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Closing the loop: Lamellipodia dynamics from the perspective of front propagation
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We develop a simple physical model that captures the large-scale lamellipodia dynamics in crawling cells
and explains the observed spectrum of fish keratocytes behavior. The main ingredients in this description are
the geometrical evolution of the lamellipodium leading edge, the dynamic remodeling of the actin network, and
the interconnection between them. We deviate from existing theoretical works and consider the lamellipodium
leading edge as a propagating front. The agreement of our model with experimental works suggests that the
large-scale morphological and migration features exhibited by keratocyte cells are a direct consequence of the
closed feedback loop between the shape of the leading edge and the density of the actin network.
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I. INTRODUCTION

An important class of cell motility is crawling over surfaces.
Crawling cells move by three interrelated processes: actin
protrusion at the cell front, retraction of the cell rear, and
adhesion to the surface [1]. Crawling speed is highly variable
for different cell types. For example, the fish epidermal
keratocyte can move one cell diameter in about two minutes,
as compared to about one hour required by the fibroblast.
This stems from differences in the coordination between
the aforementioned processes of protrusion, retraction, and
anchorage [2]. Coordination is largely achieved by mechanical
signals provided by the plasma membrane. In particular,
membrane tension arises from the adhesion of the cytoskeleton
and the membrane to the substrate as well as from forces
generated by the motility machinery pushing the membrane
from within the cell [3]. In turn, the membrane tension
applies an opposing load that resists membrane extension and
controls actin protrusion at the leading edge. Experimental
measurements of migration features in a large number of
live fish keratocyte cells revealed statistically significant
correlations between various crawling features [4]. It was
found that faster (slower) cells are generally more elongated
(round), they have larger (smaller) radius of curvature, exhibit
higher (lower) center-to-end actin density ratio, and their
leading edge length is longer (shorter). In addition, it has been
demonstrated by several groups that modifying the mechanical
or chemical properties of the substrate has a dramatic effect on
the keratocyte morphology, migration velocity, and stability.
For example, Barnhart et al. [5] studied the effect of substrate
adhesion strength. They found that cells migrating on a surface
with intermediate adhesion strengths resembled stereotypical
keratocytes, characterized by a broad lamellipodium and
persistent shape. Cells at low adhesion strength were small and
round with highly variable protrusion rates and nonpersistent
shape, as illustrated in Fig. 1. Also, cells at high adhesion
strength exhibited traveling waves of protrusion.

Our main goal is to develop a coarse grained description
of the lamellipodium large scale dynamics that explains the
observed spectrum of keratocyte behavior. The two main
ingredients involved in this description are the shape of the
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leading edge and the actin concentration (number of actin
filaments per unit length) along the leading edge. In this model,
the tension in the plasma membrane manifests the interrelation
with processes taking place at other regions of the cell,
such as depolymerization, contraction, and adhesion. Thus
the model provides a platform for studying how membrane
tension affects the large-scale dynamics of the leading edge
and in turn an understanding (though qualitative) of how
adhesion, for example, affects the shape of the leading edge.
This concept has been adopted before in, e.g., [4,6,7]. Yet
these were limited to studying steady-state configurations or
subjected to simplifying assumptions regarding the shape of
the leading edge. Consequently, these models constitute a
one-way interaction path between the shape of the leading edge
and the distribution of the actin density along it. However, in
reality, the shape of the leading edge affects the remodeling
of the actin network and vice versa. This two-way coupling
and its consequences are the main focus of this paper. We
will show that the interconnection between shape and actin
density forms a closed feedback loop that is responsible
for the intriguing large-scale dynamics of lamellipodia in
crawling cells. In order to account for these features we
deviate from current modeling approaches of lamellipodia
and formulate the evolution of the leading edge geometry
from the perspective of front propagation. In the past three
decades there has been growing interest in the mathematical
description of front propagation as it applies to a wide range
of phenomena in physical, chemical, and cross-disciplinary
systems [8] such as population invasions, tumor growth,
chemical waves, and crystallization [9–16]. By adopting this
approach we are able to completely explain the aforementioned
experimental observations regarding statistical correlations
between motility features in keratocyte cells. In addition, we
are able to study stability of steady-state configurations and
find that crawling speed is limited by dynamic instability of the
feedback loop rather than the maximum polymerization rate.
This also explains the biphasic effect of cell-substrate adhesion
on migration features [17–19]. We note that, in recent years,
several models with varying degree of numerical complexity
have been developed [20], including phase field models
[21–23]. Our approach reduces significantly the complexity
of the model, provides analytical insights, and directly builds
on quantities with physical significance such as local curvature
and membrane tension.
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FIG. 1. (Color online) Experiments show that substrate properties
significantly affect morphological features and dynamics behavior.

II. THEORETICAL MODEL

A schematic description of the model is shown in Fig. 2,
which illustrates how the membrane shape and the actin
concentration form a closed feedback loop. Below we detail
the model assumptions and formulate the dynamic equations
that govern the geometrical evolution of the leading edge shape
and the evolution of the actin concentration along the leading
edge.

A. Membrane tension and actin density dictate
a graded normal velocity

Forces on the membrane at any point equilibrate within
milliseconds [24] so that, on the time scales relevant for
motility, membrane tension is spatially homogenous at all
points along the cell boundary [25]. Thus, since the out-
of-plane curvature of the membrane at the leading edge is
much higher than the in-plane curvature, the Young-Laplace
relation suggests that the membrane tension T imposes a
spatially uniform opposing force (per unit length) on the actin
network. The density of actin filaments along the leading
edge is graded [4,6], thus the force per filament at location
s along the leading edge is f (s) = 2T/ρ(s). If the force per
filament is small, the filaments are allowed to grow rapidly
and advance the leading edge faster. In recent years, there has
been a large effort to characterize this force-velocity relation
both theoretically and experimentally, e.g., [26–28]. Although
still debated, it is generally accepted that the relation between

FIG. 2. (Color online) Schematic description of the model. The
left inset shows the graded protrusion velocity (arrows) and actin
density (gray shade) for a constant shape. A location on the leading
edge can be expressed in terms of a laboratory coordinate system
(x,y) or by the arclength s; see right inset.

FIG. 3. (Color online) Membrane tension T affects the
lamellipodia dynamics by altering the protrusion-density relation.

the force per filament and the protrusion rate of the actin
network in the normal direction is characterized by a velocity
that is insensitive to the load at low forces, whereas at high
loads the velocity decreases with the load and vanishes at a
characteristic stall force [28–30]. A simple mathematical form
that fits the observed behavior is U = Um[1 − (f/fstall)w].
Here Um is the maximal velocity, fstall is the stall force, and
w controls the concavity of the relation. Direct measurements
in motile keratocytes suggest that w � 4 for these cells [3,28].
We emphasize that our model is not limited to this specific
mathematical form and that different forms will not have a
significant influence on the results as long as they satisfy the
aforementioned features of the force-velocity relation. Finally,
by combining the force-velocity relation with the graded actin
density, we conclude with a protrusion-density relation

U

Um

= 1 −
(

ρs

ρ

)w

for ρ > ρs, (1)

where ρs = 2T/fstall is the stall density below which the force
per filament exceeds fstall. Note that the stall density depends
on the membrane tension. Thus, crawling on a substrate
with different stiffness or adhesion strength, which affects
the membrane tension [31,32], alters the protrusion-density
relation, as illustrated in Fig. 3, and consequently changes the
lamellipodia dynamics.

B. Geometrical evolution

The graded normal velocity U (s) dictates the geometrical
evolution (shape) of the lamellipodium leading edge. We
mathematically describe the leading edge of the lamellipodium
by a planar curve evolving dynamically in a two-dimensional
space. This curve can be specified by the position vector �x(σ,t),
where t is time and σ is a spatial parameter. In particular, we
choose σ such that it is preserved (constant in time) along
the normal. It is convenient to express the dynamics of the
curve in terms of gauge invariant geometrical quantities such as
curvature κ and arclength s. These are related by the following
standard relations:

s(σ ) =
∫ σ

0

√
∂ �x
∂σ

· ∂ �x
∂σ

dσ ′, t̂ = ∂ �x
∂s

, κ = −n̂
∂2 �x
∂s2

, (2)

where t̂ and n̂ are the unit tangent and unit normal vectors,
respectively. With the aid of standard tools from differential
calculus and complex analysis, it can be shown that the
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evolution of the curve shape κ(s,t) is governed by the equation
[33]

∂κ

∂t
= −

(
κ2 + ∂2

∂s2

)
U − ∂κ

∂s

∫ s

0
κU ds ′. (3)

Further details are provided in Appendix. Plugging relation (1)
into (3) yields the governing equation for the geometrical
evolution of the leading edge as a function of the graded actin
density.

C. Actin density

The actin network is a dynamic structure that constantly
remodels. This remodeling is executed by numerous proteins
that are engaged in a range of biochemical events and cascades.
For example, transmembrane proteins, such as G protein
coupled receptors, recruit actin-associated proteins (AAPs)
and activate other signaling molecules near the membrane.
The Arp2/3 complex is an AAP responsible for forming new
branches from mother filaments [34]. The Arp2/3 alone is
inactive; members of the Wiskott-Aldrich syndrome protein
family are required for Arp2/3 activity [35]. Other AAPs
mediate actin polymerization, capping, bundling, and more.
Here we adopt a simplified view of these processes by
considering a coarse grained description of the main three
mechanisms underlying the remodeling of the actin network
[4], namely, polymerization, branching, and capping. We
assume that these processes take place mainly along the
leading edge, that the events of branching and capping are
proportional to the local actin density through rate constants
cb and cc, respectively, and that capped filaments lag behind
the leading edge. These assumptions lead to the following
equation for the local actin density along the leading edge:

∂ρ(s,t)

∂t
+ ∂

∂s
(ρV ) = Cρ. (4)

Here the left-hand side is an advection equation representing
the conservation of ρ for C = 0. The right-hand side adds
a source term where C = cb − cc is the effective branching-
capping rate constant. The actin network is organized in a
dendritic array. The 70◦ branches mediated by the Arp2/3
complex, in conjunction with evolution and selection, lead to a
locally symmetric distribution of filaments orientation around
the normal with significant peeks at ±35◦ [35]. Consequently,
the actin network effectively propagates in the direction normal
to the leading edge [36]. This means that the growing actin
network slides laterally along the leading edge, as illustrated
in Fig. 4. This is accounted for in (4) by the lateral velocity
V = (∂S/∂t)|σ , which can be expressed in terms of the leading
edge curvature [37,38], i.e.,

V =
∫ s

0
κU ds ′. (5)

See Appendix A for further details.

III. RESULTS

Equations (3) and (4) formulate a set of nonlinear integro-
partial-differential equations for the evolution of the leading
edge geometry κ and for the actin density ρ. These equations
are coupled through the protrusion velocity U (ρ) and the

FIG. 4. (Color online) Schematic illustration of the leading edge
geometry for two different times separated by dt (exaggerated). Blue,
red, and dark arrows represent the normal velocity U , the lateral
velocity V , and the velocity at constant s, ∂ �x/∂t . At steady state the
black arrows are parallel and indicate the direction of propagation.
This is not the case in general (see the inset). For clarity, only part of
the leading edge is shown.

lateral velocity V (κ). This two-way coupling between the
equations forms the closed loop shown in Fig. 2. Next we
calculate steady-state solutions of this system.

A. Steady-state configurations

In their pioneering work, Lee et al. [36] performed careful
experiments that indicated that the persistent gliding motion of
fish epidermal keratocytes is achieved by a graded protrusion
velocity of the actin network in the direction normal to the
leading edge. In addition they have shown that this graded
radial extension (GRE) behavior results in a normal velocity
that satisfies the relation U = U0 cos θ , where U0 is the cell
crawling speed and θ is the angle between the crawling
direction and the normal (see Fig. 4). This intriguing behavior
is indeed reflected by our model since the shape equation (3) is
identically satisfied by the aforementioned velocity field of the
GRE behavior. In addition, it is easy to show that the lateral
velocity (5) simplifies to V = U0 sin θ in this case. Setting
s = 0 at the center of the lamellipodium leading edge and using
the symmetry there, we calculate the steady-state solutions of
(3) and (4). These are illustrated in Fig. 5. Note that the only
free parameter in these equations is C, which we estimate as
7.6 ms−1 by fitting to the quantitative measurements of [4].

Once the steady-state configurations are calculated, it
is possible to proceed along the lines of the experimental
investigation of Keren et al. [4], i.e., study relations between
some key migration features. These include the aspect ratio,

FIG. 5. (Color online) Steady-state configurations: (a) shape of
the leading edge and (b) distribution of actin density along the
leading edge. Crawling velocity is indicated by the color of the curve,
where slower (faster) crawling velocities are lighter (darker). Due to
symmetry, only the right half of the leading edge is shown.
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actin ratio, front radius, speed, and area. The aspect ratio
measures the ratio between the width and the length of the
lamellipodia, which in terms of our model parameters equals
|x(L)/y(L)|. The actin ratio describes the ratio between the
actin concentration at the center of the leading edge and the
end of the leading edge, i.e., ρ(0)/ρ(L). The front radius
is the radius of curvature at the center of the leading edge,
which is simply 1/κ(0). The crawling speed is U0. Finally,
the area describes the area occupied by the whole cell. Since
we have only investigated the lamellipodia leading edge our
model cannot provide this information. In order to connect
this feature to our model, we assume that the cell area is
proportional to the area enclosed by the lamellipodia, which
is

∫ L

0 [y − y(L)] cos θ ds. Following [4], we calculate how
each of these features varies between stable steady-state
configurations and find that all aforementioned features are
positively correlated (see Appendix C for further details). This
is in complete agreement with the experimental observations
of [4].

B. Stability

We now turn to study the stability of these steady-state
configurations. We call a steady-state configuration stable if it
is not sensitive to small perturbations. Accordingly, we call a
steady-state configuration unstable if it is possible to introduce
a small perturbation such that the system will not return to the
original steady state. Unfortunately, analytical linear stability
analysis is not possible in this case. The reason is the coupling
between the two state functions (κ and ρ) through nonlocal
(integral) terms. It is possible to prove, analytically, that each
of these state functions is independently stable with respect to
any steady-state solution. In other words, if shape is prescribed
(enforced), steady-state solutions of ρ are stable. Also, if ρ is
prescribed (enforced), steady-state solutions of κ are stable.
These findings have no guarantee for stability of the full
(coupled) problem. Indeed, we prove by numerical analysis
that some steady-state solutions of the coupled problem are
unstable.

The stability of the steady-state configurations is studied nu-
merically by simulating the dynamics of the system, using (3)
and (4), after introducing a wide range of small perturbations
to the steady-state configuration (see Appendix B for further
details). We find that there exists a critical migration velocity
above which the persistent gliding motion is unstable. In other
words, it is possible to distinguish between stable and unstable
steady states by their crawling velocity. Specifically, steady-
state configurations with U0 < 0.84Um are stable, while fast
configurations with U0 > 0.84Um are unstable.

Finally, we note that our simulations impose a constant
value of ρ at the end of the leading edge, in accordance with
experimental observations [3,4,6]. The biological meaning of
this boundary condition is that at the rear sides of the leading
edge, where large adhesions are located, the cell maintains a
constant density of the actin network. The exact mechanism
responsible for this is still unknown [4] and it is evident that
the actin density at the end of the leading edge is not exactly
constant, but subjected to disturbances. In order to understand
the consequences of such disturbances, we study the dynamic
response of steady-state configurations subjected to random

FIG. 6. (Color online) Comparison between the dynamic re-
sponse (leading edge geometry at different times) of two stable
steady-state configurations subjected to random fluctuations in the
actin density at the end of the leading edge: (a) U0 = 0.2Um and
(b) U0 = 0.6Um. The maximum magnitude of density fluctuations is
ρ/ρs = 0.2, with a correlation length of 10 s.

fluctuations in the boundary condition of ρ. Our numerical
simulations show that, in slower cells, the fluctuations in ρ at
the end of the lamellipodium lead to significant variations
of the curvature, considerable front roughness, and large
fluctuations in shape, as illustrated in Fig. 6. Moreover, these
disturbances in actin density at the ends introduce what appears
like traveling waves in the leading edge shape. These waves
initiate at the end of the leading edge and gradually die
out while advancing towards the center of the leading edge
(see Fig. 7).

IV. DISCUSSION

The stable steady-state configurations obtained by our
theoretical model (see Fig. 5) suggest that the crawling speed,
front radius, lamellipodium length, aspect ratio of the leading
edge, and actin center-to-side ratio are all positively correlated.
This is in agreement with quantitative measurements of

FIG. 7. (Color online) Geometry of the leading edge (only the
right half is shown) at different times when subjected to random
fluctuations in the actin density at the end of the leading edge:
U0 = 0.2Um, with a simulation length of 40 s.
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migration and morphological features in a large number of
live fish keratocyte cells [4]. We note that the large dispersion
in aspect ratio as a function of migration velocity observed
in experiments is a consequence of the significant biological
variability between cells. This is in accordance with our model
predictions (e.g., by changing branching and capping rates
associated with proteins concentration) and with the results
of [23]. Still, experiments indicate that the migration features
of an individual cell (or cell fragment) are altered by changing
the substrate properties, as discussed next. These experiments
show that there is a direct and monotonic relation between
the cells aspect ratio and crawling velocity, as long as the
cell maintains a persistent (stable) gliding motion. We also
note that once the motion of the cell becomes unstable with
nonpersistent shape, the aforementioned correlations do not
necessarily hold.

Our model does not include adhesion explicitly, i.e., there
is no parameter in the model that represents adhesion. Still,
the model accounts for adhesion indirectly, as illustrated
in Fig. 2, through membrane tension. Membrane tension
arises mainly from the coordination between adhesion to the
substrate and the forces generated by the motility machinery
pushing the membrane from within the cell. Thus, generally
speaking, higher adhesion leads to an increase in membrane
tension [31,32,39]. This approach puts aside the details of the
adhesion process. In contrast, it significantly simplifies the
model and enables important insights regarding the effects of
membrane tension on the lamellipodia dynamics. These effects
can be qualitatively compared with experiments that study
how substrate adhesion influences lamellipodia dynamics.
In terms of our model parameters, membrane tension (or
alternatively adhesion) increases the stall density ρs . This
means that the nondimensional density ρ/ρs at the rear end of
the lamellipodium decreases, resulting in a different steady-
state configuration. From Fig. 5 it is evident that membrane
tension (through ρ/ρs at the rear end) has a monotone effect
on the migration velocity associated with the steady-state
configuration, where lower tension results in a higher steady-
state velocity. Consequently, membrane tension has a biphasic
effect on the lamellipodium length and the aspect ratio; these
increase between low and intermediate membrane tension and
decrease between intermediate and high membrane tension.
These results agree well with experimental observations [5].
Further, our analysis indicates that configurations associated
with low adhesion strength (i.e., low membrane tension) are
unstable. This feature is indeed observed in experiments [5].
We note that the current model does not account for the
existence of retrograde flow of the actin network. Thus our
calculated velocity is not the actual crawling velocity, but the
actin polymerization rate. Still, experimental data indicate that
the retrograde flow is not significant when crawling on surfaces
with high or intermediate adhesion strength [5]. This may
not be the case on surfaces with low adhesion strength. Thus
our model provides a very good platform for understanding
the large-scale dynamics of lamellipodia moving on substrates
with intermediate-to-high adhesion strength. Importantly, even
on low adhesion substrates where the competency of our
model to predict the actual migration speed is questionable,
it provides a very good approximation for the shape of the
leading edge and for the distribution of actin density along

the leading edge. Finally, in accordance with experimental
observations, our model predicts high front roughness and
traveling waves in the leading edge curvature in slow crawling
cells (i.e., with high adhesion strength) due to high sensitivity
to disturbances in the boundary conditions.

In summary, we developed a simple physical model that
captures the essence of lamellipodia dynamics and explains
the observed spectrum of epidermal fish keratocyte behavior.
Therefore, we learn that most morphological features and
migration characteristics observed in experiments are a direct
consequence of the closed feedback loop between shape
and actin density. Without closing this loop, steady-state
configurations would not be stable and the persistent gliding
motion crucial for the function of keratocyte cells could not
be achieved. We also find that the maximum speed of such
persistent gliding motion is limited by stability of this feedback
loop. We note that the current model is missing some important
ingredients such as direct account for adhesion and for myosin-
mediated contraction, graded distribution of proteins along the
leading edge, and the existence of a retrograde flow of the actin
network. These are expected to refine the results, but will not
alter the main insights provided here.

ACKNOWLEDGMENTS

We thank an anonymous referee for insightful comment on
the derivation of the geometrical evolution equation (3). This
derivation appears in Appendix A. This work was supported
by the Israel Science Foundation, Grant No. ISF 1500/10.

APPENDIX A: LATERAL VELOCITY

The shape equation (3) and the lateral velocity (5), which
appears in Eq. (4), are central equations to the model. In
particular, V describes the rate at which the actin network
moves laterally (slides) along the leading edge. We note
that Eq. (3) and expression (5) have already been obtained
elsewhere, e.g., [37,38]. We derive these equations here for
completeness, though by a different approach.

We begin by writing

∂κ

∂t
= −n̂ · ∂2

∂s2

(
∂ �x
∂t

∣∣∣∣
s

)
, (A1)

which immediately follows from (2). In the orthogonal gauge,
where ∂ �x

∂t
= Un̂, one can show that

∂ �x
∂t

∣∣∣∣
s

= ∂ �x
∂t

∣∣∣∣
σ

+ ∂ �x
∂σ

∂σ

∂t

∣∣∣∣
s

= Un̂ − ∂s

∂t

∣∣∣∣
σ

t̂ . (A2)

Above, relations ∂σ
∂t

|s = − 1√
g

∂s
∂t

|σ and (2) have been used for
the second equality. Using the definition of the lateral velocity
V = ∂s

∂t
|σ , we find by plugging (A2) into (A1) that

∂κ

∂t
= −V

∂k

∂s
+

(
κ2 − ∂2

∂s2

)
U − 2κ

∂V

∂s
. (A3)

Next, by direct differentiation of s(σ,t) = ∫ σ

0

√
g(σ ′,t)dσ ′

with respect to time and using some algebraic manipulations
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FIG. 8. (Color online) Deviation D(t) = ∫ L

0 |ρ − ρ∗|ds from
the steady-state solution ρ∗ as a function of U0 for perturbations
types (i)–(iv) in Eq. (B1). The graphs on the right are identical to
those on the left, but focused on the region 0.8Um � U0 � 0.9Um.
In each plot, the different lines correspond to a different time
t = 0,250,500,750,1000 s.

we obtain

V =
∫ s

0
Uκ ds ′. (A4)

Finally, inserting (A4) into (A3), we conclude with the shape
equation (3).

Next, we formally derive the left-hand side of Eq. (4). In
particular we formulate the conservation law for ρ assuming
C = 0. Recalling that the actin network effectively grows in
the normal direction, we write

d

dt

( ∫ s(σ2,t)

s(σ1,t)
ρ ds

)
= 0, (A5)

where σ1 and σ2 are arbitrary. Thus we have that∫ s(σ2,t)

s(σ1,t)

∂ρ

∂t
ds +

(
∂s(σ,t)

∂t
ρ

)∣∣∣∣
s(σ2,t)

s(σ1,t)

= 0 (A6)

and therefore ∫ s(σ2,t)

s(σ1,t)

(
∂ρ

∂t
+ ∂(ρV )

∂s

)
ds = 0, (A7)

where we have used the definition of the lateral velocity, i.e.,
V = ∂s(σ,t)

∂t
. Since the domain of integration is arbitrary, we

conclude with Eq. (4).

APPENDIX B: NUMERICAL STABILITY

We investigated the stability of steady-state configurations
numerically. To this end, we introduced a small perturbation
to the steady-state configuration and simulated the dynamics
of the system using Eqs. (3) and (4). This procedure enabled
us to identify unstable configurations. Also, by examining a
wide range of perturbations, we were able to provide strong
evidence for stability. Therefore, we have examined a wide
range of perturbations in shape and in actin density, which were
introduced to various steady-state configurations. We refer to a
steady-state configuration as stable if it is stable with respect to
all perturbations we have examined. Below we detail only the
perturbations we used in a systematic analysis involving the
entire range of steady-state configurations, which was used in
order to identify the critical velocity separating between stable
and unstable regions:

δρ = 0.1

(
1 − s

L

)
, δθ = 0.01

s

L
[perturbation (i)];

δρ = 0.1

(
1 − s

L

)
, δθ = −0.01

s

L
[perturbation (ii)];

δρ = 0.1 cos

(
1

2

πs

L

)
, δθ = −0.01 sin

(
1

2

πs

L

)
[perturbation (iii)];

δρ = 0.1cos2

(
1

2

πs

L

)
, δθ = −0.01 sin2

(
1

2

πs

L

)
[perturbation (iv)];

δρ = −0.1

(
1 − s

L

)1/2

, δθ = 0.1

(
s

L

)1/2

[perturbation (v)];

δρ = −0.1 cos

(
1

2

πs

L

)
, δθ = 0.1 sin

(
1

2

πs

L

)
[perturbation (vi)];
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δρ = −0.1 sin

(
5

2

πs

L

)
, δθ = 0.1 cos

(
5

2

πs

L

)
[perturbation (vii)];

δρ = −0.1

(
1 − s

L

)
, δθ = 0.1

(
s

L

)
[perturbation (viii)];

δρ = 0.1

(
1 − s

L

)
, δθ = 0.1

s

L
[perturbation (ix)]. (B1)

We emphasize that in addition to (B1) we have examined a
wide range of perturbations, including random perturbations in
ρ and θ . Importantly, all these simulations support the findings
of the systematic analysis performed with (B1). The systematic
analysis with perturbations (B1) indicates that steady-state
configurations associated with U0 < 0.84Um are stable, while
fast configurations with U0 > 0.84Um are unstable. This is
illustrated in Fig. 8, which presents the deviation from the
steady-state solution D(t) = ∫ L

0 |ρ − ρ∗|ds for perturbations
(i)–(iv) in (B1), where ρ∗ is the steady-state actin density.
Perturbations (v)–(ix) yield similar results (not shown). It is
seen that D is close to zero for steady-state configurations asso-
ciated with U0 < 0.84Um. In addition, D decreases with time
in this region. This means that the perturbations decrease to
zero and therefore these configurations are stable. In contrast,

the values of D are large and increasing with time for steady-
state configurations associated with U0 > 0.84Um. Therefore,
these steady-state configurations are not stable. We therefore
conclude that U0 � 0.84Um is a critical velocity that separates
between stable and unstable steady-state configurations.

APPENDIX C: RELATIONS BETWEEN
KEY MIGRATION FEATURES

Following [4], we calculate how each of key migration
features varies between stable steady-state configurations and
present graphs that describe the relations between each pair in
Fig. 9. All graphs show a positive slope, indicating a positive
correlation between each pair’s features. This is in complete
agreement with the experimental observations of [4].

FIG. 9. (Color online) Relation between pairs of motility features of stable steady-state configurations. Front radius, area, and speed are
measured in μm, μm2, and μm s−1, respectively. Aspect ratio and actin ratio are nondimensional quantities.
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