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Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms
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Coherent diffractive imaging with x-ray free-electron lasers (XFEL) promises high-resolution structure
determination of noncrystalline objects. Randomly oriented particles are exposed to XFEL pulses for acquisition
of two-dimensional (2D) diffraction snapshots. The knowledge of their orientations enables 3D imaging by
multiview reconstruction, combining 2D diffraction snapshots in different orientations. Here we introduce
a globally optimal algorithm that can infer these orientations. We apply it to experimental XFEL data of
nanoparticles and so determine their 3D electron density.
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I. INTRODUCTION

Since femtosecond x-ray pulses can pass through a micro-
scopic sample before the onset of significant radiation damage,
one of the most promising scientific applications of x-ray free-
electron lasers (XFELs) is in subnanometer resolution imaging
of biological objects, including cells, viruses, macromolecular
assemblies, and nanocrystals. This concept of “diffraction-
before-destruction” [1,2] has been validated recently at the
Linac Coherent Light Source (LCLS) for protein micro- and
nanocrystals [3–5], single mimi viruses [6], and airborne
particulate matter [7], demonstrating high-resolution protein
structure analysis [4] and two-dimensional (2D) projection
imaging [6–9]. A full three-dimensional (3D) structure anal-
ysis requires the 3D diffraction volume to be sampled by
2D diffraction patterns in different object orientations. Since
the extremely bright FEL x-ray pulses completely destroy
the sample objects, a stream of identical sample particles
is injected and the different diffraction images are collected
serially. Experimentally, it is extremely challenging to either
set or determine the orientation of the particles prior to their
interaction with the x-ray beam. Instead, the particles are
injected in unknown, random orientations and postexperiment
extraction of the object orientation becomes a critical step in
the structure determination process. Once the orientational
relationships of the 2D diffraction patterns (and thus the
orientations of the different sample particles) are known, it
is straightforward to assemble the 2D diffraction patterns
into a 3D diffraction volume enabling a 3D reconstruction.
Algorithms for establishing particle orientations must cope
with practical obstacles, including extremely low diffraction
signals, constraints imposed by particle symmetry, the possible
presence of numerous particle conformations, and otherwise
inhomogeneous data sets. To date the success in developing
such algorithms has been limited.

Here we present a new approach based on pairwise com-
parisons of the measured diffraction patterns. The underlying
principle is that objects of incrementally different orientation
will yield diffraction patterns that differ only incrementally.
Given a large enough number of measured diffraction patterns,
it becomes possible—via pairwise comparisons—to arrange
the entire ensemble of measured diffraction patterns in what
might be called similarity sequences. For a rigid object rotating

about its center of mass, the most direct transition between two
separate object orientations is a rotation about a specific single
rotation axis. The similarity sequences allow this specific axis
to be identified and thereby the angular relationships between
the 2D diffraction patterns can be established.

II. ESTABLISHING AND INTERPRETING SIMILARITIES
AMONG DIFFRACTION PATTERNS

When the FEL x-ray beam scatters forwards from a ran-
domly oriented 3D object and onto a detector centered on the
x-ray beam axis, the resulting diffraction pattern corresponds
to a (spherical) slice through the object in reciprocal space.
Due to the properties of the underlying Fourier transform, the
mapping from the space of object orientations to the space
of diffraction patterns is continuous, i.e., a slight rotation of
the object induces only a correspondingly slight change in the
diffraction pattern. Consequently, a measure ddiss(P1,P2) of
the “dissimilarity” between two different diffraction patterns
P1,P2 provides a local measure of the angular separation
between the two corresponding objects. Here we use the
Pearson correlation coefficient to estimate the dissimilarity
ddiss. In order to extend this local estimate of angular distances
(slight changes in diffraction patterns corresponding to slight
object rotations) to global quantities (arbitrary changes in
diffraction patterns corresponding to possibly large rotations),
we define the “geodesic dissimilarity” dgeo between two
patterns P1 and P2 to be the shortest accumulated dissimilarity
of all possible sequences {γk} of diffraction patterns starting
from P1 and ending at P2,

dgeo(P1,P2) = min
γ∈�(P1,P2)

|γ |−1∑
i=0

ddiss(γi,γi+1).

To cope with the local nature of ddiss, the optimization is limited
to a subset � of sequences with similar consecutive elements
based on a threshold ε: �(P1,P2) = {{γk}Nk=0 | (γ0 = P1) ∧
(γN = P2) ∧ (ddiss(γi,γi+1) < ε∀i = 1 . . . N − 1)}. We name
the optimal sequence γ (P1,P2) of this subset the geodesic
sequence or shortest path between P1 and P2.

The search for the shortest path on the discrete graph of
diffraction patterns has an analogy to the rotation group SO(3):
A geodesic on SO(3) with respect to the angular distance d∠ is
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a rotation about a single axis (generally called the Euler axis).
It is useful to likewise associate the shortest similarity path
between two diffraction patterns with a “geodesic” trajectory
that can be interpreted as a rotation about an Euler axis. This
correspondence only holds if the true angular distance d∠ is
used which is unknown in general. Since ddiss locally (for
small angles) correlates with d∠ we use it to approximate d∠.
To justify this approximation we have carried out a number of
numerical simulations and, on that basis, convinced ourselves
that quite generally the “shortest” similarity sequence that
smoothly connects two diffraction patterns (i.e., the path
through diffraction-pattern space having minimal cumulative
dissimilarity) corresponds to the smallest real space rotation
of the object.

This mapping of similarity geodesics onto real space
geodesics must be very carefully considered. In general, the
distance measure defined by the dissimilarity can be distorted
by any anisotropies of the experimental geometry or of the
object itself and thus deviate from the round metric of S3.
One obvious anisotropy, as pointed out in Ref. [10], is that
due to the unidirectional nature of the x-ray beam which, as
a first approximation, results in a projection. However, this
distortion is easily treated by simply distinguishing rotations
about the x-ray beam axis (which we term “in-plane rotations”)
from rotations about axes orthogonal to the x-ray beam axis
(“out-of-plane rotations,” see below). The consequences of
anisotropies in object shape are difficult to characterize in
a general fashion. However, in simulations with parameters
typical for coherent diffraction imaging experiments and
reasonable sample object shapes (finite size and thickness),
we find the effect of distortions due to object shape to be
negligible. As shown in Fig. 1, even under severe distortion
the geodesics do not deviate much from great circles on S3

and thus they correspond to single axis rotations. Accordingly,
we consider this mapping of similarity geodesics (within
diffraction patterns) onto real space geodesics (of object
orientation) to be generally valid and can refer to either as
simply a “geodesic.”

The topological information on geodesic sequences can
be translated into geometric information on the orientations
by comparison with distinct angles such as the maximum
geodesic angle. Provided that the number of diffraction
patterns is sufficient to approximate a complete sampling of
the orientation space, the longest geodesic sequence found

FIG. 1. (Color online) Illustration of the effect of distortions
on geodesics. The similarity metric of diffraction snapshots can be
distorted, deviating from the round metric induced by S3. (a) shows a
3D slice through the heavily distorted three-sphere S3 and a geodesic
line (red). Mapping back to S3 (b) shows that even under heavy
distortion the geodesic is approximately preserved, i.e., it is a great
circle on S3.

in the data corresponds to the maximum geodesic angular
separation, which depends on the sample symmetry (180◦ for
asymmetric objects). The object symmetry can be assessed
from the diffraction patterns, assisted by the observation that
the geodesic sequences end on symmetry poles, since beyond
those the diffraction patterns increasingly resemble the starting
diffraction pattern.

III. IDENTIFYING IN-PLANE AND OUT-OF-PLANE
ROTATIONS AND COMBINING THEM TO SPAN THE

ORIENTATION SPACE

Two steps are required to successfully recover the orien-
tations of all collected diffraction patterns of given sample
objects via geodesic analysis: First, each pattern has to
be assigned to a geodesic sequence and then the relations
between their respective Euler axes need to be established.
The former involves an optimization that can be carried out
efficiently by dynamic programming algorithms like Dijkstra’s
shortest path algorithm [11] while the latter can be realized
by adding another source of angular information with the
aid of “in-plane” rotations. Typical setups for diffraction
experiments are symmetric with respect to the x-ray beam
axis. Due to this symmetry, rotating the specimen about the
x-ray beam axis corresponds to a rotation of the diffraction
pattern in the detector plane by that same angle (Fig. 2).
Starting from a diffraction pattern P we can therefore identify
or generate a “synthetic” diffraction pattern P (α) that is rotated
in-plane through an angle α. Given two diffraction patterns
P1 and P2 whose orientations are related by the Euler axis
�E0,0, introducing synthetic in-plane rotations P1 → P1(α) and
P2 → P2(β) will lead to the Euler axis �Eα,β of a geodesic
sequence γ (P1(α),P2(β)). The fraction of diffraction patterns
that can be assigned to such sequences depends on the angular
separation θ and on the orientation of the Euler axis �E0,0

relative to the x-ray axis �c (the in-plane axis). The second
dependance can be understood as follows: in-plane rotations
are also geodesic rotations and in the extreme case where
�E0,0 = �c, there is no difference between in-plane rotations

and the geodesic rotation that rotates P1 to P2 and thus the
in-plane rotations do not provide additional information. To
maximize the information gain that can be obtained from
in-plane rotations we have to minimize the overlap between
in-plane rotations and the geodesic rotation by choosing
P2 such that the geodesic rotation that rotates P1 to P2 is
orthogonal to the in-plane rotations. We name these orthogonal
rotations “out-of-plane” rotations from now on. This suggests
that the maximum number of diffraction patterns can be
assigned to geodesic sequences γ (P1(α),P2(β)) if P1 and P2

are separated by the maximum geodesic angle θ = 180◦ and
if the corresponding Euler axis �E0,0 is orthogonal to the x-ray
axis �c. In fact, as shown in Appendix A and illustrated in
Figs. 2(b) and 2(c), this covers all diffraction patterns and
all orientations. In-plane and out-of-plane rotations can be
orthogonalized by artificially setting ddiss(P1,P1(α)) to zero for
all values of α. Then, initial in-plane rotations will be preferred
in the search for the shortest path because they are cost-free.
In this way, the in-plane component is only contained in the
selection step between P1 and the next diffraction pattern in
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FIG. 2. (Color online) Illustration of the geodesic and in-plane
rotations algorithm (GIPRAL). (a) Geometry of diffraction experiment.
The triad (red) denotes the object and its orientation. In-plane
rotations correspond to a rotation of both object and diffraction pattern
around the x-ray axis. [(b) and (c)] Illustration of combined geodesic
and in-plane rotations. For clarity, only the dark gray (red) object
O(P1) corresponding to diffraction pattern P1 is rotated in-plane
around the x-ray beam [light gray (yellow line)]. The geodesic
sequences connecting the orientations of each in-plane rotation of
O(P1) [dark gray (red)] to O(P2) [dark gray (blue)] are shown in light
gray (green). (b) In-plane rotations of O(P1) with arbitrary orientation
(see www.gipral.org for an interactive illustration). (c) Maximum
separation between the object orientations O(P1) and O(P2) leads
to full coverage of SO(3). The orientations of the red and the blue
arrows constitute the poles on S3. Note that only its projection S2 can
be shown here.

the geodesic sequence and can easily be removed, leading to
out-of-plane geodesic sequences which are orthogonal to the
in-plane rotations.

In order to calculate the effect of combining in-plane and
out-of-plane rotations, consider a diffraction pattern Pα,β,ϕ

which is part of the geodesic sequence γ (P1(α),P2(β)) with the
geodesic angle ϕ (see Fig. 3). Here we derive the orientation
of Pα,β,ϕ relative to the orientation of P1 under the condition
that P2 is related to P1 by a true out-of-plane rotation (without
in-plane components) through the angle θ . The coordinate
system is chosen such that the y axis coincides with the
rotation axis �a of the out-of-plane rotations and the z axis
coincides with the x-ray axis �c (= in-plane axis). We describe
orientations as rotations of a reference orientation so they can
be expressed in quaternions

q �e,ϑ =
(

sin(ϑ/2)�e
cos(ϑ/2)

)
,

where (�e,ϑ) is the Euler axis-angle representation. In this
orientation representation, the unit quaternion q = 1 stands
for the reference orientation which, for conveniance, we
define as the orientation of the diffraction pattern P1. Thus
the orientation of P1(α) is the in-plane rotated reference

P1

P2

P1(α)

P2(β)

R(a , θ)

R(c , β)

qPα,β,ϕ
Pα,β,ϕ

R(eΔ, ϕ)
R(c , α)

FIG. 3. Relations between diffraction patterns and rotation op-
erators R. The Solid vertical arrow describes geodesic out-of-plane
operations (rotations about �a), horizontal operators describe in-plane
operations (rotations about �c). Note that in the special case θ = 180◦

the dashed arrows are out-of-plane rotations, too.

orientation and can be written as

qP1(α) =

⎛
⎜⎜⎜⎝

0

0

sin(α/2)

cos(α/2)

⎞
⎟⎟⎟⎠ .

The orientation of P2 is related to that of P1 by an out-of-plane
rotation through the angle θ and can be written as

qP2
=

⎛
⎜⎜⎜⎝

0

sin(θ/2)

0

cos(θ/2)

⎞
⎟⎟⎟⎠ .

The orientation of P2(β) can be obtained by adding an in-plane
rotation through the angle β to qP2

:

qP2(β) =

⎛
⎜⎜⎜⎝

0

0

sin(β/2)

cos(β/2)

⎞
⎟⎟⎟⎠ ⊗ qP2

=

⎛
⎜⎜⎜⎝

− sin(θ/2) sin(β/2)

sin(θ/2) cos(β/2)

cos(θ/2) sin(β/2)

cos(θ/2) cos(β/2)

⎞
⎟⎟⎟⎠ .

The geodesic rotation q� from P1(α) to P2(β) is given by

q� = qP2(β) ⊗ q−1
P1(α) =

⎛
⎜⎜⎜⎝

− sin(θ/2) sin(β/2 + α/2)

sin(θ/2) cos(β/2 + α/2)

cos(θ/2) sin(β/2 − α/2)

cos(θ/2) cos(β/2 − α/2)

⎞
⎟⎟⎟⎠ .

The rotation axis �e� of all rotations that are part of the geodesic
connecting P1(α) and P2(β) can be extracted from the vector
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part of q�:

�e� = 1

|−→q �|

⎛
⎜⎝

− sin(θ/2) sin(β/2 + α/2)

sin(θ/2) cos(β/2 + α/2)

cos(θ/2) sin(β/2 − α/2)

⎞
⎟⎠

with

|−→q �| =
√

sin2

(
θ

2

)
sin2

(
β + α

2

)
+ sin2

(
θ

2

)
cos2

(
β + α

2

)
+ cos2

(
θ

2

)
sin2

(
β − α

2

)
.

After parameterizing rotations along this geodesic with an angle ϕ the orientations of the geodesic sequence are given by

qPα,β,ϕ
=

(
sin(ϕ/2)�e�

cos(ϕ/2)

)
⊗ qP1(α)

and thus

qPα,β,ϕ
=

⎛
⎜⎜⎜⎜⎜⎝

− 1
|−→q 
| sin

(
ϕ

2

)
sin

(
θ
2

)
sin

(
β

2

)
1

|−→q 
| sin
(

ϕ

2

)
sin

(
θ
2

)
cos

(
β

2

)
sin

(
α
2

)
cos

(
ϕ

2

) + 1
|−→q 
| cos

(
α
2

)
sin

(
ϕ

2

)
cos

(
θ
2

)
sin

( βj

2 − αi

2

)
cos

(
α
2

)
cos

(
ϕ

2

) − 1
|−→q 
| sin

(
α
2

)
sin

(
ϕ

2

)
cos

(
θ
2

)
sin

( βj

2 − αi

2

)

⎞
⎟⎟⎟⎟⎟⎠ .

In the special case θ = 180◦ ⇒ |−→q 
| = 1, and

qPα,β,ϕ
|θ=180◦ = sin

(
ϕ

2

) ⎛
⎜⎜⎜⎝

− sin
(

β

2

)
cos

(
β

2

)
sin(α/2)/ tan(ϕ/2)

cos(α/2)/ tan(ϕ/2)

⎞
⎟⎟⎟⎠ . (1)

As can be seen from Eq. (1), in this case the orientations
qPα,β,ϕ

cover the complete orientation space and thus every
possible diffraction pattern can be assigned to the sequences
Pα,β,ϕ . A proof using the Rodrigues formalism can be found
in Appendix A.

IV. GIPRAL: A RECIPE IN TEN STEPS

This description motivates a new algorithm for orienta-
tion recovery, the geodesic and in-plane rotation algorithm
(GIPRAL). It can be outlined as follows:

(1) Calculate diffraction pattern cross correlations C̃(Pi,Pj )
between all pairs (Pi,Pj ) of diffraction patterns. Normalize and
invert to obtain a dissimilarity measure as follows:

d̃diss(Pi,Pj ) = 1 − C̃(Pi,Pj )/max
k,l

C̃(Pk,Pl).

(2) Threshold nearest neighbors:

ddiss(Pi,Pj ) =
{

d̃diss(Pi,Pj ) : d̃diss(Pi,Pj ) < ε

∞ : otherwise
.

(3) Select the initial diffraction pattern P1, randomly or by
visual inspection to guarantee that the desired object is chosen
(as opposed to a blank shot or a shot containing artifacts as
described in Refs. [9,12] like solvent droplets or clusters of
the specimen object).

(4) Use Dijkstra’s algorithm [11] to find the sequences
with minimum accumulated dissimilarity from P1 to every

other diffraction pattern that is connected to P1 (directly or
indirectly). The threshold ε should be chosen to be high
enough so all diffraction patterns are indirectly connected to
P1 and low enough so only very similar diffraction patterns
are directly connected to P1. In order to remove in-plane
components from the sequence, add in-plane rotated copies
P1(αi) of P1 to the pool of diffraction patterns and set their dis-
similarities ddiss(P1,P1(αi)) to zero before running Dijkstra’s
algorithm.

(5) Identify the end pattern P2 as the one that maxi-
mizes dgeo(P1,P2); it is the antipode to P1 on S(3), the
three-sphere representing the orientations of SO(3). Because
in-plane components have been suppressed in the previ-
ous step P1 and P2 are related by a true out-of-plane
rotation.

(6) In case of object symmetries, start again, this time
choose the previous P2 as the new P1. This avoids premature
termination of the geodesic sequence due to symmetry (see
Appendix C).

(7) Generate in-plane rotated diffraction patterns P1(αi) of
P1 and P2(βj ) of P2 and keep track of their in-plane angles
αi and βj . Put them into the pool of diffraction patterns and
repeat step 1 and 2. At this stage it is not necessary to calculate
every correlation anew; ddiss(Pi,Pj ) has to be updated only for
the new diffraction patterns.

(8) Similarly to step 4 but without in-plane component
suppression: Find geodesic sequences between all pairs
(P1(αi),P2(βj )).

(9) Determine the angle ϕi,j,k between P1(αi) and the kth

diffraction pattern Pi,j,k in the geodesic sequence between
P1(αi) and P2(βj ) by interpreting the dissimilarity value
between P1 and P2 as a single axis rotation of 180◦ (adapt
in case of object symmetries).
(10) Relate the different rotation axes of different geodesics

to each other using the known in-plane angles and ϕi,j,k .
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The quaternion corresponding to the orientation of diffraction
pattern Pi,j,k with respect to P1 is given by Eq. (1).

V. COMPUTATIONAL COMPLEXITY

The computational bottleneck of GIPRAL is the computation
of pairwise dissimilarities between all pairs of diffraction
patterns with a computational complexity of O(N2) for N

diffraction patterns. This can be sped up by parallelization,
since the individual pairs are independent of each other.
Moreover, the threshold ε sparsifies the dissimilarity matrix
that is needed. If we assume that the triangle inequality holds
for our estimate of ddiss, then we can update a table of upper and
lower bounds for ddiss iteratively while adding entries to the
dissimilarity matrix. These bounds can guide the computation
of the next matrix elements, since elements with a lower bound
>ε can be rejected while elements with a small upper bound
will be preferred. This way, only a fraction of all pairs of
diffraction patterns needs to be taken into account.

VI. GENERALIZATION TO SYMMETRIC OBJECTS

Object symmetries complicate matters since symmetry
operators can be applied to any orientation without altering
the diffraction pattern dissimilarity. This leads to shortcuts on
geodesic paths that act as “wormholes” in orientation space. A
portion of the orientation space that consists of symmetrically
irreducible orientations and therefore does not contain any
“wormholes” can be constructed by applying symmetry oper-
ators to map every orientation to a symmetrically equivalent
orientation such that the angular distance to a given reference
orientation is minimized. These “fundamental zones” take
very convenient shapes when expressed in Rodrigues-Frank
(RF) parametrization [13]: For finite symmetry groups they
are polytopes with planar boundaries. Moreover, geodesic
paths are straight lines in RF space [13] (see Appendix A and
Supplemental Material Fig. S1 [14] for an illustration), which
makes RF space a natural choice for the formal treatment of
rotational geodesics. The maximum angular separation that is
possible under a given symmetry can be calculated from the
shapes of all finite symmetry group classes [15]. These angles
(see Ref. [16] for a complete list) correspond to the longest
Euclidean distances between corners of the fundamental zone
and can be used to relate geodesic paths of maximum length
to angles in the case of symmetric objects. In Appendix B,
we show how this can be used to navigate in the orientation
space of symmetric objects and we discuss the coverage of
the fundamental zone. Thus, GIPRAL can be used to recover
the 3D diffraction volume using an ensemble of 2D diffraction
snapshots irrespective of the underlying object symmetry.

VII. COMPARISON WITH OTHER APPROACHES

The geodesic distance is a combination of local distances
between many data points into a conformable global dis-
tance, a principle which makes the isomap [17] algorithm
so powerful and robust against outliers and noise. Fast
dynamic programming approaches like Dijkstra’s shortest
path algorithm [11] are very efficient and guarantee globally
optimal solutions. In-plane angles can be obtained with an

accuracy that is only limited by the discrete nature of the pixel-
based diffraction detection. Our GIPRAL method combines two
reliable sources of angular information (in-plane, out-of-plane)
without propagating the error exponentially by nesting steps
which is treated by additional averaging in common-line or
-arc methods [18,19]. Moreover, every pixel of the whole
diffraction pattern contributes to the angular information.
Orientation classification schemes proposed in Refs. [20,21]
make use of the Pearson correlation coefficient to estimate
the diffraction pattern similarity while [10] uses the Euclidean
distance measure. We prefer the Pearson correlation coefficient
because of its invariance under linear transformations of the
diffraction intensities. As with Bayesian methods [22–24] the
ensemble information of all diffraction patterns combined is
used to infer object orientations, making GIPRAL also useful
for data with very low photon counts [22,25]. Unlike the
expectation maximization algorithms used in these methods,
the dynamic programming algorithms applied in the geodesic
search ensure that the global optimum is found. Compared
to the graph-theoretic analysis of scattering data [10], GIPRAL

refines simple pairwise local distances into an accurate integral
distance measure and uses in-plane angles as an additional
source of information. This reduces the orientation recovery
to one-dimensional subproblems, making GIPRAL fast and
physically intuitive.

VIII. APPLICATION OF GIPRAL TO
EXPERIMENTAL DATA

So far, the efficacy of the published classification algorithms
[10,18,22–24,26] for real data is largely unknown, whereas
we here demonstrate successful application of GIPRAL to
experimental XFEL snapshots. In order to test GIPRAL with
real experimental data of a well-characterized model system
we investigated aerosolized “nanorice,” ellipsoidal iron-oxide
nanoparticles. This system was studied previously [27] at
the free electron laser in Hamburg (FLASH) but the data
quality prevented a 3D reconstruction. Here we analyze 1000
diffraction patterns collected recently with 1.2-keV photons
at the LCLS [9] of an inhomogeneous nanorice sample (see
the transmission electron micrograph Fig. 4). The diffraction
data has been deposited at CXIDB.org [28]. A random
diffraction pattern P1 was chosen, and following the procedure
outlined in the above section, 128 diffraction patterns were
aligned [Fig. 4(a)]. Higher-angle scattering is observed in the
assembled 3D diffraction volume [Fig. 4(b)] than in individual
patterns. On phase retrieval as described previously [29] we
calculated the 3D reconstruction shown in Fig. 4(c). Shape,
connectedness (smoothness), and size of the 3D electron
density is consistent with both the diffraction volume and TEM
measurements. The width and length of the reconstruction
correspond to 8 and 30 voxels, respectively, with a voxel
size of 5 nm. The injected nanorice sample does not have
a homogeneous size distribution [Fig. 4(c)]. Indeed, not all
collected diffraction patterns could be assigned to a common
orientational alignment group. Picking one of the unassigned
patterns as P ′

1, we applied the GIPRAL method to the remainder
of the diffraction patterns and identified and aligned 52
patterns belonging to a subspecies of smaller particles (see the
Supplemental Figure S2 [14]), in line with the size distribution
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FIG. 4. (Color online) Application of the GIPRAL method to exper-
imental XFEL snapshot diffraction data of an ironoxide nanoparticle,
dubbed nanorice (a) GIPRAL output: orientation map of a subset of
diffraction images collected at LCLS. Horizontal: in-plane; Vertical:
geodesic out-of-plane rotations. (b) Slices through the 3D diffrac-
tion volume, assembled from the oriented 2D diffraction patterns.
The color bar shows the the intensities in arbitrary digital units.
(c) Reconstructed 3D electron density of a medium-sized 150-nm-
long nanorice particle of the distribution shown in the TEM micro-
graph (inset). The bounding box depicts the oversampling volume.
The magnified (red) object shows an isosurface representation.

of the sample established by transmission electron microscopy
[Fig. 4(c), inset]. The separation of different subspecies is
possible because only diffraction patterns that fit into the
geodesics that are spanned between P1 and P2 are considered.
In the case when two particles from different subspecies have
similar diffraction patterns for specific orientations, a pattern
from the “wrong” particle might be inserted into the diffraction
volume, but since it fits in, it does not distort the volume.

In conclusion, we have introduced GIPRAL for orientation
recovery of diffraction patterns and have demonstrated that
it can be used to sort and orientationally align continuous
diffraction patterns collected from an inhomogeneous ensem-
ble of nanoparticles intersected by XFEL pulses in random
orientations. This capability is of great relevance not only for
the emerging single particle imaging of biological materials
using FEL snapshots but also applicable for single particle
cryoelectron microscopy, since large macromolecular com-
plexes in particular are often conformationally or chemically
inhomogeneous.
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APPENDIX A: RODRIGUES-FRANK SPACE

Geodesics of objects with rotational symmetries can be
treated elegantly in the Rodrigues-Frank (RF) parametrization.
RF parametrization is a mapping from SO(3) to R3. R3 is not
a natural space for rotations, because it does not reflect the
curvature of SO(3). In RF space, this problem is addressed by
“flattening” out the round structure of rotations by mapping the
rotations of 180◦ to infinity via a factor tan(α

2 ). The effect is that
each circle representing a rotation has infinite curvature radius
and is thereby flattened. RF space can be seen as a gnomonic
projection of quaternions to Euclidean space. To the price of
the nonlinear mapping of tan( α

2 ) comes a very nice property of
RF space: The aforementioned flattening transforms geodesic
lines into straight lines and the boundaries of Voronoi cells
into planes. A rotation defined by a Euler axis ê and angle ϑ

can be expressed as a RF vector v = ê tan( ϑ
2 ).

As shown in Ref. [13] a rotation r1 followed by a rotation
r2 then takes the form

r1 ◦ r2 = r1 + r2 − r1 × r2

1 − r1 · r2
. (A1)

From the definition, it is clear that geodesic movements that
start from the reference orientation (the origin in RF space)
are straight lines in RF space, because they are rotations about
a single, fixed axis. This fixed axis defines the direction of
the RF vector and the angle modulates the length. From (A1)
it can be seen that geodesics are straight lines, even if the
reference orientation is changed by applying a rotation to a
new reference orientation first; see Ref. [15]. This means that
all geodesic curves are straight lines in RF space.

The proof of full orientation coverage of Eq. (1) can be
performed using the RF parametrization.

Since the orientation of P1 is used as the reference
orientation, its RF vector can be found at the origin RF(P1) =
(0,0,0)T (this means that no rotation is necessary to reach
the orientation of P1 from the reference orientation). The
in-plane rotations of P1 are single-axis rotations and therefore
geodesics, thus the points RF(P1(α)) lie on a straight line l1 and
the points RF(P2(β)) describe a straight line l2. The geodesics
Pα,β,ϕ between P1(α) and P2(β) then are the straight-line
segments lgeoα,β that start at l1 and end at l2. Since we are
free to choose any combination of α and β, every combination
of start and end points on l1 and l2 is possible, and the
possible geodesics lgeo fill the convex hull of l1 and l2 (see
Supplemental Material Fig. S1 [14] for an illustration).

The out-of-plane rotation axis �a is orthogonal to the x-ray
axis �c, therefore a parametric representation of l2 is l2(t) =
tan(θ/2)�a+tan(tα/2)�c− �d(t)

1 , where �d(t) ∼ �a × �c is perpendicular to
both �a and �c. RF(P2) = tan(θ/2) · �a, so l2(t) = RF(P2) + �g(t),
where �g(t) is orthogonal to RF(P2), so the distance of l2 from
the origin is d = |RF(P2)| = tan(θ/2). l1 is parallel to �c, so
RF(P2) is also orthogonal to l1 and since l1 contains the origin
and l2 contains RF(P2), d is the distance between l1 and l2

with d → ∞ for θ → 180◦.
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As stated earlier, the convex hull of l1 and l2 contains all RF
vectors that can be reached by a combination of out-of-plane
geodesics and in-plane rotations. The boundaries of the convex
hull of two infinite lines is given by two planes whose normals
are orthogonal to both lines. The distance of these planes is
the distance of the lines, and since d → ∞, the half-space
that is cut out of RF space by a plane that includes the origin
is the space of all rotations reachable by patterns Pα,β,ϕ . This
half-space is sufficient to cover the full orientation space, since
the other half represents equivalent rotations whose directions
of the axes and the signs of the angles are inverted.

APPENDIX B: OBJECT SYMMETRIES IN
RODRIGUES-FRANK SPACE

The geodesic analysis of GIPRAL is based on a diffraction
pattern distance which is subject to the rotational specimen
symmetry. Only the asymmetric unit can be explored, like
wave vectors in a crystal that always reside in the first Brillouin
zone. The analysis of in-plane rotations does not underlay this
restriction, since the true angular distance measure can be
used here. This has implications for the geodesic paths which
GIPRAL identifies as shortest paths. The longest of these can
only span half of the maximum angle which is irreducible
under the object’s symmetry. If additional diffraction patterns
are added to the longest geodesic pattern sequence, there will
be a different sequence that acts as a shortcut to the additional
diffraction patterns to which they will then be attributed
instead. In principle, there are ways to find longer geodesic
sequences, but the notion of shortest paths is simple, robust,
and efficient.

The fact that the “longest of all shortest” paths corresponds
to a rotation of half the maximum possible object rotation
subject to the symmetry can be used to calibrate the diffraction
pattern based distance to an angular distance. Therefore, the
maximum possible object rotation within the fundamental
zone of the symmetry has to be known. This is similar to
the maximum misorientation angle used in crystallographic
texture analysis, for which RF space has proved to be an elegant
tool [13,16].

The fundamental cells of all possible symmetry classes
are listed in Ref. [16] and the maximum angle can be found
as the longest RF vector within these cells, in the case of
finite symmetry groups this is the RF vector of the cell
vertices. Geometrically, it can be seen that the maximum angle
is unique in the sense that it corresponds to rotation axes
which are equivalent in terms of the symmetry operations.
Thus, by identifying the “longest shortest paths,” not only
the angle but also the orientation of the rotation axis with
respect to the symmetry axes of the specimen are determined.
Due to the symmetry, there is a degeneracy of the maximum
angle, since a rotation by an angle ω of the specimen around
the maximal-angle-axis �d does not change the maximum
geodesic distance. The axis �d restricts �c to the intersection
I of the fundamental cell with a plane perpendicular to
�d (because �c ⊥ �d). Within this plane the angle ω can be
inferred with additional constraints: In-plane rotations are
not restricted by the symmetry and thus the size of the
fundamental cell in the direction of the in-plane rotations

FIG. 5. (Color online) Fundamental cell in Rodrigues space for
icosahedral symmetry (dodecahedron). The solid part can be reached
by a combination out-of-plane geodesics and in-plane rotations of P1

and P2 in one go. Further iterations can then fill the whole fundamental
cell. Due to the nonlinear deformation of Rodrigues space the gaps at
the corner of the fundamental cell correspond to very small angular
regions. In fact, the blue region corresponds to 92% of all possible
orientations.

can be determined. The in-plane axis �c lies within the planar
region I and the point pborder where it touches the border
of the fundamental cell reveals the orientation of �c within I
and can be used to obtain ω. The geodesic distance will be
modulated by in-plane rotations such that jumps occur when
in-plane rotations push qP1(α) (or qP2(β)) over the boundaries
of the fundamental cell. These jumps can be used to identify
pborder. Therefore, the orientation of both �d and �c with respect
to the fundamental cell can be obtained and the diffraction
snapshot orientations can be related to the object’s symmetry
axes.

When geodesics are identified as shortest paths the cor-
responding out-of-plane angle is restricted to only half of the
maximum possible object rotation. Therefore the completeness
of orientation coverage depends on the symmetry. However,
because in-plane angles are not affected by the symmetry, the
effect is not that severe. In the case of the dihedral symmetry
of the nanorice test case (see Sec. VIII), complete coverage
can be achieved. As an example of higher symmetries, we
numerically identified the possible coverage to be 92% for
icosahedral symmetry (see Fig. 5). Icosahedral symmetry is
very common in nature and is of high importance for biological
samples such as viruses.

APPENDIX C: PROJECTIONS AND MIRROR SYMMETRY

Suppose the object under consideration is symmetric under
a mirror operation M and the object orientation O is such that
the x-ray axis coincides with the normal of the mirror plane.
If we approximate the image formation process by a parallel
projection P along the x-ray axis, it follows Pp = P Mp

for every point p. Suppose R+ is a rotation whose axis of
rotation lies within the mirror plane of M and R− := R+−1

is the inverse rotation (see Fig. 6). Then R+p = R+ M Mp =
M R− Mp because mirroring inverts the rotation direction.
It follows that P R+p = P M R− Mp = P R− Mp. Applied

042710-7



STEPHAN KASSEMEYER et al. PHYSICAL REVIEW E 88, 042710 (2013)

FIG. 6. (Color online) Mirror symmetry together with a pro-
jection operation leads to symmetry in rotation such that rotations
in positive and negative direction yield the same projection. The
diffraction pattern based geodesic sequence depicted by red arrows
on the right side is equivalent to the blue sequence and it therefore
stops at the mirror plane. It does not continue to the blue arrows as it
would without symmetry.

to the set of object points, we can neglect the mirroring
operation due to the symmetry ⇒ P R+p = P R−p. Thus,
starting from the orientation O, the sequence of diffraction
patterns obtained by intermediates of the rotation R+ will be
the same as for intermediates of its inverse, R−. Inversely,
the sequence starting from [O, R+] going to [O,Id] gives a
sequence of inverted element order compared to the sequence
going from [O,Id] to [O, R−]. Only a single rotation axis
is involved and thus the full sequence from [O, R+] to [O,
R−] is of geodesic nature. However, the diffraction pattern
based distance will increase until [O, Id] is reached and then
decrease until it falls to zero when [O, R−] is reached. When
we search for the maximum geodesic sequence starting from
[O, R+], then [O, Id] will be the end of the found sequence
when only diffraction pattern based similarities are taken into
account. This means that the geodesic sequences tend to end
at mirror axes as shown in Fig. 6. This can be used to identify
the symmetry of the object, as stated in Sec. III.

A stop at mirror axes means that geodesic sequences might
become very short, depending on the the proximity of the
start orientation of P1 to mirror axes. But the sequence can be

extended afterwards by making the orientation of the stop the
new start orientation. The search for long geodesic sequences
then yields sequences of maximal length.

APPENDIX D: ORTHOGONALIZING IN-PLANE
AND OUT-OF-PLANE ROTATIONS

In the following considerations we will use a coordinate
system that is fixed to the sample object. So instead of con-
sidering orientations of the sample we consider orientations
of the x-ray beam and the detector. This implies that the
in-plane axis changes from shot to shot. Three noncollinear
points are sufficient to represent orientations. Since we do not
consider translations, all orientations are related by rotation
axes that have one point in common: the origin which is used
as the first reference point r0. r0 is invariant for all shots.
We choose the second reference point r1 as the unit vector
pointing along the x-ray beam and the third reference point
r2 is a point on the detector that does not coincide with
the x-ray beam. The shortest (in an angular sense) rotation
R1 that rotates r1 of one shot to r ′

1 of a different shot is a
rotation about an axis �e that is perpendicular to the x-ray
beams of both shots: �e ⊥ r0r1, �e ⊥ r0r

′
1. After applying R1, the

two reference points R1 · r0 = r0 = r ′
0 and R1 · r1 = r ′

1 are
aligned to the new orientation. To complete the rotation to the
new orientation, also r2 has to be rotated to r ′

2 by a rotation
R2. R2 needs to leave r0 and r ′

1 invariant, so its rotation
axis is r0r

′
1 which is the new x-ray axis of the second shot,

meaning R2 describes an in-plane rotation. Thus the complete
relative rotation between the two shots is R = R2 ◦ R1. By
construction no rotation that rotates r1 to r ′

1 can be shorter
than R1, meaning that the angle of the composition R is
minimized when R2 = 1. Since R2 is an in-plane rotation,
an in-plane-rotation of the second shot can be found such that
upon replacing the shot with its in-plane rotation, R = 1 · R1.
Thus finding the shortest rotation between the two shots while
allowing cost-free in-plane rotations of the second shot will
yield a true out-of-plane rotation R1 with an axis that is
orthogonal to the x-ray beam.
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