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Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes
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Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on
cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional,
and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war
states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well
as directional correlations between successive runs in bidirectional transport. We show, based on a study of the
direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion
of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by
two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors
haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor
processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly,
memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of
the tug-of-war model support our mathematical results and extend them to biologically relevant situations.
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I. INTRODUCTION

Motor proteins are enzymes that convert chemical energy
derived from hydrolysis of adenosine tri-phosphate (ATP) to
mechanical work. Dynein and kinesin are two such proteins
that perform directed motion on microtubules, in opposite
directions. While a complete understanding of the process
remains an open question, various plausible mechanisms
leading to the directed transport have been discussed in
the literature [1–12]. Motor-driven cargo transport on a
cytoskeletal network interests biologists and physicists alike
because of its relevance in understanding spatial organization
of various organelles inside eukaryotic cells and because of
the opportunities it provides for detailed quantitative model-
ing [13–17]. Although the primary purpose of molecular
motors would appear to be fast unidirectional transport, many
motor-driven cargoes on microtubule filaments are found to
move in bidirectional fashion [18,19]. While the tug-of-war
(TOW) model explains bidirectional transport as a natural
consequence of motors of opposite polarity (e.g., kinesin and
dynein) being simultaneously active and exerting forces on the
cargo [16,18,19], the regulated coordination model presumes
the presence of a coordinating complex in the cargo, which
permits only one set of motors to be active at any point of time.

A typical bidirectional cargo is hauled by several motors of
opposite directionality, and would have a definite drift towards
the plus or minus end of the filament. A characteristic trajectory
of bidirectional cargo hauled by five dyneins and a kinesin,
generated in our simulations is shown in Fig. 1(a) (see Ref. [20]
for details). Such a motion may be visualized as a biased
random walk [21], with unidirectional runs separated by pause
states. In a recent in vitro experimental study, the presence of
memory in bidirectional motion was observed [22], wherein
a bidirectional cargo stalled by an optical trap while moving
was found to move preferentially in the prestall direction after
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detachment from the filament under the influence of the trap.
While a detailed study of this experiment is outside the scope
of the present paper, it is pertinent to ask: is motor protein-
powered bidirectional organelle transport a Markovian random
walk?

In the present paper, we study the history dependence
of bidirectional cargo motion powered by molecular motors
within the framework of the stochastic TOW model. Our
rigorous mathematical calculations, supported by stochastic
simulations, show that bidirectional motor-mediated transport
is a non-Markovian random walk, characterized by multiex-
ponential waiting time distributions. Interestingly, a recent
theoretical work [23] has studied the effects of preassigned
memory in transition rates on bidirectional cargo transport,
but does not discuss its origins. By contrast, our work shows
explicitly how memory emerges as a consequence of the
degeneracy of the states of motion of the cargo, when hauled by
multiple motor teams. We also find that correlation between
run directions is likely to extend to several TOW events in
typical experimental situations.

Several examples of persistent (correlated) random walks
are known in biology, e.g., bacterial chemotaxis [24] and loco-
motion of slime mold amoeba D. discoideum [25]. However,
typically in such cases, the underlying mechanism behind
persistence of direction is not precisely known. Bidirectional
cargo transport by molecular motors, on the other hand, can
be reconstituted in vitro and the number of cargo-bound
motors estimated using an optical trap; therefore, it is a
much more controllable system compared to the previous
examples. Further, the underlying fundamental processes
(binding and unbinding of individual motors) are Markovian,
and therefore, the present system constitutes a fine illustration
of how apparent non-Markovian behavior emerges from purely
Markovian state transitions underneath.

II. MODEL AND FORMALISM

The stochastic TOW model [16], assumes a fixed number
of minus-moving dyneins (D) and plus-moving kinesins (K)
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FIG. 1. (Color online) (a) A typical trajectory of a bidirectionally
moving cargo, as generated in our simulations (see Ref. [20] for
details). (b) State representation of a cargo driven by a dynein and a
kinesin, two dyneins and a kinesin. Here, motility states of the cargo
are nondegenerate in the first case, but degenerate in the second.

on a cargo. Each motor on the cargo binds to and unbinds
from the microtubule stochastically with rates π± and ε±
respectively, with + subscript for kinesin and − for dynein,
while it is assumed that the motors always remain bound to the
cargo. When opposite-polarity motors engage simultaneously
with the track, each filament-bound motor exerts force on
the cargo in their respective direction, resulting in a net
force on the cargo in one of the directions. This net force
experienced by both sets of motors is called load and is
generally assumed to be shared equally among all the motors
that move in same direction. It is now well established that
the detachment rates ε± depend on the load per motor, while
the attachment rates are generally found to be independent of
load. Based on Kramers rate theory, it is generally assumed
that this load dependence of detachment rates is exponential,
i.e., ε±(f ) = ε±(0) exp(f/f d

±), where f d
± is usually called the

detachment force and f is the load per motor. However, recent
investigations [20,26,27] have shown that the load dependence
of the dissociation rate of dynein (but not kinesin [27]) deviates
significantly from exponential behavior in the superstall
regime. Therefore, we adopt the exponential load dependence
for kinesin’s detachment rate, whereas for dynein, we assume
exponential dependence up to the stall force, beyond which the
rate is insensitive to load [20]. This model is roughly consistent
with in vitro experimental observations [26], and has been
attributed to a catch-bond situation in the motor-filament
interaction [26]. Further details of the model, especially
regarding its implementation in numerical simulations may
be found in [16], as well as our earlier paper [20].

The load dependence of the detachment rates significantly
affects the properties of bidirectional cargo motion, and
is a necessary feature in the model so as to reproduce
experimentally observed features of the saltatory motion of
cargoes, e.g., lipid droplets in Drosophila [16]. Nevertheless,
it turns out from our study that it is not crucial to understand the
origin of memory in bidirectional transport. For this reason, we
first develop our formalism with load-independent detachment
rates and include load dependence in numerical simulations
in the later stages, where we study biologically relevant
situations. As it turns out, load dependence of the motor
detachment rate introduces only a quantitative modification
of the parameters of interest in this context.

In the stochastic TOW model, with the elapse of time, the
number d(k) of actively hauling dyneins (kinesins) changes,
such that 0 � d � D and 0 � k � K . It may be noted that for

a given source state (d,k) of the cargo, there are between two to
four possible target states: (d,k ± 1) and (d ± 1,k), subject to
the bounds above. Consequently, the cargo switches between
different states: plus-moving state(s) when only kinesins are
active, minus-moving state(s) when only dyneins are active,
TOW state(s) when both kind of motors are active together,
and finally, the detached state when all the motors are inactive
on the cargo [14–17]. In Fig. 1(b) corresponding motility states
of cargo are shown for two simple cases (D = 1,K = 1) and
(D = 2,K = 1). We should notice that when two dyneins and a
kinesin are hauling a cargo, both minus-run (m1 and m2) and
TOW state (τ1 and τ2) become degenerate. In general, both run
and pause states of the cargo become degenerate when more
than one motor is used in one or either directions.

Let m = {mi} represent the set of all minus-moving states of
the cargo, p = {pi} represent all plus-moving states, τ = {τi}
represent all TOW states, and {o} represent the completely
detached state. Let φ(m,τ |p) be the probability that a cargo in
plus run enters a TOW (without detaching from the filament)
and then switches direction, with unspecified durations spent in
plus run and TOW; this may hence be defined as the direction-
reversal probability for the plus state, while φ(p,τ |m) gives
the same for the minus state. Then, direction-preserving
probabilities are given by the normalization conditions

φ(p,τ |p) + φ(m,τ |p) = 1 = φ(m,τ |m) + φ(p,τ |m). (1)

Given these probabilities, we define the memory parame-
ter [28]

μ ≡ φ(p,τ |p) − φ(p,τ |m) = φ(m,τ |m) − φ(m,τ |p), (2)

such that μ = 0 means no memory, while μ �= 0 means that
the probability of finding the cargo in a certain run state is
dependent on its run direction preceding the TOW. Memory of
direction, as defined above, is distinct from a possible overall
bias in the motion of cargo towards plus or minus directions.
The bias parameter may be defined as

ν ≡ γp − γm, (3)

where γp = �iγpi
and γm = �iγmi

give the probabilities for
a TOW to terminate in plus and minus run, respectively.
Intuitively, it appears likely that memory must affect the bias
in transport, however no general relation between the two is
known, to the best of our knowledge. Nevertheless, it can be
shown that if the probability of cargo dissociating completely
from a microtubule is very small, ν � η/(1 − μ) [see Eq. (15)
later, and also Appendix B], where we define

η ≡ φ(p,τ |p) − φ(m,τ |m), (4)

as the asymmetry coefficient in the transport. In the present
problem, however, there is a nonzero probability for the cargo
to completely detach from the filament, and therefore the above
relation holds only in situations where this can be neglected.

If the plus and minus run lengths are constants and have the
same value, then ν alone determines the average direction
of motion of the cargo, i.e., the sign of the drift velocity
vd ≡ limt→∞ t−1〈x〉. This is a standard assumption in most
mathematical studies of the persistent random walk, but is
unrealistic in our case, as the plus and minus run durations
are strongly dependent on the binding and unbinding rates of
the motors [20], which also determine μ and ν. In the present
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paper, we focus on memory, bias, and directional correlations
as appropriate to a random-walk-like picture of the motion; a
complete characterization of bidirectional motion also requires
identification of the different regimes of transport as well as a
detailed study of drift and diffusion coefficients of the walk.
These issues are a topic for future research.

We now develop the mathematical formalism required to
derive explicit expressions for the memory parameter. From a
state α of a cargo, the probability of transition to another state
β at a time between t and t + dt is Fαβ(t)dt = rαβψα(t)dt ,
where rαβ is the (constant) rate for the α → β transition
and ψα(t) = e−t

∑
β rαβ is the survival probability, defined as

the probability for the cargo to stay in state α during the
interval [0 : t]. Because the active/inactive configuration of
cargo-bound motors determines the state α, ψα(t) can be
expressed in terms of survival probability of a motor in active
state, i.e., e−ε±t and inactive state, i.e., e−π±t , on the cargo. The
probability of the transition is (β|α; t) = ∫ t

0 Fαβ(τ )dτ , and
its steady-state limit (β|α; t → ∞) ≡ (β|α), is a two-point
Green’s function (bare propagator), which is fundamental to
our analysis. One may, similarly, define a three-point Green’s
function (γ,β|α; t) in the problem, i.e., the probability for
the system to trace a certain a history of states (α,β,γ ) during a
time interval [0 : t], having started from α at t = 0. Given the
Markovian nature of the underlying process, this probability is
expressed in the form of a convolution in time: (γ,β|α; t) =∫ t

0 dτ1Fαβ(τ1)
∫ t−τ1

0 dτ2Fβγ (τ2). It follows that, in the long
time limit, the steady-state probability (γ,β|α; t → ∞) ≡
(γ,β|α) is expressed as the product:

(γ,β|α) = (γ |β)(β|α). (5)

It is now important to define a set of generalized two-point
Green’s functions G(β|α), which, for ease of distinction, we
shall refer to as dressed propagators. The difference between
the bare and dressed propagators may be explained with an
example: whereas (τj |mi) is the probability for the cargo
to be in a TOW state τj , after having spent an unspecified
duration of time in the minus-moving state mi (with no other
state transitions in between), G(τj |mi) includes an indefinite
number of cyclic transitions between the various (degenerate)
{mi} states, but fixed initial and final states mi and τj . From
both types of propagators, higher-order Green’s functions may
be constructed using Eq. (5); see examples below.

III. MEMORY IN CARGO TRANSPORT

A. Exact results

Case (i). D = 1, K = 1. Figure 1(b) (panel 1) shows a
list of four possible states of cargo (o,p1,m1, and τ1), when
it is driven by a kinesin and a dynein. The correspond-
ing survival probabilities are ψm1 (t) = e−(ε−+π+)t ,ψp1 (t) =
e−(ε++π−)t ,ψτ1 (t) = e−t�ε , and ψo(t) = e−t�π respectively,
where, for later convenience, we have introduced the compact
notations �ε ≡ ε+ + ε− and �π ≡ π+ + π−. The two-point
Green’s functions immediately follow:

(τ1|m1) = π+
π+ + ε−

; (τ1|p1) = π−
π− + ε+

;

(6)
(m1|τ1) = ε+

�ε

= 1 − (p1|τ1).

The direction reversal of plus run through a TOW corresponds
to the transition path p1 → τ1 → m1 while that of minus run
corresponds to the path m1 → τ1 → p1, with (m1,τ1|p1)
and (p1,τ1|m1) being the respective three-point Green’s
functions representing the processes. On the other hand, p1 →
τ1 → p1 and m1 → τ1 → m1 paths correspond to direction-
preserving transitions through a TOW of a plus and minus
run respectively [with Green’s functions (p1,τ1|p1) and
(m1,τ1|m1)]. It is convenient to normalize the three-point
functions as below:

φ(m,τ |p) = (m1,τ1|p1)∑
α (α,τ1|p1)

;

(7)
φ(p,τ |m) = (p1,τ1|m1)∑

α (α,τ1|m1)
,

where α = {p1,m1}. After carrying out the required calcula-
tions using Eqs. (5)–(7) we find that

φ(p,τ |p) = ε−
�ε

= φ(p,τ |m), (8)

and by normalization [Eq. (1)] we can write φ(m,τ |m) =
φ(m,τ |p). Therefore, by definition cargo motion is memo-
ryless (μ = 0) and hence, the random walk exhibited by a
cargo driven by a dynein and a kinesin is Markovian. Note,
however, that if ε− < ε+, η < 0 then cargo is biased towards
the minus direction, on the other hand if ε− > ε+, then η > 0,

so cargo is biased towards the plus direction locally.
Case (ii). D = 2, K = 1. As shown in Fig. 1(b)

(panel 2), cargo driven by two dyneins and a kinesin
has two minus-moving states (m1 and m2), two TOW
states (τ1 and τ2), a single plus-moving state (p1), and a
detached state (o). The corresponding survival probabilities
are ψm1 (t) = e−(ε−+�π )t ,ψm2 (t) = e−(2ε−+π+)t ,ψτ1 (t) =
e−(π−+�ε )t ,ψτ2 (t) = e−(ε−+�ε )t ,ψp1 (t) = e−(ε++2π−)t , and
ψo(t) = e−(π−+�π )t . From these probabilities, and with the
identification of the relevant rates, the bare propagators follow:

(m2|m1) = π−
ε− + �π

; (τ1|m1) = π+
ε− + �π

;

(m1|m2) = 2ε−
2ε− + π+

= 1 − (τ2|m2);

(τ2|τ1) = π−
π− + �ε

; (m1|τ1) = ε+
π− + �ε

; (9)

(p1|τ1) = ε−
π− + �ε

; (τ1|p1) = 2π−
ε+ + 2π−

;

(m2|τ2) = ε+
ε− + �ε

= 1 − (τ1|τ2).

However, because of the possibility of cyclic transitions
between degenerate states, in the present case, the dressed
propagators G(β|α) are more useful, which are related to their
bare counterparts through equations analogous to Dyson’s
equation in quantum field theory. For example, it is easily seen
that for j = 1,2, G(τj |mj ) = (τj |mj )(1 + �m + �2

m + · · ·),
where �m = (m1|m2)(m2|m1) is the probability for the
cyclic transition m1 → m2 → m1. We may similarly
define �τ = (τ1|τ2)(τ2|τ1) as the probability for the
τ1 → τ2 → τ1 cyclic transition. The complete set of such
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relations are given below:

G(τj |mj ) = (τj |mj )

1 − �m

; G(τi |mj ) = (τi |mi)(mi |mj )

1 − �m

;

G(mj |τj ) = (mj |τj )

1 − �τ

; G(mi |τj ) = (mi |τi)(τi |τj )

1 − �τ

;

G(p1|τ1) = (p1|τ1)

1 − �τ

; G(p1|τ2) = (p1|τ1)(τ1|τ2)

1 − �τ

,

(10)

where i,j = 1,2 and i �= j . However, G(τ1|p1) = (τ1|p1)
while G(τ2|p1) = 0 (a slightly different, and alternative
method for computing the propagators is described in Ap-
pendix A).

The complete set of (dressed) three-point Green’s functions
are then constructed from these propagators as G(γ,β|α) =
G(γ |β)G(β|α), following Eq. (5). It is then easily seen that the
direction-reversal probabilities for the plus and minus states
are given by

φ(m,τ |p) =
∑

� G(m�,τ1|p1)∑
� G(m�,τ1|p1) + G(p1,τ1|p1)

, (11)

φ(p,τ |m) =
∑

i,j γmi
G(p1,τj |mi)∑

i γmi

[∑
j G(p1,τj |mi) + ∑

j,� G(m�,τj |mi)
] , (12)

where all the indices i,j,� = 1,2 and γmi
is the probability to find the system in state mi after TOW. It is convenient to define the

ratios ηi = γmi
/γp1 , where γp1 = 1 − ∑

i=1,2 γmi
is the probability to be in the plus-moving state after a TOW. The coefficients

ηi are now determined using the self-consistency conditions
∑

i,j

ηiG(m�,τj |mi) + G(m�,τ1|p1) = η�; � = 1,2. (13)

Equations (11) and (12) reduce to Eq. (7) when there is no degeneracy in the m and τ states. The direction-preserving
probabilities are then found from normalization [Eq. (1)]. Using Eqs. (9)–(13), we obtain the following explicit expressions for
φ(p,τ |p) and φ(p,τ |m), analogous to Eq. (8):

φ(p,τ |p) = ε−(ε+ + 2ε−)

ε2+ + (3ε− + π−)ε+ + 2ε2−
,

(14)

φ(p,τ |m) = 2ε2
−[(ε+ + 2ε− + π−)(ε+ + π+ + 2ε− + π−) + ε−π−]

[(2ε− + π−)(ε+ + π+ + 2ε− + π−) + ε−π−][ε2+ + (3ε− + π−)ε+ + 2ε2−]
.

Clearly, μ is nonzero in this case, indicating that the random
walk is non-Markovian in nature. Here, although the survival
probability in each individual motor state is an exponentially
decaying function, the survival probability of the cargo in
minus run or TOW is modified by internal transitions between
degenerate states (m1 and m2 or τ1 and τ2). By constructing
the master equation for these degenerate states, one can show
that the waiting time distribution in minus run/TOW is a
multiexponential function [29]. This is similar to the recent
discovery of non-Markovian behavior in enzyme kinetics
characterized by multiexponential waiting time distributions,
when more than one enzyme is present in the system [30].
Because memory originates from degeneracy of states, it is
natural to expect that μ will be nonzero in the more general
K > 1,D > 1 cases also.

B. Numerical simulations

To support our mathematical results, to explore higher
values of D and K , and to consider the effects of load
dependence of detachment rates, we next performed numerical
simulations using a Gillespie algorithm [31] for several cases
of multiple motor transport (D � 20,K � 2). For details of
the simulations including the fixing of binding and unbinding

rates and determination of the velocity of cargo motion, the
reader is referred to our earlier paper [20].

Memory with load-independent detachment rates. For the
(D = 2,K = 1) and (D = 5,K = 1) cases, μ is plotted as a
function of the dynein unbinding rate ε− and the binding rate
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- (s  ) (s  )-1-1  π -

FIG. 2. (Color online) Nonzero value of μ when it is plotted
as a function of (a) the unbinding rate ε− and (b) the binding
rate π− of dynein shows the presence of memory in the cargo
transport. The dashed line represents the theoretical curve for the
(D = 2,K = 1) case [Eq. (14)] while the symbols are numerical
results for the (D = 2,K = 1) and (D = 5,K = 1) cases. The
parameters π+ = 0.904 s−1,ε+ = 0.314 s−1, and π− = 2.74 s−1 in
(a) and ε− = 0.667 s−1 in (b) are fixed using in vitro experimental
data given in Table I.
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FIG. 3. (Color online) Memory parameter (μ) as a function of
number of dyneins is plotted in (a) with load-independent and in
(b) with load-dependent detachment rates for motors. In both cases,
the memory appears to vanish for very large and very small numbers
of bound dyneins. But μ is twofold larger when detachment rates are
load dependent (details in text).

π− in Figs. 2(a) and 2(b) respectively. For large and very small
values of ε− or π−, the cargo stays mostly in one of the extreme
degenerate states thereby reducing the effect of degeneracy and
hence, the memory is smaller. For intermediate values, on the
other hand, the transitions between the degenerate states of
minus run or TOW are much more frequent, and this leads to
maximization of memory.

To investigate the memory effect more extensively, we
studied the memory parameter as a function of the motor
numbers [see Fig. 3(a)], keeping the binding/unbinding rates
of dynein and kinesin at fixed values, which are given in
Table I. An increase in the number of dyneins increases the
number of degenerate states and hence μ increases initially.

TABLE I. List of single-molecule parameters extracted from a
previous in vitro study [32]. A detailed discussion is to be found in
Ref. [20]. However, other studies have reported different binding and
unbinding rates for dynein and kinesin [22,27,33–39].

Molecular motor ε±(s−1) π±(s−1) f d
±(pN )

Kinesin(+) 0.314 0.904 5.169
Dynein(−) 0.667 2.740 0.546
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FIG. 4. (Color online) Direction-reversal and direction-
preserving probabilities of cargo as a function of number of dyneins,
with K = 1 is shown here, when detachment rates of motors are
assumed to be load independent (a) and load dependent (b). In (b),
inside the box, for D = 6,7 and 8, general persistence of direction is
observed, i.e., both plus- and minus-directed cargoes are more likely
to continue moving in the same direction after a TOW.

However, for a large number of bound dyneins, the central
limit theorem comes into play, and the cargo is now found
with overwhelmingly large probability in one of the degenerate
states, corresponding to the average number of bound motors.
Therefore, the effective number of degenerate states is now
smaller, leading to a reduction in μ.

Memory with load-dependent detachment rates. We will
now address the question of how the load dependence of
detachment rates of the motors affects the memory parameter.
Simulations show that, here, the dependence of μ on the
number of dyneins [see Fig. 3(b)] is qualitatively the same
as in the load-independent case studied in Sec. III B. However,
for the present choice of parameters, the memory parameter is
almost twofold larger while the maximum is shifted to larger
dynein numbers.

In Figs. 4(a) and 4(b), we have plotted the direction-
reversal and direction-preserving probabilities individually, as
a function of the number of dyneins D, and fixing K = 1.
For D = 6,7 and 8 [Fig. 4(b), inside the box], both plus- and
minus-directed cargoes are more likely to continue moving
in the same direction after a TOW, i.e., φ(p,τ |p) > φ(m,τ |p)
and φ(m,τ |m) > φ(p,τ |m), therefore the bidirectional motion
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becomes a persistent random walk. Persistence in cargo motion
was observed in the experiments of Leidel et al. [22] suggesting
the presence of memory in transport; however the reasons
are likely to be different because of the presence of the
trap.

Bias in cargo transport. Local preference towards one of the
directions after a TOW is quantified by the difference between
the probability that the TOW terminates in plus and minus
directions and is characterized by the bias parameter ν, defined
in Sec. II. An approximate relation can be shown to exist
between the bias ν, memory parameter μ and the coefficient
of asymmetry η, under conditions where the probability of
complete detachment of the cargo from the filament is small.
This is derived in Appendix B (for the special case D = 2,K =
1), and the final result is

ν � η

1 − μ
. (15)

Two features are noteworthy in the above expression: (i) the
bias has the same sign as the asymmetry coefficient and (ii) for
fixed η, the bias is enhanced by positive memory of direction
(μ > 0) and suppressed by negative memory (μ < 0).

Figure 5 shows ν, as defined in Eq. (3), computed using
the probabilities γp and γm measured in simulations, plotted
as a function of the number of dyneins, when detachment rates
of motors are assumed to be load independent (a) and load
dependent (b). Not surprisingly, an increase in the number
of attached dyneins, with fixed number of kinesins, leads
to eventual reversal in the sign of the bias parameter from
plus to minus; with load dependence of detachment rates, this
reversal occurs at higher dynein numbers. A comparison with
the approximate expression in Eq. (15) is also shown in each
figure. Here, the values of η and μ are computed numerically
using the direction-reversal probabilities determined from
simulations. In both cases, the approximate relation in Eq. (15)
manages to capture the observed variation very well, and
it therefore appears that it is of general validity, beyond
the specific motor number combination for which it was
derived.

In the present context, is also important to note that a
nonzero bias is not necessary for net drift of the cargo in
one direction because the run durations can be different in
each direction. For example (under no-detachment conditions
for the cargo), in the (D = 1,K = 1) case, we find that
ν = (ε− − ε+)/(ε− + ε+) exactly, which is independent of the
binding rates π±. Therefore, when ε+ = ε−, the cargo shows
unbiased motion (ν = 0) whereas, from symmetry reasons, it
will clearly have nonzero average velocity (drift) if π+ �= π−.
In this case, although plus and minus directions are equally
favored after a TOW, the time durations spent by the cargo in
plus or minus run depend on π± [40], which in turn leads to
nonzero drift.

C. Correlation in run directions

A direct measure of correlations between the directions of
runs, separated by one or more TOW events, is the directional
correlation function C(n), which we define as follows:

C(n) = lim
i→∞

〈SiSi+n〉 − 〈Si〉〈Si+n〉〈
S2

i

〉 − 〈Si〉2
; n � 0, (16)

where Si = 1 if the cargo runs in the plus direction after the
ith TOW event, and Si = −1 if it runs in the minus direction.
The second term in the numerator takes out the effect of the
bias, and the denominator is a normalization factor, introduced
such that C(0) = 1. The directional correlation function is
analogous to the standard velocity autocorrelation function,
but with certain important differences. A detailed treatment of
the latter is not the subject of this paper, but a brief discussion
is given in the supplemental material [29].

We now make a conjecture that the directional correlation
function decays exponentially with the number of TOWs, i.e.,
C(n) = ρn where 0 < ρ < 1 [41]. In Appendix C, we have
shown for the (D = 2,K = 1) case that, under conditions
where complete detachment of the cargo from the filament is
neglected, C(1) = μ exactly. However, this can be generalized
to other cases, i.e., (D � 2,K � 2) also. Therefore, under this
approximation, we arrive at the simple and interesting result
that ρ = μ, and hence

C(n) � μn = e− n
nc n � 0. (17)
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FIG. 5. (Color online) Symbols (black square and red plus) show
the directly measured bias parameter ν [Eq. (3)] as a function
of number of dyneins (a) without and (b) with load-dependent
detachment rates for motors, as measured in simulations. The lines
give the predicted values using Eq. (15), with η and μ measured
separately in simulations.
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TABLE II. The table shows the directional correlation func-
tion, defined in Eq. (16), as measured in simulations, compared
to the prediction of Eq. (17), when detachment rates of mo-
tors are load dependent. The μ values were separately found in
simulations [data plotted in Fig. 3(b)]. The reported values of
C(n) were obtained by averaging over 5 × 107 independent cargo
trajectories.

Motor configuration μ n C(n) (sim) Eq. (17)

1 0.000 41 0
(D = 1,K = 1) 0 2 0.000 03 0

3 −0.000 04 0
1 0.141 92 0.142 13

(D = 5,K = 1) 0.142 13 2 0.021 96 0.020 20
3 0.003 50 0.002 87
1 0.203 59 0.205 92

(D = 10,K = 1) 0.205 92 2 0.043 33 0.042 40
3 0.009 25 0.008 73
1 0.158 60 0.160 26

(D = 15,K = 1) 0.160 26 2 0.026 39 0.025 68
3 0.004 34 0.004 11
1 0.110 47 0.112 34

(D = 20,K = 1) 0.112 34 2 0.013 42 0.012 62
3 0.001 29 0.001 41

where nc = −(ln μ)−1 is the equivalent of a correlation time,
and gives the mean number of TOWs over which directional
correlation between runs persists. This is indeed an intuitively
pleasing relation as this clearly shows that the number of
TOWs over which the directional correlations are appreciable
increases with μ [for μ = 0, C(n) = 0 for all n � 1].

Table II gives a comparison between C(n) directly
measured in simulations versus the prediction in Eq. (17) for
1 � n � 3, and varying dynein numbers D (keeping K = 1).
It is clear that Eq. (17) approximates the simulation data
rather well.

IV. CONCLUSIONS AND DISCUSSION

Random walk models have found a large number of
applications in modeling various kinds of biological trans-
port phenomena (see, e.g., Ref. [42] for a review). The
bidirectional transport of cargoes like mitochondria, lipid
droplets, endosomes, phagosomes, etc., in eukaryotic cells
is also akin to a random walk on microtubule filaments. It
is clear that for functional reasons, this walk is likely to be
biased; certain cargoes need to be moved to the interior of the
cell, while certain others may need to be transported to the
outer cell membrane. The underlying molecular mechanisms
of bidirectional transport have been studied in a great deal
of detail, both experimentally and via biophysical modeling.
However, barring a few papers, much less attention has been
paid to the statistical properties of the walk itself, which
motivated us to undertake this study.

Our focus here was on understanding correlations between
successive run directions of a cargo moving bidirectionally, be-
ing transported by two opposing teams of kinesins and dyneins.
By studying a memory parameter constructed using direction-
reversal probabilities, we showed that memory in direction is

a generic property of this motion, which appears when at least
one team of motors has more than one member. TOW between
two single motors on either side, however, results in a biased
random walk of the cargo without memory. Interestingly, the
memory parameter is found to be a nonmonotonic function of
the number of motors and, for fixed binding/unbinding rates,
is maximized for a certain motor number. We also find that the
effective interaction between the opposing motor teams, which
emerges out of the load dependence of the individual unbinding
rates, enhances this memory. For one set of experimentally
measured binding and unbinding rates for dynein and kinesin
(in vitro studies using motor proteins from D. discoideum, see
Table I), we estimated that the correlation in run direction
could persist up to 2–3 TOW events for typical motor numbers
(in this case, the upper limit corresponds to 1–2 kinesins and
8–12 dyneins).

Correlated random walks with memory and persistence
have been the subject of a large number of mathematical
studies [28,43–48]. In the models studied in these papers,
at each instant, the walker takes a step of fixed size
in a certain direction, the probability for which depends
on one (usually) or more previous steps that have been
taken. It has been shown that, in one dimension, after
appropriate limiting procedures, the equation that describes
the asymptotic properties of such a walk is the teleg-
raphers equation [28,46], which reduces to (i) the stan-
dard diffusion equation in the long-time limit, and (ii) the
wave equation in the short-time limit. The demarcation of
these regimes is determined by the time scale over which
the steps remain correlated. The bidirectional transport model
studied in this paper clearly falls under the class of a correlated
random walk, but with some additional and unique features:
(i) the run duration, equivalent to the step size of the random
walk, is not a constant, but determined by binding and
unbinding rates of the motors; (ii) the TOW/pause state can
have a nonzero velocity (but small compared to run states)
depending on the number of opposing motors; and (iii) the
cargo may detach as a whole from the filament, which rules
out steady-state behavior of the Green’s functions, even in the
long-time limit. It would be interesting to see if a continuum
equation, analogous to the telegraphers equation, could be
constructed for the present problem in the long-time limit,
taking into account these modifications, and to study its
properties. It is also pertinent to note that given the finite
size of the cell, the biologically relevant time regime need
not necessarily be the long-time limit mentioned above, but
could be the memory-dominated short-time limit. If this is
true, the presence of multiple motors in a team could function
as a mechanism to provide a semideterministic character to
the cargo motion. The implications of this conjecture, as well
as its systematic verification remain to be done and are among
our future goals.

The mathematical and computational results in this paper
should be verifiable in experiments. Detailed time traces of
cargo trajectories in bidirectional motion have been obtained
from both in vitro and in vivo experiments [22,26,32,49]. By
analyzing such trajectories, it should be possible to measure
the memory parameter μ and correlate it with the number
of motors estimated by other means (e.g., optical trap stalls).
In in vivo situations, our results and methods may be found
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useful in the estimation of the number of motors involved in
the transport process. Above all, we believe that our study
will stimulate further interest in understanding the statistical
properties of bidirectional cargo motion.
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APPENDIX A: DERIVATION OF DRESSED PROPAGATORS
BY THE METHOD OF SPLITTING PROBABILITIES

The calculation of direction-reversal or direction-
preserving probabilities [φ(γ,β|α)] in this paper utilizes
the concept of dressed propagators G(β|α), which we had
constructed using the more fundamental bare propagators
(β|α). The dressed propagator G(β|α) includes infinite
cyclic transitions between degenerate α states ({αi}) of the
cargo, for given initial and final states. In the present formal-
ism, the modification of the bare propagators by these cyclic
transitions involved summing a geometric series. However, this
method is not unique; G(β|α) can be also determined using
a somewhat different method called the method of splitting
probabilities [50].

Let us consider a stochastic process with more than
one absorbing state. The splitting probability for a certain
absorbing state is defined as the probability that the system
reaches before reaching the others. In other words, it is the
transition probability to one of its absorbing states. As the
system has to be absorbed in one of these states in the long-time
limit, the sum of all splitting probabilities is equal to unity.

The bare propagators (β|α), defined in the (D = 1,K =
1) and (D = 2,K = 1) cases are indeed splitting probabilities
as they are the transition probabilities between a starting state
α and a final state β, the latter being treated temporarily as an
absorbing state. The dressed propagators G(β|α) defined in the
(D = 2,K = 1) case are higher-order splitting probabilities in
this sense, and can be constructed out of the bare propagators. It
is known that the splitting probabilities follow certain identity
relations [50], which are specific to each problem. Here,
we exploit this feature to determine the dressed propagators
G(β|α) for the case (D = 2,K = 1).

Let, {αi} = {mi} or {τi}, and {βi} = {mi} or {τi} such that
{αi} �= {βi}. Then, the splitting probabilities G(βj |αi) and
G(βj |αj ) (i,j = 1,2) can be easily seen to satisfy the identities

G(βj |αi) = (αj |αi)G(βj |αj ) i �= j, (A1)

G(βj |αj ) = (βj |αj ) + (αi |αj )G(βj |αi), (A2)

solving which, it follows that

G(βj |αi) = (αj |αi)(βj |αj )

1 − (αj |αi)(αi |αj )
i �= j, (A3)

G(βj |αj ) = (βj |αj )

1 − (αj |αi)(αi |αj )
, (A4)

which are seen to be identical to the relations in Eq. (10), for
all combinations of initial and final states.

APPENDIX B: RELATION BETWEEN MEMORY
AND BIAS PARAMETERS

Starting from the definition in Eq. (3), for a (D = 2,K =
1) system, we have ν = γp1 − ∑

� γm�
(� = 1,2). Using the

parameters η� defined in Sec. III A, we arrive at the following
relation:

ν = 1 − ∑
� η�

1 + ∑
� η�

. (B1)

From Eq. (13), we have
∑

�

η� =
∑

i,j,�

ηiG(m�,τj |mi) +
∑

�

G(m�,τ1|p1). (B2)

The following normalization conditions clearly apply:

G(p1,τ1|p1) +
∑

�

G(m�,τ1|p1) + G(o|p1) = 1, (B3)

∑

j,�

G(m�,τj |mi) +
∑

j

G(p1,τj |mi) + G(o|mi) = 1, (B4)

where the terms G(o|p1) and G(o|mi) give the probability of
complete detachment of the cargo, from initial states p1 and
mi respectively.

Let us now assume G(o|p1),G(o|mi) 	 1, and use
the identity G(p1,τ1|p1) ≡ φ(p,τ |p) in Eq. (B3), which
leads to

∑
� G(m�,τ1|p1) � 1 − φ(p,τ |p). Finally, using

Eq. (B4) in Eq. (12) and using the relation φ(m,τ |m) = 1 −
φ(p,τ |m) leads to a second relation

∑
i,j,� ηiG(m�,τj |mi) �

φ(m,τ |m)
∑

� η�. Using these approximate relations in
Eq. (B2), we arrive at the equation

∑

�

η� � 1 − φ(p,τ |p)

1 − φ(m,τ |m)
, (B5)

the substitution of which in Eq. (B1) leads to the expression in
Eq. (15), after realizing that φ(p,τ |p) + φ(m,τ |m) = 1 + μ

and using the definition of the asymmetry coefficient η in
Eq. (4). Further, using the relation γp1

∑
� η� = ∑

� γm�
along

with the condition of normalization (γp1 + ∑
� γm�

= 1) in
Eq. (B5), it can also be shown that,

γp1 � φ(p,τ |m)

1 − μ
;

∑

�

γm�
� φ(m,τ |p)

1 − μ
. (B6)

APPENDIX C: PROOF THAT C(1) = μ UNDER THE
NO-DETACHMENT APPROXIMATION

In steady-state conditions, 〈Si〉 = γp − γm = ν, the bias
parameter. Therefore, Eq. (16) becomes

C(n) = 〈SiSi+n〉 − ν2

1 − ν2
; n � 0. (C1)

For n = 1, it follows from the definitions of the propagators
that

〈SiSi+1〉 =
∑

i,j,�

γmi
G(m�,τj |mi) −

∑

i,j

γmi
G(p1,τj |mi)

+ γp1G(p1,τ1|p1) − γp1

∑

�

G(m�,τj |p1). (C2)
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If we now assume that the probability of complete
detachment of the cargo is small, i.e., G(o|p1),G(o|mi) 	 1,
then from Eqs. (B3) and (11) we can write G(p1,τ1|p1) �
φ(p,τ |p) and

∑
� G(m�,τ1|p1) � φ(m,τ |p). Similarly, using

Eqs. (B4) and (12) we can write
∑

i,j,� γmi
G(m�,τj |mi) �

φ(m,τ |m)
∑

i γmi
and

∑
i,j,� γmi

G(p1,τj |mi) � φ(p,τ |m)∑
i γmi

. Therefore, Eq. (C2) becomes

〈SiSi+1〉 = [φ(p,τ |p) − φ(m,τ |p)]γp1

+ [φ(m,τ |m) − φ(p,τ |m)]
∑

�

γm�
. (C3)

Noting that φ(m,τ |p) = φ(m,τ |m) − μ and φ(p,τ |m) =
φ(p,τ |p) − μ, Eq. (C3) can be rewritten as

〈SiSi+1〉 = μ + ην, (C4)

where we have used the fact that γp1 + ∑
� γm�

= 1, ν = γp1 −∑
� γm�

, and also from Eq. (4), η = φ(p,τ |p) − φ(m,τ |m).
Now, using Eq. (C4) in Eq. (C1), we find

C(1) = μ + ην − ν2

1 − ν2
. (C5)

Finally, substituting Eq. (15) in Eq. (C5), we arrive at the
simple and elegant result C(1) = μ.
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