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Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation
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This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in
stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled
as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of
human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as
3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte
membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss
conditions associated with the shape transitions of the cells along with the relative effects of radial position
and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results
were compared with existing experiment findings whenever possible, and the physical insights obtained were
discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow
and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell
interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood
disorders.
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I. INTRODUCTION

Human erythrocyte, also known as red blood cell, is a
membrane envelope filled with cytoplasm and supported by a
cytoskeletal structure. The cytoplasm of erythrocytes behaves
as a Newtonian fluid with viscosity five times that of the
blood plasma. The cytoskeleton is a two-dimensional network
which is very flexible and compressible. The fluidity of the
human erythrocytes is due to the cytoskeletal structure of their
membrane [1,2]. The cells can rearrange components of their
cytoskeleton, allowing the cells to become almost liquidlike.
In fact, cytoskeletal changes can result in changes in the overall
mechanical properties of the cell and in their cellular functions.

In static blood plasma and large blood vessels, healthy
erythrocytes present as biconcave-shaped disks with diameter
about 8 μm and thickness about 2 μm. However, during
their 120-day life span, they are forced to repeatedly squeeze
through microvessels of smaller size than themselves. So the
cells must undergo severe deformation to fit in and to reduce
flow resistance. In addition, large deformation can also occur
in capillaries and arterioles where erythrocytes do not travel
in isolation and their interactions with one another and the
vascular wall cause them to stretch. They usually deform into
parachute shapes, slipper shapes [3,4], or even bullet shapes [5]
in order to fit in microvessels. This kind of deformation will
not produce permanent damage to the cell because the cell
membrane is flexible enough to recover the biconcave shape
whenever the force on the cell is released. On the other hand,
the deformability of erythrocytes significantly affects the flow
behavior in the microcirculation [6].

Human diseases, such as malaria, cancer, and sickle cell
anemia, can cause not only changes in the shape of the
erythrocytes, but also variations in mechanical properties of
erythrocyte membrane, usually change of deformability and/or
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adhesion strength. For instance, hereditary elliptocytosis and
hereditary spherocytosis are both cell membrane disorders
in which the erythrocytes become elliptical or spherical
and suffer with membrane loss, decreased surface area, and
decreased deformability. The malaria infected erythrocytes
become more rigid (could be more than ten times than healthy
cells) and adhesive in comparison with healthy ones [7,8],
which may significantly affect normal blood circulation and
lead to capillary occlusions [9]. As a result, malaria patients
become severely anemic and suffer from symptoms related to
insufficient oxygen delivery. Thus cell shape, deformability,
and mobility are important biomarkers which can be used to
distinguish between healthy and abnormal erythrocytes.

The mechanical properties of erythrocytes play a major role
in the blood flow as it is one of the most important factors that
affect the flow rheology. As a result, the role of deformability in
influencing erythrocyte function has been studied extensively.
The stiffness of disease infected erythrocytes and its effects
on the flow in microchannels were studied with recent
experimental techniques [7,9]. However, experimental studies
have several limitations to this topic. First, in human blood
vessels, erythrocytes interact with leukocytes (white blood
cells), thrombocytes (platelets), and endothelium when they
are traveling in the human body. Recent experiments usually
manipulate single erythrocyte or several individual cells
without considering the interaction of erythrocytes with other
cells. Second, it is very difficult to obtain the three-dimensional
information on a flow field. Moreover, human microcirculation
system has an extremely complex geometry and can hardly be
manufactured in microscale.

Recent development in numerical modeling can overcome
some of these problems and make reasonable predictions.
Numerous studies are ongoing to qualify and identify the
erythrocyte mechanics in microvascular flow [4,8,10–14]. In
Ref. [8], a dissipative particle dynamics model has been devel-
oped to qualify the biophysical properties of malaria infected
erythrocytes and the predictive capability of this model has
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been demonstrated. The aggregability of erythrocytes has also
been numerically simulated [11,12,14] with consideration of
the mechanical properties of the cell membrane. A particle
based method was used in Ref. [4] to numerically study
the collective behavior of several erythrocytes in narrow
capillaries for their flow induced morphology. In Ref. [14],
the immersed boundary-lattice Boltzmann method was used
to perform numerical simulation of erythrocyte deformation
and aggregability in a stenotic arteriole. However, there is
limited information on the flow behavior and erythrocyte
rheological properties in complex microgeometries, such as
the stenotic microchannels. There is also a critical need to
develop more detailed computational simulations of cellular
and molecular mechanics that accurately capture interatomic
and intermolecular interactions and cytoskeletal dynamics as
the cytoskeletal network is altered by the disease state [2].

Our study is motivated by recent developments in ex-
perimental investigation of individual cancer cell [15] and
erythrocyte [2,16] in microfluidic devices. In this work, we in-
vestigated the traverse of individual erythrocyte through a mi-
crochannel with stenosis, which is a cardiovascular disease and
is characterized by vessel wall thickening and luminal narrow-
ing. The simulations were performed in two-dimensional flow
channels. Although three-dimensional simulations have been
conducted both for one and for several cells in straight tubes
[4,10], two-dimensional simulations [14,17] are still helpful
as a tool to aid conceptual understanding of large systems
where three-dimensional simulations are extremely costly. A
systematic two-dimensional study may provide insight into
better understanding of the human microcirculatory system.

In this paper, a previously developed membrane model
[12,18] was used to simulate the dynamics of erythrocytes,
i.e., the erythrocytes were modeled as membrane particles
connected by springs with stretch and compression resistance
and bending rigidity. The immersed boundary method has been
coupled with the fictitious domain method [19,20] to deal with
the complex flow behavior in this irregular domain geometry.
A series of numerical simulations were conducted to examine
the complex interactions that occur between erythrocytes and
constricted microvessel, such as the deformation, flow resis-
tance, and shape transition of erythrocyte under various flow
conditions. We have also studied the effect of initial positions
and orientation of the cells on the motion and deformation of
the erythrocytes in such vessels and compare our simulations
with experimental results carried out in microfluidic devices
[2,21–23]. By making qualitative and quantitative studies of
several characteristic properties, such as deformation behavior,
transit velocity, and shape transitions, it is hoped that one can
distinguish disordered blood cells from healthy ones based on
their differences in deformability using microfluidics.

II. MATHEMATICAL FORMULATION
AND NUMERICAL METHODS

We considered a two-dimensional microvessel with a
symmetric narrowing and employ mesoscale hydrodynamics
simulations to study the rheological behavior of erythrocytes
in the blood flow. The blood is assumed to be a suspension
of erythrocytes in an incompressible, Newtonian fluid and
the geometry of the vessel is shown in Fig. 1. The flow
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FIG. 1. Geometry of the fluid flow region �f to study the
deformation and motion of erythrocytes in a stenotic blood vessel
where a flow is established through the channel from left to right.

region is expressed as �f . In order to solve the fluid flow
and the fluid-cell interactions in this irregular-shaped domain,
the fictitious domain method (FDM) is combined with the
immersed boundary method.

A. Immersed boundary-fictitious domain scheme

The flow region we studied was not a regular-shaped
domain. Thus we adopted the fictitious domain method (FDM)
because in FDM the irregular-shaped domain is extended to
regular shaped so that a simple structured mesh instead of
unstructured mesh can be used, which substantially reduces
computational complexity of the algorithm. The fictitious
domain method (FDM) and its applications to fluid flow
problems have been extensively described [19,20]. To employ
the FDM, the flow region �f is embedded in the smallest
rectangular domain, which is denoted by �. Then the fluid
flow containing erythrocytes is solved in the bigger domain
�, and the no-flow condition in the solid region is treated
as constrains. Therefore, we have the following extended
Navier-Stokes equations:

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + μ�u + f, in �f , (1)

∇ · u = 0, in �f , (2)

u = 0, in �\�f , (3)

where u(x,t) and p are the fluid velocity and pressure anywhere
in the flow; ρ is the fluid density; μ is the fluid viscosity. In
this paper, the fluid, i.e., the blood plasma, is assumed to be
Newtonian with constant density and constant viscosity. The

FIG. 2. From left to right: erythrocyte shapes obtained for reduced
area s∗ = 0.481, 0.7, and 0.9.
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TABLE I. Parameters used for the simulations.

Parameter Symbol Value

Blood plasma density ρ 1.0 g/cm3

Blood plasma viscosity μ 1.2, 1.5 cp
Radius of the circle in erythrocyte model r0 2.8 μm
Number of springs in erythrocyte model N 76
Membrane mass in erythrocyte model m 2.0 × 10−4 g
Friction in erythrocyte model γ 8.8 × 10−7 Ns/m
Spring constants for erythrocyte membrane kl,kb (1.0 × 10−14)–(1.0 × 10−12) Nm
Length of computational domain L 85 μm
Radius of inlet (outlet) R 9 μm
Angle between stenosis and vessel wall α 45◦

Length of stenosis l 11 μm
Width of stenosis w 3, 4, 5, 6, 7, 10 μm
Grid size for space h 1/72 μm
Step size for time �t 1 × 10−5 ms

body force term f(x,t) is introduced to account for the force
acting on the fluid-cell interface. The boundary conditions are
such that, on ∂�f , a no-slip condition is applied and, at the
inlet and outlet of the channel, a periodic flow condition is
enforced. A detailed description of the solution method of
Eqs. (1)–(3) can be found elsewhere [19,20].

In this study, the fluid-cell interaction was dealt with by the
immersed boundary method developed by Peskin [24]. Based
on this method, the boundary of the deformable object is easily
calculated by the following scheme: first, the force located at
the immersed boundary node X = {X1,X2} affects the nearby
fluid mesh nodes x = {x1,x2} through a discrete δ function:

F(x) =
∑

x

F(X)Dh(X − x), for |X − x| � h, (4)

where h is the uniform finite element mesh size and

Dh(X − x) = δh(X1 − x1)δh(X2 − x2), (5)

with the one-dimensional (1D) discrete δ functions being

δh(z) =
{ 1

4h

[
1 + cos

(
πz
2h

)]
for |z| � 2h,

0 for |z| > 2h.
(6)

The force in Eq. (4) is part of the external force term of Eq. (1);
next, the movement of the immersed boundary node is affected
by all the nearby fluid mesh nodes through the same discrete
δ function:

U(X) =
∑

h2u(x)Dh(X − x) for |X − x| � 2h. (7)

Finally, after each time step �t , the position of the immersed
boundary node is updated by

Xt+�t = Xt + �tU(Xt ). (8)

B. Erythrocyte model

Current models describe the erythrocyte as Newtonian fluid
(called cytoplasm) enclosed by the cell membrane. Among
these models, elastic membrane models [25,26] focus on the
elastic property of the membrane and try to reproduce it
through the strain energy functions. On the other hand, spring
models [10,12,18,27,28] depict erythrocyte membrane with a
network of springs. In this paper, we adopted the spring model
introduced in Ref. [18] and modeled individual erythrocyte
as cytoplasm enclosed by a membrane represented by a finite
number of membrane particles connected by springs. Based

FIG. 3. Series of sequential simulation results showing the movement of a coaxial human erythrocyte through a stenotic channel, the
pressure gradient across which is controlled. The time instants are (a) t = 0.48 ms, (b) t = 1.90 ms, (c) t = 2.04 ms, (d) t = 2.21 ms,
(e) t = 2.32 ms, and (f) t = 3.33 ms. The erythrocyte is perpendicular to the channel axis initially. The cell moves from left to right in the flow
and is forced to squeeze into a 4 μm constriction of a microchannel. After moving through the stenosis, shape recovery occurs. The spring
constants for the cell membrane are kl = kb = 1.0 × 10−13 Nm.
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FIG. 4. Set of simulation results showing the deformed shape of an erythrocyte as it traverses the stenosis with various constriction width.
(a) w = 3 μm; t = 5.61 ms; (b) w = 4 μm; t = 2.04 ms; (c) w = 5 μm; t = 1.25 ms; (d) w = 6 μm; t = 1.01 ms; (e) w = 7 μm; t = 0.71 ms;
(f) w = 10 μm; t = 3.77 ms. The erythrocyte is perpendicular to the channel axis initially. The spring constants for the cell membrane are
kl = kb = 1.0 × 10−13 Nm.

on the model, elastic energy stores in the spring due to the
change of the length l of the spring with respect to its reference
length l0 and the change in angle θ between two neighboring
springs. The total elastic energy of the erythrocyte membrane,
E = El + Eb, is the sum of the total elastic energy for stretch
and compression and the total elastic energy for bending
which, in particular, are

El = kl

2

N∑
i=1

(
li − l0

l0

)2

(9)

and

Eb = kb

2

N∑
i=1

tan2(θi/2). (10)

In Eqs. (9) and (10), N is the total number of the spring
elements, and kl and kb are spring constants for changes in
length and bending angle, respectively. θi is the angle formed
by the ith particle and its two adjoined springs [12].

The shape of the erythrocyte is obtained using the elastic
spring model based on the minimum-energy principle. Ini-
tially, the cell is assumed to be a circle of radius r0. The circle
is discretized into N membrane particles so that N springs
are formed by connecting the neighboring particles. Thus the
reference length of the spring is then l0 = 2πr0/N . The shape
change is stimulated by reducing the total area of the circle s0

through a penalty function [18]:

�s = ks

2

(
s − se

se

)2

, (11)

where s and se are the time-dependent area and the equilibrium
area of the erythrocyte, respectively. The total elastic spring

energy E is modified as quasienergy Eq = E + �s and the
force acting on the ith membrane particle now is

Fi = −∂Eq

∂ri

. (12)

The force generated by the deformation of the membrane is
treated as a part of the external force term of Eq. (1). When
the area is reduced, each membrane particle moves according
to the following equation of motion:

mr̈i + γ ṙi = Fi (13)

Here, (̇ ) denotes the time derivative; m represents the
membrane; γ is a friction for numerical calculation. The
quasienergy decreases with the time elapse. The final shape
of the erythrocyte is obtained as the quasienergy is minimized.

By taking into consideration the nonextensible property
of the membrane, the values of spring constants are set as
kl = kb. The value of penalty coefficient ks is kb × 104. An
initial circular shape is transformed into its final stable shape
associated with a minimal energy for a given reduced area
s∗ = se/s0 regardless of the choice of kb. We keep track of
the cell area and perimeter during the transformations. The
change is less than 0.1% in the area and less than 0.5% in
the perimeter for the reduced area values used in this study.
It is found that the biconcave shape obtained for s∗ = 0.481
resembles the normal physiological shape of the erythrocyte
very well [12].

The bending constant is closely related to the rigidity of the
membrane. A higher kb results in a less deformable cell. Thus
deformability of normal and hardened erythrocytes can be
modeled by varying spring constants for these two resistances.

FIG. 5. Simulation results showing the effect of initial shape of the cell on the deformed shape of erythrocytes as they are at the throat
of the stenosis with w = 4 μm. (a) s∗ = 0.7; t = 2.03 ms; (b) s∗ = 0.9; t = 2.0 ms. The erythrocytes are perpendicular to the channel axis
initially. The spring constants for the cell membrane are kl = kb = 1.0 × 10−13 Nm.
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FIG. 6. Simulation results showing the effect of the membrane stiffness on the deformed shape of erythrocytes as they are at the throat
of the stenosis with w = 4 μm. (a) kl = kb = 2.5 × 10−14 Nm, t = 2.02 ms; (b) kl = kb = 5.0 × 10−14 Nm, t = 2.03 ms; (c) kl = kb =
1.0 × 10−13 Nm, t = 2.04 ms; (d) kl = kb = 5.0 × 10−13 Nm, t = 2.10 ms. The erythrocytes are perpendicular to the channel axis initially.

III. NUMERICAL RESULTS AND DISCUSSION

We studied the hydrodynamic behavior of a single ery-
throcyte in a horizontal channel with a stenosis formed
symmetrically at the central part of the vessel. The total
length of the channel was fixed at 85 μm to ensure the
full development of the flow. The grid size for the space
discretization was h = 1/72 μm and the step size for the
time was �t = 1 × 10−5 ms for all the simulations. Other
simulation parameters are listed in Table I. A constant pressure
gradient was imposed at the inlet and the outlet of the channel
so that a fluid flow was established from left to right. In
addition, periodic boundary conditions were assumed at the
left and right boundary of the domain. We performed a series
of simulations to study erythrocyte deformation, flow field,
and cell-structure interactions as the erythrocytes traverse the
stenotic vessel.

Due to the fact that some clinical conditions are associated
with shape change of erythrocytes, three shapes of erythrocytes
have been chosen in the simulations, i.e., s∗ = 0.481, 0.7, and
0.9 [12], which correspond to the shapes shown in Fig. 2.
Among these, the shape with reduced area s∗ = 0.481 is
used to represent health erythrocyte and the shapes with
s∗ = 0.7 and s∗ = 0.9 are for abnormal cells, e.g., elliptocyte
and spherocyte, respectively. In particular, the length of the
cell with s∗ = 0.481 is about 7.6 μm. Moreover, two initial
cell orientations, namely vertical orientation in which the

FIG. 7. Effect of stenosis severity on the transit velocities of the
erythrocytes with kl = kb = 1.0 × 10−13 Nm.

erythrocyte is placed perpendicular to the channel axis and
horizontal orientation in which the cell is parallel to the channel
axis, are considered to study the rheological behavior of the
erythrocytes in the constricted channel.

A. Stenosis induced erythrocyte deformation

Erythrocyte motions and deformations in a stenotic mi-
crovessel were analyzed in this section. The first case con-
sidered was that of a single erythrocyte of reduced area
s∗ = 0.481 moving through a stenotic channel. The vertical
oriented erythrocyte was placed coaxial in the channel with
a horizontal distance 2.5 μm between the cell center and the
left entrance initially. Snapshots of the numerical simulations
for the erythrocyte traversing a 4 μm stenosis are presented in
Fig. 3. The results show that prior to entering the stenosis,
the cell deforms under the hydrodynamic force. At the
constriction, it further stretches into a parachute shape in
order to squeeze through and the biconcave shape is recovered
upon exiting the stenosis. Our model is capable of simulating
erythrocyte fluidity and recovery from large deformations and
good agreement with experiments [2] has been found.

To investigate the sensitivity of our results to the stenosis
severity in the simulation channel, we have also performed
the same simulations with constriction width w = 3, 5, 6,
7, and 10 μm. The results show that, for all the cases, the

FIG. 8. (Color online) Effect of erythrocyte membrane stiffness
on the average transit velocities of the cell which is perpendicular to
the channel axis initially in a stenotic channel with w = 4 μm.
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FIG. 9. Series of sequential simulation results showing the movement of a noncoaxial human erythrocyte through a stenotic channel,
the pressure gradient across which is controlled. The time instants are (a) t = 0.29 ms, (b) t = 0.96 ms, (c) t = 1.02 ms, (d) t = 1.12 ms,
(e) t = 1.18 ms, and (f) t = 1.73 ms. The erythrocytes are perpendicular to the channel axis initially. The cell moves from left to right into a
6 μm constriction of a microchannel. After moving through the stenosis, shape recovery occurs. The spring constants for the cell membrane
are kl = kb = 5.0 × 10−13 Nm and |R − h| = 0.5 μm.

cell traversed the stenosis easily and deformed into parachute
shapes. However, the cell is more deformed in a narrower
stenosis than in a wider one. Figure 4 shows the different
parachute shapes for various stenosis severities.

To study the effects of the initial shape of the cells, the
next case considered was the simulation of the motions and
deformations of swollen red cells in a stenotic channel. Two
more cells with s∗ = 0.7 and 0.9 were chosen to perform the
same simulation. These swollen erythrocytes may be found
in human blood with hereditary elliptocytosis—a congenital
disorder in which the red blood cells have an elliptical or
oval shape. The results of the simulation are shown in Fig. 5.
For the cell with s∗ = 0.9, the shape changes from almost
ellipsoidal in static plasma to a prolonged symmetric bullet
shape in the narrow part of the channel. The elongated shape
will be maintained as the cell traverses the stenosis.

The deformability of the erythrocyte membrane can be sig-
nificantly altered under some disease conditions. For example,
the malaria infected erythrocytes could be much more rigid
in comparison with healthy ones [9,29,30]. To investigate the
dependence of the deformation of the cells when the cells pass
through the stenosis on the membrane stiffness, we considered

four characteristic values of the bending resistance while other
parameters were unchanged. The cells were placed coaxial
with the vessel initially. The shapes of the erythrocyte at the
throat of the vessel and the velocity vectors for the fluid flow
are clearly observed in Fig. 6.

B. Transit velocity

It is important to note that the transit time of erythrocytes
in the microvessel depends on both the cell deformability
and the friction encountered by the cell during its entry into
the microchannel. Hence we define the transit velocity Vtr

being the average velocity of the cell as it passes through the
microchannel and travels a distance L. Transit velocities were
calculated and analyzed in the following section for various
situations encountered by the erythrocytes.

First, the effect of severity of the stenosis on the transit
velocity was considered by varying the width of the throat
of the vessel w for the erythrocyte with s∗ = 0.481. Figure 7
shows a scatter plot of transit velocity against w. From the
graph, it can be seen that the transit velocity increases almost
linearly as the width of the stenosis increases for the parameters

FIG. 10. Series of sequential simulation results showing the movement of a noncoaxial human erythrocyte through a stenotic channel,
the pressure gradient across which was controlled. The time instants are (a) t = 0.32 ms, (b) t = 0.96 ms, (c) t = 1.02 ms, (d) t = 1.12 ms,
(e) t = 1.18 ms, and (f) t = 1.74 ms. The erythrocytes are perpendicular to the channel axis initially. The cell moves from left to right into
a 6 μm constriction of a microchannel. After moving through the stenosis, shape recovery occurs. The spring constants for the cell membrane
are kl = kb = 5.0 × 10−13 Nm and |R − h| = 1.5 μm.
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chosen. The reason for this behavior is that since the pressure
difference at the inlet and the outlet remains the same, the flow
is more blocked when the vessel is severely stenotic, which
slows down the transit velocity of the cell.

Next, simulations were carried out in a vessel with 4 μm
stenosis using erythrocytes of membrane constants kl and kb

varying from 1.0 × 10−14 Nm to 1.0 × 10−12 Nm to represent
the cells of various rigidity. As observed in experimental
studies, the more deformable erythrocyte passes through the
stenosis with large deformation. The effect of membrane
stiffness on the transit velocity of erythrocytes is that the
velocity deceases with the increase of the stiffness level.
For instance, Fig. 8 shows the reduction of the average
velocity is about 6% for the erythrocytes with s∗ = 0.481
when the membrane constants increase from 1.0 × 10−14 Nm
to 1.0 × 10−12 Nm. The reason is that more deformable cells
reduce the flow resistance, thus giving rise to higher transit
velocities in the stenotic part of the vessel. These results agree
with the experimental observations in Ref. [9].

We also observe that for the same value of membrane
constant, the transit velocities of the erythrocytes are higher for
more swollen cells. This seems unusual initially as it was first
thought. One possible explanation is that the cells with smaller
reduced area s∗ have a larger cell surface area in contact with
the fluid; this will lead to increased flow resistance and may
slow down the velocity of the cell.

C. Shape transitions

Thus far, calculations have been for the erythrocytes
having initial coaxial positions. To further investigate
the shape transition associated with the initial position
of the erythrocyte, the cell was placed noncoaxial in the
channel. The characteristic parameter considered was
off-center distance |R − h|, which was defined as the distance

FIG. 11. (Color online) Plot showing the transit velocities of a cell
traveling through the length of the microchannel as functions of off-
center distance of erythrocytes for a different level of stenosis severity.
The erythrocytes are perpendicular to the channel axis initially. From
bottom line to top line: w = 3, 4, 5, 6, 7, and 10 μm. The boundary of
the slipper-to-bullet transition is shown by the dark line. The spring
constants for the cell membrane are kl = kb = 1.0 × 10−13 Nm.

FIG. 12. (Color online) Boundaries of slipper-to-bullet transition
for two different membrane constants: kl = kb = 1.0 × 10−13 Nm
and kl = kb = 5.0 × 10−13 Nm.

between the cell center at initial position and the centerline of
the channel.

The first case was a single erythrocyte vertically travers-
ing the stenotic channel with off-center distance |R − h| =
0.5 μm. The results in Fig. 9 show that, instead of parachute
shape, the cell deforms into slipperlike shape when it traverses
the stenosis because the forces imposed on the cell by the flow
are not symmetric. The slipper-shaped erythrocytes have been
observed experimentally [22,23] and numerically [4,31]. The
biconcave shape is also recovered a short distance after the cell
exits the stenosis in this case.

The next case considered was that the cell was even
more off center. In this case, the off-center distance was
|R − h| = 1.5 μm so that the hydrodynamic forces imposed
on the two cell tips were more different. Under this condition,
the cell moves with an incline angle prior to the entrance of
the stenosis. It enters the throat of the channel unfolded with
bulletlike shape when it traverses the stenosis. At the distal side
of the stenosis, the cell becomes slipperlike for a short period

FIG. 13. (Color online) Boundaries of slipper-to-bullet transition
for two different plasma viscosities: μf = 1.2 cp and μf = 1.5 cp.
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(a) (b)

(c) (d)

FIG. 14. Series of sequential simulation results showing the movement of a noncoaxial human erythrocyte through a stenotic channel, the
pressure gradient across which is controlled. The time instants are (a) t = 0.66 ms, (b) t = 2.18 ms, (c) t = 2.90 ms, and (d) t = 4.27 ms. The
erythrocyte is parallel to the channel axis initially. The cell moves from left to right into a 4 μm constriction of a microchannel. The spring
constants for the cell membrane are kl = kb = 1.0 × 10−12 Nm and |R − h| = 6 μm.

of time, then returns to biconcave shape. The simulation results
are presented in Fig. 10. The bullet-shaped erythrocytes have
also been found experimentally [21].

Since symmetric shapes as parachutes only happened when
the cell center coincided with the centerline of the flow, in
this study we mainly investigated the transition from slipper
to bullet when the cells pass through the stenosis. Figure 11
shows the transit velocity of erythrocyte for various severity
of the stenosis. The transit velocity decreases with increasing
level of severity. However, the effect of off-center distance on
transit velocity is not significant. The width of the stenosis
also affects the location of the boundary of slipper-to-bullet
transition, which is also shown in Fig. 11.

We also examined how the boundary of the slipper-to-bullet
transition was altered when the cells became more stiff. The
cells were made less deformable by increasing membrane
constants from kl = kb = 1.0 × 10−13 Nm to kl = kb = 5.0 ×
10−13 Nm. The same set of stenotic microvessels, i.e., w = 3,
4, 5, 6, 7, and 10 μm was chosen. For clarity, only the
boundaries of the transition are shown in Fig. 12. The boundary
of the slipper-to-bullet transition shifts to a lower value of
|R − h| as kl and kb increase. Thus it shows that more rigid
cells are more likely to become bullet shapes when passing the
stenosis than more deformable cells.

Thus far, we have set the dynamic viscosity of the plasma,
μf , to 1.2 cp. To study the effect of plasma viscosity on

FIG. 15. (Color online) Effect of erythrocyte membrane stiffness
on the average transit velocities of the cell which is parallel to the
channel axis initially in a stenotic channel with w = 4 μm.

the shape transition, we carried out a set of simulations with
μf = 1.5 cp. The boundaries of slipper-to-bullet transitions
for two different plasma viscosities are plotted in Fig. 13. The
boundary for the higher viscosity case moves to bigger values
of |R − h|.

D. Effect of initial cell orientation

So far simulations have been done with the cells vertically
located in the channel initially. In this section, we conducted
the simulations of an erythrocyte traversing the same stenotic
channel while the cell was initially parallel to the channel
axis with a horizontal distance 3 μm between the cell
center and the left entrance. Comparing to the previous
simulations, different behaviors has been observed for the
shape transition taking place in the stenotic channel. The
erythrocytes tend to deform into bulletlike shapes at the throat
of the channel, while the slipperlike shapes have not been
observed for the simulation parameters chosen. Figure 14
shows the motion and deformation of an erythrocyte in a
channel with a 4 μm stenosis. The reduced area for the cell is
s∗ = 0.481 and the erythrocyte was placed close to the lower
boundary of the channel with an off-center distance |R − h| =
6 μm.

The effect of membrane stiffness on the transit velocity of
erythrocytes that are parallel to the channel axis initially is that
the velocity decreases with the increase of the stiffness level
only for the cell with reduced area s∗ = 0.9, while for the cells
with s∗ = 0.481 and s∗ = 0.7, this effect is less significant. It is
also shown in Fig. 15 that for the same membrane stiffness the
transit velocities of the erythrocytes are higher for less swollen
cells, which is an opposite dependence from the results that
have been observed for the cells with vertical initial orientation.

IV. CONCLUSIONS

Computer simulations were utilized to study erythrocytes,
which were characterized by mechanical modulus of the
membrane. Motion and deformation of erythrocytes in a
stenotic microvessel have been studied numerically by cou-
pling the immersed boundary and fictitious domain method.
We simulated with erythrocytes of various shapes and stiff-
ness to mimic the healthy and the abnormal cells and the
obtained results agree well with the experimental findings. We
have also explored the dependence of the transitions from
slipperlike to bulletlike shapes at the stenotic zone of the
vessel on characteristic parameters such as elastic properties
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of the erythrocyte membrane, initial noncoaxial positions
and orientation of the cells, stenosis severities, and plasma
environments.

Biconcave erythrocytes with initial vertical orientation
and coaxial position were found to deform into parachute
(or umbrellalike) shapes. When the cells are located off
centerline initially, the cells transit to a slipperlike shape or
even a bulletlike shape at the narrow part of the channel.
For both parachutelike and slipperlike erythrocytes, the cells
are in folded shape. The cell is symmetrically folded for
the parachutelike cell and asymmetrically folded for the
slipperlike cell. The asymmetry of the cells is caused by the
pressure drop across the cell. The state change from slippers
to bullets happens when we increase the off-center distance
|R − h|, and the phase shift when we change the severity
of the stenosis. The cells tend to deform into slipperlike
shapes when the opening of the stenosis is large, while
they maintain bulletlike shapes when the stenosis becomes
narrow. The location of the boundary of the slipper-to-bullet
transition depends on the membrane stiffness and viscosity
of the blood plasma. However, for the initial horizontally
oriented erythrocytes, slipperlike shape has not been observed.
Moreover, simulation results show that more swollen cells
travel faster if the erythrocyte cells are perpendicular to
the channel axis initially provided the cells have the same
rigidity, whereas opposite dependence of transit velocity on
cell shape can be seen for the cells with horizontal initial
orientation, i.e., more swollen cells travel slower in the stenotic
channels.

The numerical method is capable of capturing the defor-
mation and dynamics of erythrocytes in stenotic vessels and
allows us to describe the complex relations among the cell
mechanical properties, cell-structure interactions, and flow
conditions, and to identify their effect on the rheological prop-
erties of erythrocytes in blood flow. Although the simulations
were carried out at very low hematocrit, our simulation method
can easily be applied to multiple cells in a blood vessel, as
well as to more complex flow geometries. Furthermore, the
in silico study of cell flow can be used in the future to address

many important questions in microfluidic flows, such as flow
through a bifurcated channel or changes in flow behavior in
compliant blood vessels.

Studying the dynamics of erythrocytes transforming from
one state to another in blood flow help us better understand
several types of blood disorders, although the transition from
slipper to bullet needs to be further confirmed by three-
dimensional simulations. Furthermore, the modeling method
presented in this paper provides us many potential applications
in biology and medicine, such as blood disease diagnosis
and drug delivery. Future research will be the use of this
method to investigate the dependence of the flow behaviors
on the channel geometry and the extension of this method to
three-dimensional studies.
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