networks,
as edges commonly correspond to flows, capacity, or binary
relationships and hence are non-negative. Non-negative matrix
factorization solutions do not have simple expressions in terms
of eigenvectors. They can, however, be efficiently computed
by formulating the problem as one of penalized optimization
and using modern gradient-descent algorithms. Recently,
theoretical connections between NMF and important problems
in data mining have been developed [31,32] and, accordingly,
NMF has been proposed for overlapping community detection
on static [13,14] and dynamic [33] networks.

With NMF a given adjacency matrix is approximated with
an outer product that is estimated through the minimization

min
U�0,V �0

||A − UV T ||2F , (1)

where A is the n × n adjacency matrix and both U and
V are n × K matrices with elements in R+. The rank or
dimension of the approximation K corresponds to the number
of communities and is chosen to obtain a good fit to the data
while achieving interpretability. An interesting fact about NMF
is that the estimates are always rescalable (scale invariant). For
example, we can multiply U by some constant c and V by
1/c to obtain different U,V estimates without changing their
product UV T . Thus, as seen by the rotational indeterminacy
and multiplicative nature of the factorization, NMF is an
underconstrained model.

It is, however, straightforward to interpret the estimates due
to non-negativity. For instance, (U )ik(V )jk can be interpreted
as the contribution of the kth cluster to the edge (A)ij . In other
words, the expected interaction (Â)ij = ∑K

k=1(U )ik(V )jk be-
tween nodes i and j is the result of their mutual participation
in the same communities [13]. Such an edge decomposition
can then be used to assign nodes to communities. For instance,
one can proceed by first assigning all edges to the community
with largest relative contribution. Then nodes are assigned to
communities according to the proportion of their edges that
belong to each community. We note that with an NMF-based
methodology, the adjacency matrix can be weighted (non-
negatively), a potentially appealing feature since many existing
analysis tools are arguably only compatible with networks of
binary relations.

Though it is not explicitly controlled, standard NMF tends
to estimate sparse components. Beyond the additional inter-
pretability that sparsity provides, we find further motivation to
encourage sparsity of the NMF estimate when working with
networks. For instance, suppose (A)ij = 0 for some i,j , that
is, there is an absence of an edge between nodes i and j . In the
low-rank approximation there is no guarantee that (Â)ij = 0,
though we expect it to be near zero. A straightforward way to
force (Â)ij exactly to zero is by anchoring (U )ik = (V )jk = 0
for all k and estimating the remaining elements of U and

V by the algorithm provided below (see [34] for a similar
strategy for multidimensional scaling). However, anchoring is
not appropriate with repeated or sequential observations, as an
edge can appear and disappear due to noise. Keeping in mind
the extension to sequences of networks in the next section, we
instead encourage sparsity in the form of an l1 penalty.

The factorized matrices are obtained through minimizing an
objective function that consists of a goodness of fit component
and a roughness penalty

min
U�0,V �0

||A − UV T ||2F + λs

K∑
k=1

||Vk||1, (2)

where the parameter λs � 0. The strength of the penalty is
set by the user to steer the analysis, where a larger penalty
encourages sparser V . Adding penalties to NMF is a common
strategy since they not only improve interpretability, but often
improve numerical stability of the estimation by making the
NMF optimization less underconstrained. References [35–39]
and references therein review important penalized NMF
models (see [40–42] for similar approaches with SVD). An
advantage of such an approach is that it is easy to modify for
particular data sets. For example, a similar l1 penalty can be
included on U if the row space (typically outgoing edges) is
of interest.

The estimation algorithm we present is similar to the
benchmark algorithm for NMF, known as multiplicative
updating [27,28]. The algorithm can be viewed as an adaptive
gradient descent. It is relatively simple to implement, but can
converge slowly due to its linear rate [43]. In practice we
find that after a handful of iterations, the algorithm results in
visually meaningful factorizations. The estimation algorithm
for the penalized NMF in Eq. (2) is studied in [37,38] and the
main derivation steps we present in Table I follow these works.

First, to enforce the non-negativity constraints, we consider
the Lagrangian

L = ||A − UV T ||2F + λs

K∑
k=1

||Vk||1

+ Tr (�UT ) + Tr (�V T ), (3)

where �,� are Lagrange multipliers. To develop a modern
gradient-descent algorithm, we employ the following Karush-
Kuhn-Tucker (KKT) optimality conditions, which provide
necessary conditions for a local minimum [44]. The KKT
optimality conditions are obtained by setting ∂L

∂U
= ∂L

∂V
= 0:

� = −2AV + 2UV T V, (4)

� = −2AT U + 2V UT U + 2λs. (5)

TABLE I. Sparse NMF.

1. Set constant λs

2. Initialize {U,V } as dense, positive random matrices
3. repeat
4. Set (U )ij ← (U )ij

(AV )ij
(UV T V )ij

5. Set (V )ij ← (V )ij
(AT U )ij

(V UT U )ij +λs

6. until Convergence
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FIG. 1. (Color online) Undirected network with 19 nodes.

Then the KKT complimentary slackness conditions yield

0 = (−2AV + 2UV T V )ij (U )ij , (6)

0 = (−2AT U + 2V UT U + 2λs)ij (V )ij , (7)

which, after some algebraic manipulation, lead to the multi-
plicative update rules shown in Table I. The algorithm has some
notable theoretical properties. Specifically, each iteration of
the algorithm will produce estimates that reduce the objective
function value, i.e., the estimates improve at each iteration.
Minor modifications provided in [45] can be employed to
guarantee convergence to a stationary point.

Finally, we note that when the observed graph is undirected,
due to symmetry of the adjacency matrix the factorization can
be written as

A ≈ U�UT , (8)

where � is a non-negative diagonal matrix. This is
the underlying model investigated in FacetNet [33], with

additional constraints on U to satisfy an underlying probabilis-
tic interpretation. The objective function considered in [33]
was also based on relative entropy or Kullback-Leibler diver-
gence. We find that such symmetric NMF models are far more
sensitive to additional constraints than its general counterpart,
especially when dealing with sequences of networks as in
the next section. Symmetric NMF has less flexibility since
additional constraints strongly influence the reconstruction
accuracy of the estimation. In contrast, without imposing
symmetry, as V changes, U compensates (and vice versa)
in order for the final product to reproduce the data as best as
possible. Thus, for tasks of visualization of node evolution and
community extraction in dynamic networks, we do not impose
symmetry on the factorization.

A. Illustrative examples

1. Community discovery on a toy example

We compare the following methods on a toy example
shown in Fig. 1: (i) leading eigenvector- (modularity-)
based community discovery [46], (ii) spectral clustering [25],
(iii) clique percolation [47] for overlapping community dis-
covery, (iv) classical NMF [Eq. (1)], and (v) sparse NMF
[Eq. (2)]. The results of the alternative methodologies are
provided in Fig. 2, where we see that even on this toy example,
there is disagreement in the recovered community structure.
The leading eigenvector solution differs slightly from that of
spectral clustering. Taken together, one may suspect that a soft
partitioning would result in overlap between the green (upper
left) and red (upper right) communities. Yet clique percolation
finds overlap between the blue (bottom right) and red (upper
right) communities. Classical NMF finds overlap between all
three communities, quantifies the amount of overlap (denoted
by the pie chart on each node), and decomposes each edge by
community. Figure 3 shows that sparse NMF finds a cleaner
structure compared to classical NMF. In particular, the sparse
NMF solution has less overlap (mixing) between the three
groups, while still quantifying the community contribution to
nodes and edges.

2. Rank-one factorizations

We show in our experiments (Sec. IV) that a sequence of
rank-one matrix factorizations can be the basis for informative
displays of time-varying node importance to connectivity. To

(a) (b) (c) (d)

FIG. 2. (Color online) Results using alternative community discovery methods: (a) leading eigenvector, (b) spectral clustering, (c) clique
percolation, and (d) classical NMF.
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FIG. 3. (Color online) Results from applying sparse NMF
(Table I) with λs = 5. Nodes and edges are grouped and colored
by their relative contribution of each community.

provide some intuition as to why such a rank-one factorization
is a useful basis for visualization and data reduction, consider
Fig. 4, which shows graph structures, corresponding NMFs,
and Kleinberg’s authority and hub scores [48]. Authority
and hub scores are computed by the leading eigenvector of
AT A and AAT , respectively. Subject to rescaling of the NMF
estimates, the results are identical. In fact, by the Perron-
Frobenius theorem [49], the rank-one NMF solution is always
a rescaled version of authority and hub scores. This provides a
natural interpretation for the rank-one NMF. For instance, the
U vector on the star network highlights the hub node. The V

Adjacency
Matrix

0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

NMF
U, V

1.00
0.00
0.00
0.00
0.00

0.00
1.00
1.00
1.00
1.00

0.89
0.89
0.89
0.89
0.89

0.45
0.45
0.45
0.45
0.45

Hub, Authority

1.00
0.00
0.00
0.00
0.00

0.00
0.50
0.50
0.50
0.50

0.45
0.45
0.45
0.45
0.45

0.45
0.45
0.45
0.45
0.45

FIG. 4. (Color online) Rank 1 NMF without penalization and
Kleinberg’s authority and hub scores [48].

vector show that all peripheral nodes are equal in terms of their
authority (incoming connections) and that the central node has
no incoming connections. Non-negative matrix factorization
vectors of the ring network show each node with an equal score
for incoming (authority) and outgoing (hub) connectivity.
The fact that U contains larger elements than V is arbitrary.
However, the assignment of equal values within U and V

shows that each node is equally important to interconnectivity.

III. MODEL FOR DYNAMIC NETWORKS

Given a time series of networks {Gt = (Vt ,Et )}Tt=1 with
corresponding adjacency matrices {At }Tt=1, the goal is to pro-
duce a sequence of low-rank matrix factorizations {Ut,Vt }Tt=1.
To extend the factorization from the previous section
to the temporal setting, we impose a smoothness constraint
on the basis Ut . This constraint forces the new community
structure to be similar to previous time points. Since individual
node time series given by Ut are visually smooth, time plots
for each node become informative and provide an alternative
to graph drawings for visualizing node dynamics. Moreover,
time plots are static displays, which facilitate detailed analysis
and avoid difficulties associated with animated layouts when
given a large number of time points or nodes.

The objective function becomes

min
{Ut�0,Vt�0}Tt=1

T∑
t=1

∣∣∣∣At − UtV
T
t

∣∣∣∣2
F

+ λt

T∑
t=1

t+ W
2∑

t̃=t− W
2

||Ut − Ut̃ ||2F + λs

T∑
t=1

K∑
k=1

||Vt,k||1, (9)

where W is a small integer representing a time window. The
parameters λt ,λs,andW are set by the user to steer the analysis.

The interpretations of UtandVt extend naturally from the
previous section, so, for instance,

∑
k(Vt )kj measures the

importance of node j (typically corresponding to incom-
ing edges) and (Ut )ik(Vt )jk/

∑K
k=1(Ut )ik(Vt )jk measures the

relative contribution of each community to each i,j edge.
In principle, the edge decomposition can be used to assign
nodes to communities as discussed in the preceding section.
However, this approach can be unsatisfactory due to unstable
community assignments. As alternative method is to assign
communities in terms of Ut , which ensures the stability
of the community structure through time, specifically, mea-
suring the contribution of node i to each community with the
relative magnitude of the ith element of each dimension of Ut ,
e.g., (Ut )ik/

∑K
k=1(Ut )ik .

We can follow similar steps as in the preceding section to de-
rive a gradient-descent estimation algorithm. First, to enforce
the non-negativity constraints, we consider the Lagrangian

L =
T∑

t=1

∣∣∣∣At − UtV
T
t

∣∣∣∣2
F

+ λt

T∑
t=1

t+W/2∑
t̃=t−W/2

||Ut − Ut̃ ||2F

+ λs

T∑
t=1

n∑
i=1

K∑
j=1

|Vt (i,j )| +
T∑

t=1

Tr
(
�tU

T
t

)

+
T∑

t=1

Tr
(
�tV

T
t

)
, (10)
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TABLE II. NMF with temporal and sparsity penalties.

1. Set constants λt ,λs,W

2. Initialize {Ut },{Vt } as dense, positive random matrices
3. repeat
4. for t = 1, . . . ,T do
5. Set

(Ut )ij ← (Ut )ij

(
At Vt +λt

t−1∑
t̃=t−W/2

Ut̃ +λt

t+W/2∑
t̃=t+1

Ut̃

)
ij

(Ut V
T
t Vt +Wλt Ut )ij

6. Set

(Vt )ij ← (Vt )ij
(AT

t Ut )ij
(Vt U

T
t Ut )ij +λs

7. end for
8. until Convergence

where �tand�t are Lagrange multipliers.
The following KKT optimality conditions are obtained by

setting ∂L
∂Ut

= ∂L
∂Vt

= 0:

�t = −2AtVt + 2UtV
T
t Vt − 2λt

t−1∑
t̃=t−W/2

Ut̃

− 2λt

t+W/2∑
t̃=t+1

Ut̃ + 2WλtUt , (11)

�t = −2AT
t Ut + 2VtU

T
t Ut + 2λs. (12)

Then the KKT complimentary slackness conditions yield

0 =
(

− 2AtVt + 2UtV
T
t Vt − 2λt

t−1∑
t̃=t−W/2

Ut̃

)
ij

(Ut )ij

+
(

− 2λt

t+W/2∑
t̃=t+1

Ut̃ + 2WλtUt

)
ij

(Ut )ij , (13)

0 = ( − 2AT
t Ut + 2VtU

T
t Ut + 2λs

)
ij

(Vt )ij , (14)

which after some algebra leads to the algorithm provided in
Table II. The theoretical properties are also the same as in the
previous section. Most notably, the estimates of Ut and Vt will
improve at each iteration with respect to Eq. (9).

A. Parameter selection

We briefly discuss the important practical matter of choos-
ing K , the inner rank of the matrix factorization. For the
goal of clustering, the rank should be equal to the number of
underlying groups. The rank can be ascertained by examining
the accuracy of the reconstruction as a function of rank.

TABLE III. Cross validation for choosing the number of commu-
nities (rank).

1. Form row holdout set Il ⊂ {1, . . . ,n}
2. Form column holdout set IJ =⊂ {1, . . . ,n}
3. Set (Ũt ,Ṽt ) = arg minUt ,Vt �0

∑
t ||(At )−Il ,−IJ

− UtV
T
t ||2F

4. Set Ŭt = arg minUt �0

∑
t ||(At )Il ,−IJ

− Ut Ṽ
T
t ||2F

5. Set V̆t = arg minVt �0

∑
t ||(At )−Il ,IJ

− ŨtV
T
t ||2F

6. Set ˆ(At )Il ,IJ
= Ŭt V̆

T
t

7. Compute test error
∑

t ||(At )Il ,IJ
− ˆ(At )Il ,IJ

||2F

A
vg

 T
es

t E
rr

or

Inner Rank
1 2 3 4 5 6 7 8

20
22

24
26

28
30

FIG. 5. (Color online) Cross validation indicates three commu-
nities (rank 3) featuring the lowest average test error for the toy
example.

However, this tends to rely on subjective judgments and
overfit the given data. Cross-validation-based approaches are
theoretically preferable and follow the same intuition.

The idea behind cross validation is to use random subsets
of the data from each network cross section to fit the model
and another subset to assess accuracy. Different values of K

are then cycled over and the one that corresponds to the lowest
test error is chosen.

Due to the data structure, we employ two-dimensional
cross validation. Two dimensional refers to the selection of
submatrices for our training and test data. Special care is taken
to ensure that the same rows and columns are held out of every

FIG. 6. (Color online) Cell phone network from a day using a
force-directed layout algorithm in igraph. Node 200 is colored black.
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FIG. 7. (Color online) Choosing K for the Catalano communications network. (a) Average residual sum of squares. (b) Average test error
obtained via cross validation [(5 × 5)-fold] for different approximation ranks. Cross validation indicates five communities as optimal.

adjacency matrix and the dimensions of the training and test
sets are identical.

The holdout pattern divides the rows into k groups, the
columns into l groups, and then uses the corresponding kl

submatrices to fit and test the model. In each submatrix, the
given row and column group identifies a held out submatrix
that is used as test data, while the remaining cells are used for

training. The algorithm is shown in Table III. The notation
in the algorithm uses Il and IJ as index sets to identify
submatrices in the each data matrix.

We then cycle over different values of K to choose
the one that minimizes average test error. Figure 5
shows that this procedure correctly identifies three com-
munities for the toy example. Consistency results are

3 15
200

2

(a)

3
1

5
200

2

(b)

3
1 5

200
2

(c)

3

1

5
200

2

(d)

3

1

5
200

2

(e)

3

1

5 200

2

(f)

FIG. 8. (Color online) From left to right, the columns are organized by day: (a) and (d) day 5, (b) and (e) day 6, and (c) and (f) day 7.
(a)–(c) Raw Catalano networks colored by the Ut community structure and (d)–(f) filtered Catalano networks colored by the Ut .

042812-6



STRUCTURAL AND FUNCTIONAL DISCOVERY IN . . . PHYSICAL REVIEW E 88, 042812 (2013)

3 15
200

2

(a)

3
1

5
200

2

(b)

3
1 5

200
2

(c)

1
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(d)

1
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FIG. 9. (Color online) From left to right, the columns are organized by day: (a) and (d) day 5, (b) and (e) day 6, and (c) and (f) day 7.
(a)–(c) Raw Catalano networks colored by the FacetNet factorization and (d)–(f) corresponding FacetNet-filtered Catalano networks.

developed in [50] to provide theoretical foundations for this
approach.

In principle the cross-validation procedure can be used to
select the penalties λtandλs and the time window W . However,
considering the scale of many modern network data sets, this
would require too much computing time. Instead we typically
choose the penalties by hand to emphasize readability and
interpretability of the results, keeping in mind that if either
penalty is set too large then the estimation results in degenerate
solutions. For instance, the algorithm suffers from numerical
instabilities when λs is too large since all Vt elements are
zero. If λt is set to an extremely large number, then Ut will be
approximately constant for all time periods, so the effective
model is At ≈ UV T

t , e.g., the community structure is fixed for
all observations.

The parameter W controls the number of neighboring time
steps to locally average. Larger values of W mean that the
model has more memory so it incorporates more time points
for estimation. This risks missing sharper changes in the data
and only detecting the most persistent patterns. In contrast,
small values of W make the fitting more sensitive to sharp
changes, but increase short-term fluctuations due to smaller
number of observations. We set W = 2 (looking one time
period ahead and before) for all presented experiments. Larger
values could be used in very noisy settings to further smooth
results.

IV. EXPERIMENTS

In this section we test the model on both synthetic and real-
world examples. The synthetic networks allow us to validate
the model’s ability to highlight known community structure
and node evolution, while the real examples exhibit the model’s
performance under practical conditions.

A. Synthetic networks

1. Catalano communication network

The first example utilizes the Catalano social network,
which was part of the Visual Analytics Science and Technology
(VAST) 2008 challenge [51]. The synthetic data consist of
400 unique cell phone identifications over a ten day period.
Altogether, there are 9834 phone records with the following
fields: calling phone identifier, receiving phone identifier, date,
time of day, call duration, and cell tower closest to the call
origin. The purpose of the challenge was to characterize
the social structure over time for a fictitious, controversial
sociopolitical movement. In particular, the challenge requires
identifying five key individuals that organize activities and
communications for the network; a hint was given to chal-
lenge participants that node 200 is one of the persons of
interest.

We use the first seven days of data to illustrate our
methodology since there is a strong change in the connection
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FIG. 10. (Color online) From left to right, the columns are organized by threshold: (a) and (d) threshold equal to 2, (b) and (e) threshold
equal to 3, and (c) and (f) threshold equal to 4. (a)–(c) Spectral clustering is applied to the collapsed data (averaged over time) and (d) and (e)
clique percolation is applied to the collapsed data.

patterns from day 8 to 10 for node 200 (see [51,52] and
references therein). Directed networks are constructed daily
by drawing an edge from the caller to the receiver. Figure 6
shows an example of one day’s network. The graph is too
cluttered to visually identify leaders of the network or get a
sense of the network structure.

We fit a sequence of rank-5 NMFs, as identified in Fig. 7
through cross validation, with a large temporal penalty to
highlight the most persistent interactions, thus discovering
latent structure. Figure 8 shows two sets of graph drawings
for three days (due to space limitations), with the nodes
decomposed according to their community membership. The
first row shows the graph constructed directly from the data,
while the second row shows graph drawings of the fitted model
Ât = UtV

T
t . The clustering results applied to the raw data are

not interpretable, as the data are simply too cluttered. However,
the persons of interest and the hierarchical structure of the
communication network are clearly shown when considering
the fitted networks. One can visually identify that node 200
consistently relays information to its neighbors (1, 2, 3, and 5),
who disseminate information to their respective subordinates.
We can also see that nodes higher up on the organizational
hierarchy tend to belong to multiple communities, presumably
since they disseminate information to different groups of
subordinates.

Figure 9 shows the results of applying FacetNet [33],
an alternative NMF methodology for dynamic overlapping
community detection. FacetNet applies an underlying model
with less flexibility resulting in poor reconstructions of the
data, as seen in the fitted networks. We also collapse the
data into a single-network snapshot in order to apply static
clustering algorithms (Fig. 10). First, an edge is kept only
if it was observed more than threshold days. Then spectral
clustering and clique percolation are applied to the resultant
network snapshot. All alternative methods struggle, as the data
are too hairball-like. In contrast, the fitted penalized NMF
model provides a unified framework to filter the network
and visualize community structure. VAST never officially
released correct answers for the challenge. However, our
analysis closely matches winning entries [52–54]. Treating
the conclusions of the entries as the ground truth, we have
provided a simple workflow that uncovers patterns in the data
that are not directly obtainable with traditional methods.

2. Preferential attachment process

In this simulation, nodes attach according to a preferential
attachment model [55,56] until 10 000 nodes have attached
to the embedding. We observe this growing process at 100
uniformly spaced time points. Thus, at each time point 100 new
nodes attach to the graph. We use source code from a network
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FIG. 11. (Color online) Fitted values for Ut and Vt over time for
the preferential attachment simulation. In the time plots of Ut (left
column), each line corresponds to a node on the graph. In the binary
heat maps of Vt (right column), each row corresponds to a node on
the graph and time varies along the horizontal axis. Wherever a row
is colored black, the corresponding paper had nonzero coordinates
within Vt . From top to bottom, each row displays increasing levels of
penalization from (a) and (b) no penalties to (c) and (d) λt = 50,λs =
5 and (e) and (f) λt = 100,λs = 5.

MATLAB toolbox [57] that generates preferential attachment
graphs according to the standard model.

In the preferential attachment model, �(i), which repre-
sents the probability that a new node connects to node i,
depends on node i’s degree. Specifically, we have

�(i) ∝ di, (15)

where di is the degree of the ith node. This generating
framework leads to networks whose asymptotic degree distri-
bution follows a power-law distribution with parameter γ = 3.
Graphs with heavy-tailed degree distributions are commonly
observed in a variety of areas such as the Internet, protein
interactions, and citation networks, among others [58].

In practice, an analyst would not know that the data
comes from a preferential attachment process, in which case
an exploratory analysis may include inspecting the network
sequence on a set of standard metrics (degree, transitivity,

FIG. 12. (Color online) Graph layouts of the arXiv data from
(a) January 1995, (b) January 1998, and (c) January 2000. Due to
the size of the networks, it quickly becomes difficult to discern paper
(node) properties.

centrality, etc.), graph drawings, as well as community
detection approaches. We believe that a sequence of one-
dimensional (K = 1) penalized NMFs can serve as the basis
for a complimentary exploratory tool that helps uncover
different connectivity patterns and evolution in the data. In
particular, due to the smoothness penalty, time plots in Ut for
each node become useful for uncovering the number and types
of node evolutions in the data. Similarly, binary heat maps
or displays of the sparsity pattern of Vt are useful to identify
when nodes or groups become significantly active.

Since preferential attachment networks have been ex-
tensively studied, we show only the NMF-based displays.
Figure 11 shows important (hub) nodes with distinct trajec-
tories that indicate their increasing importance to the network
over time. The Vt sparsity features a pseudo-upper triangular
form. This corresponds to the node attachment order and
reflects that nodes permanently attach after connecting to the
network. Such displays can be created quickly and can help the
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FIG. 13. arXiv network statistics over time. The kink near January
2000 indicates sudden, rapid growth. (a) A scatter plot on a log-log
scale of the number of nodes and edges for each observed citation
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(c) Time series of average degree in each network. (d) Time series of
clustering coefficient for each network.
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FIG. 14. (Color online) Fitted values for Ut and Vt for the arXiv data. From left to right, each column shows (a) and (e) λt = λs = 0, (b) and
(f) λt = 5,λs = 1, (c) and (g) λt = 5,λs = 5, and (d) and (h) λt = 5,λs = 10. In the time plots of Ut (top row), each light gray line corresponds
to a paper (node) on the graph. The bold lines show the average of the ten papers with highest average Û from 1996 to 1999, and 2000 onward
(dashed). Each row in the binary heat maps of Vt (bottom row) corresponds to a paper and time varies along the horizontal axis. Wherever a
row is colored black, the corresponding paper had nonzero coordinates within Vt .

process of identifying interesting nodes, formulating research
questions, and so on.

Also shown in Fig. 11 is that penalization is important to
the usefulness and interpretability of the displays. For instance,
without a temporal penalty, the time plots emphasize only the
highest degree node. With appropriate penalties, an analyst can
visually identify the different hub nodes and their evolution.

B. Real networks

1. arXiv citations

We investigate a time series of citation networks provided
as part of the 2003 KDD Cup [59]. (The graphs are from
the e-print service arXiv for the “high energy physics theory”
section.)

The data cover papers in the period from October 1993 to
December 2002 and are organized into monthly networks. In
particular, if paper i cites paper j , then the graph contains a
directed edge from i to j . Any citations to or from papers
outside the data set are not included. Following convention,
edges are aggregated, that is, the citation graph for a given
month will contain all citations from the beginning of the data
up to and including the current month. Altogether, there are
22 750 nodes (papers) with 176 602 edges (references) over
112 months.

As a first step towards investigating the data, we draw the
network at different points in time in Fig. 12. Even when
considering a single time point, it quickly becomes difficult to
discern paper (node) properties due to the large network size.
Thus the data require network statistics and other methods to

TABLE IV. Top ten papers with highest average Û from 1996 to 1999. The number of citations counts all references to the work, including
by papers outside our data. These counts were obtained via Google.

Title Authors In degree Out degree No. of citations

Heterotic and Type I String Dynamics from Eleven Dimensions Horava and Witten 783 18 2334
Five-branes and M-Theory On An Orbifold Witten 169 15 251
Type IIB Superstrings, BPS Monopoles, and Three- Hanany and Witten 437 20 844
Dimensional Gauge Dynamics
D-Branes and Topological Field Theories Bershadsky et al. 271 15 463
Lectures on Superstring and M Theory Dualities Schwarz 247 68 534
D-Strings on D-Manifolds Bershadsky et al. 172 22 247
String Theory Dynamics in Various Dimensions Witten 263 0 2263
Branes, Fluxes and Duality in M(atrix)-Theory Ganor et al. 184 16 243
Dirichlet-Branes and Ramond-Ramond Charges Polchinski 370 0 2592
Matrix Description of M-theory on T 5 and T 5/Z2 Seiberg 208 30 353
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TABLE V. Top ten papers with highest average Û from 2000 onward. The number of citations counts all references to the work, including
by papers outside our data. These counts were obtained via Google.

Title Authors In degree Out degree No. of citations

The Large N Limit of Superconformal Field Theories and Supergravity Maldacena 1059 2 10697
Anti De Sitter Space And Holography Witten 766 2 6956
Gauge Theory Correlators from Non-Critical String Theory Gubser et al. 708 0 6004
String Theory and Noncommutative Geometry Seiberg and Witten 796 12 3833
Large N Field Theories, String Theory and Gravity Aharony et al. 446 74 3354
An Alternative to Compactification Randall and Sundrum 733 0 5693
Noncommutative Geometry and Matrix Theory: Compactification on Tori Connes et al. 512 3 1810
M Theory As A Matrix Model: A Conjecture Banks et al. 414 0 2460
D-branes and the Noncommutative Torus Douglas and Hull 296 2 866
Dirichlet-Branes and Ramond-Ramond Charges Polchinski 370 0 2592

extract the structure and infer the dynamics in the network
sequence. Network statistics, shown in Fig. 13, provide some
additional insight. There is a noticeable increase in network
growth around the year 2000, which is commonly attributed
to papers that reference other works before the start of the
observation period (see [60]). As we move away from the
beginning of the data, papers primarily reference other papers
belonging to the data set. Additional statistical properties of
the data were discussed in [60], which found that the networks
feature decreasing diameter over time and heavy-tailed degree
distributions.

To visualize how nodes in the network evolved, Fig. 14
displays results from the matrix factorization model using a
sequence of one-dimensional approximations (K = 1). The
adjacency matrix is constructed so that Ut scores nodes by
their importance to the average incoming connections and
(Ut )1j measures the time-varying authority of paper j ; Vt

yields similar scores based on outgoing connections. As
observed with the preferential attachment experiment, the
paper trajectories are smoothed effectively and important
dynamics are highlighted by employing penalties. Specifically,
there are two important periods in the data. The first period
covers 1996–1999 and features papers mostly on an extension
of string theory called M-theory. M-theory was first proposed
in 1995 and led to new research in theoretical physics. A

FIG. 15. (Color online) (a) Degree of each node over all time
points, shaded and colored by the leading eigenvector groupings.
(b) Time profiles for each group based on the mixture model of [5].
Specifically, (b) shows the estimated probability that a particular
citation received by a document in the group is made in each month.

number of scientists, including Witten, Sen, and Polchinski,
were important to the historical development of the theory and
as seen in Tables IV and V, our NMF approach identifies these
important authors and their works. From 1999 to 2000 the rate
of citations to these papers tended to decrease, while focus
shifted to other topics and subfields that M-theory gave rise
to. These citation patterns are reflected in the bold and dashed
trajectories in Fig. 14. The displays of Vt sparsity show that
papers do not appear uniformly throughout time. Instead, as
other network statistics show, papers attach at a faster rate
around year 2000.

We provide comparisons with the alternative methodologies
utilized in [5] to investigate dynamic citation network from the
US Supreme Court. First, we apply the leading eigenvector
modularity-based method for community discovery [46] to
the fully formed citation network (t = 112). The second
alternative methodology is a mixture model in [5] to extract
groups of papers according to their common temporal citation
profiles.

Figure 15(a) shows the degree of each paper over time,
shaded and colored by the leading eigenvector community
assignments. The optimal number of groups is over 200.
There are four large groups of papers, with the other groups
containing only a handful of papers. This approach does not
utilize the temporal profile of each paper and as a consequence
the groups are interpretable from a static connectivity point of
view only.

Figure 15(b) shows reasonable time profiles from the
mixture model. One group grows slowly from the beginning
of the observational period, while the other group experiences
rapid growth starting around the year 2000. These results
complement the NMF-based Fig. 14 and together provide a
robust methodology to identify important papers, as well as
characterize the data in terms of the number and types of
different nodes or groups in the data.

2. Global trade flows

In this example, we analyze annual bilateral trade flows
between 164 countries from 1980 to 1997 [61]. Thus we
observe a dynamic, weighted graph at 18 time points, where
each directional edge denotes the total value of exports from
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FIG. 16. (Color online) Choosing K for world trade data. (a) Average residual sum of squares. The average test error obtained via cross
validation with (b) two partitions, (c) five partitions, and (d) ten partitions. Cross validation consistently indicates six communities (K = 6) as
optimal.

one country to another. Since trade flows can differ in size
by orders of magnitude, we work with trade values that are
expressed in log dollars.

We fit a sequence of rank-6 NMFs, as identified in
Fig. 16 through cross validation, and display the network
based on fitted trade flows (Ât = UtV

T
t ) in Fig. 17. We

show only three years (1980, 1990, and 1997) due to space
constraints.

All countries belong to more than one community, which
reflects the interconnected nature of the global economy.
However, there are countries, primarily from Africa and
Central America, that are dominated by a single community or
belong to only a subset of the six communities. For instance, in
1997, many Central American countries [circled in Fig. 17(c)]
connect only with the USA and hence belong mostly to a single
community.

There are also interesting findings that correspond with
historical events. For instance, in 1980 there is a strong
community [circled in Fig. 17(a)] consisting of countries
aligned with the former USSR, which acted as a hub. However,
by 1990, this community has dissolved and is reflected in the
edge and node colorings of these countries (more diversified
trading relationships). In 1990, we also see the emergence of
the so-called Asian miracles, countries in Asia that experienced
persistent and rapid economic growth in the 1990s [62,63].
These countries move closer to the center of the trading
network with membership in all communities.

V. DISCUSSION

The main idea behind the approach presented in this paper
is to abstract the network sequence to a sequence of lower-
dimensional spaces using matrix factorizations for visual
exploration, community detection, and structural discovery.
Next we highlight some of the strengths and weaknesses of
this approach.

A. Strengths

An important benefit is the versatility and scalability of
matrix factorization model. Table VI shows run-times for all
experiments. The computational cost is low enough to use
in combination with other analysis and visualization tools.
Moreover, the penalized NMF approach is compatible with
both binary and weighted networks.

Using the model as a basis for an exploratory visual
tool can help with data reduction and discovery of latent
evolving structure. The estimates of Ut and Vt can be used
for community discovery or a ranking of nodes based on their
importance to connectivity for subsequent analysis. Displays
of the factorizations can provide a sense of the data complexity,
namely, the types and number of node evolutions.

B. Weaknesses

The optimal choice of tuning parameters (λt ,λs) is depen-
dent on perception and how the edge weights are scaled.This

FIG. 17. (Color online) World trade networks, where countries and their edges are shaded and colored corresponding to their membership
in six communities. The trading network is shown from (a) 1980, (b) 1990, and (c) 1997.
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TABLE VI. Average run times for the penalized NMF with
temporal and sparsity penalties. The computational time scales
approximately linearly with the number of time points and nodes.

Data Nodes Time points Run time (s)

Catalano 400 7 0.29
world trade 164 18 0.51
preferential attachment 10000 100 39.45
arXiv citations 22750 112 60.64

can limit the benefits of the proposed approach when given
multiple data sets.

Time plots and heat maps to visualize each factor yield
limited information about global topology. For example, one
can see from Figs. 11 and 14 that there are dominant nodes,
but, in principle, there could be many topologies that feature
dominant nodes. One cannot say for sure without additional
analysis that the networks follow a particular connectivity
model. Thus, combining the matrix factorization model in
this article with existing analysis and visualization tools can
provide a more comprehensive analysis of the data [64].

C. Future work

An important area of exploration would be to system-
atically compare penalized versions of NMF and SVD. In
this work we chose to focus on NMF since we find the
corresponding displays preferable in terms of interpretability.
This is generally consistent with existing literature on matrix
factorization. However, SVD of graph-related matrices has
deep connections to classical spectral layout and problems
in community detection. There may be classes of graph
topologies and particular visualization goals under which SVD
is preferable.

There could also be other types and combinations of
penalties that are useful in visualization and detection of graph
structure. For instance, depending on the precise meaning
of a directional edge, one may desire both smoothness and
sparsity for Ut , Vt , or both factors. Nonetheless, variants
on the penalty structure will result in models that require
roughly the same computational costs. Thus this work pro-
vides evidence that penalized matrix factorization models are
promising for structural and functional discovery in dynamic
networks.
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