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Force and flux relations for flows of ionic solutions between parallel plates
with porous and charged layers
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We derive coefficients of the electrokinetic coupling matrix (χ11, χ12, and χ21) for the flow of an ionic
solution through a parallel-plate geometry having porous and charged layers grafted onto a solid surface with
a known potential and demonstrate Onsager reciprocity for the cross terms (i.e., χ12 = χ21). Our results enable
the prediction of system outputs in the solid-porous-fluid system from parameters that are either known or may
be measured and inferred. These electrokinetic coupling coefficients are in terms of the potential, φ, and fixed
charge, ρf , only, removing dependence on field gradients and fluid velocity. Additionally, we present simplified
expressions of these coupling coefficients in limiting regions of the parameter space. Away from these limits, we
present numerical results demonstrating the facility of our functional form for facile numerical approximation
and report the utility and accuracy of our analytical approximations.
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I. INTRODUCTION

Porous interfaces are ubiquitous in both natural and indus-
trial systems. In nature, vital and nonvital porous structures
exist: Organic forms are found within mammalian cells and
tissues [1] as biological membranes [2] and cartilage [3,4].
Inorganic porous structures are found in natural geophysical
systems like packed silicates [5] and in synthetic components
like packed-bed reactors and polymer membranes [6].

A mechanistic understanding of ion transport within mem-
brane and soft-layer systems is required to engineer and
optimize device performance. Describing transport within
the porous membrane layer requires an understanding of
the interplay between chemical and physical attributes of
the porous layer. Fuel cells [7], filtration assemblies [8],
and electrophoretic [9,10] and chromatography systems with
coated surfaces [11] use membranes or membranelike layers to
some extent. Contemporary workers use anionic and cationic
exchange membranes in through-flow configuration for the
purification of brackish solutions [12], where transport across
exchange membranes is essential to solution treatment [8].

We consider transport along a porous and charged layer
bounded by a solid wall and pure fluid, as shown in Fig. 1.
In this figure, the plates are separated by dimension 2h and
the channel cross section is given by the area A = 2wh,
with dimension w defining the channel width. The porous
layer maintains an immobile charge due to the presence
of active chemical groups through its wetted volume and
Ohmic conduction results from the electrophoretic motion
of cations and anions in the fluid subsumed in the porous
layer. Furthermore, the porous layer exhibits a Brinkman-type
hydraulic resistivity.

Gradients in pressure and electrical potential combined with
a distribution of net free charge give rise to electrokinetic
phenomena such as electrophoresis, electroosmosis, stream-
ing potential, streaming current, electrical conductivity, and
electroviscosity. Gravitational effects may be included in the
pressure [13], i.e., the so-called modified pressure [14], but

*bk88@cornell.edu; http://www.kirbyresearch.com

we do not consider gravitational effects here as they are
complicated by the porosity of the medium. These phenomena
are linear and additive and are succinctly communicated by the
electrokinetic coupling matrix (EKCM). The EKCM describes
flux densities of volume and charge through a surface of area A

and normal �n in response to linear gradients in pressure ( �∇p)
and electrical potential ( �∇φext).

[
Q/A

I/A

]
=

[
χ11 χ12

χ21 χ22

][
−〈 �∇p〉

−〈 �∇φext〉

]
. (1)

The brackets surrounding gradients of pressure and electrical
potential in Eq. (1) denote the averaged values of the normal
component of vector fluxes taken over the channel cross
section,

〈 �∇φext〉 = 1

A

∫
S

�∇φext · �n dA, (2)

〈 �∇p〉 = 1

A

∫
S

�∇p · �n dA. (3)

For the remaining terms in Eq. (1), χ11 is the hydraulic
conductivity term relating the area-averaged (using the channel
cross section) velocity and the pressure gradient; similarly, χ12

is the hydraulic conductivity term describing the response to
a gradient in electrical potential. The electrical conductivity
(both Ohmic and electroosmotic) is given by χ22, and the
current produced by a pressure gradient is related through
χ21. Exact forms of these coefficients are determined from
the geometry and boundary conditions of the system under
consideration.

For linear and microscopically reversible processes, the
electrokinetic coupling matrix is symmetric. This is a state-
ment of Onsager reciprocity [15–18]; holding so long as, for
a near-equilibrium system, the forces and the fluxes relate
linearly, and the system remains symmetric upon time reversal.
These requirements for Onsager reciprocity generally hold,
broken only, for example, when the system considered is
placed under the action of a magnetic field or subject to a
Coriolis force. Systems so exposed will not reverse in time

042408-11539-3755/2013/88(4)/042408(15) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.042408


ALEXANDER C. BARBATI AND BRIAN J. KIRBY PHYSICAL REVIEW E 88, 042408 (2013)

FIG. 1. Diagrammatic representation of the system under consid-
eration. (a): Geometric definition of the parallel-plate system studied;
plates of width w and length L are separated by a distance 2h. Included
are shapes of pressure-driven and electrically forced flows for (left) a
channel with rigid surfaces and (right) a channel with a porous lining.
In (b) and (c), magnified diagrams at the surface detail distributions
of velocity and potential for a bare, rigid surface (b) and a surface
with a porous layer of thickness δ (c).

and will not exhibit reciprocity in the coefficients describing
forces and fluxes [17].

Statements of Onsager reciprocity applied to electroki-
netic systems are known in the interface and microfluidic
literature. Similarly to thermoelectric phenomena, reciprocal
relationships were known long before the phenomena were
codified theoretically. In 1892 Saxén demonstrated the equiv-
alence between electroosmosis and streaming potential [19],
showing χ12 = χ21 experimentally. This work was followed
by contributions [20,21] examining the equivalence between
porous diaphragms and networks of capillaries. More con-
temporary work by Gross and Osterle [22] discusses coupling
relationships in capillary flow, contributing general integral
expressions for pressure, electrical, and chemical potential
gradients driving fluxes of volume, current, and mass; with
attention to electrodialysis and energy conversion. Extending
these ideas to arbitrarily shaped ducts, Mortensen et al. [23]
develop expressions for the EKCM coefficients using a Hilbert
space, also showing Onsager reciprocity for the cross terms.
The early history of equivalence between electroosmosis and
streaming potential is discussed in a review by Wall [24].

More recent investigations have moved beyond pure fluids
bounded by rigid, nonreacting surfaces. Brunet and Ajdari [25]
have developed a general derivation proving the symmetry
property of a coupling matrix for systems with arbitrary
microstructure. In their formulation, the system need only
obey the no-slip boundary condition, exhibit Newtonian Stokes
flow, and obey the Poisson equation for potential in response
to a spatial free charge density. They simplify their general
results for a periodic isotropic medium and show that the
Onsager reciprocal relation holds. Brunet and Adjardi do
not, however, present functions for the coupling coefficients.
In fact, their proof omits definition of electrical boundary

conditions (charge and/or potential) on the system walls.
Berli and Olivares [26] develop expressions for electrokinetic
coupling coefficients in systems where the working fluid is
non-Newtonian. They report symmetry in the electrokinetic
coupling matrix, although their model prohibits nonlinear vis-
cosity in regions of nonzero electrical potential, the assertion
being that the depletion zone of a polymer additive causing
the nonlinear flow effects is thicker than the region of net
charge. Also, their system ceases to be strictly linear for
non-Newtonian fluids, as coefficient χ11 will contain a pressure
dependence. van Leeuwen and Duval [27] describe effects of
a conductive substrate, where faradaic reactions are permitted,
on the form of Onsager relations.

Previous works have considered coupling coefficients in
channels with charged and porous layers. Donath and Voigt
[28] present a 1D formulation of the system we consider,
although their approach assumes a low-potential limit and
incorrectly predicts a divergence in streaming current as the
Debye length of the solvent approaches the characteristic
penetration length of the free fluid into the porous region (in our
notation, λD → λo). A similar approach was taken by Ohshima
and Kondo [29], deriving approximate forms for χ12 and χ21

(confirming Onsager reciprocity) for a channel many times
larger than both the fluid Debye length and the penetration
depth of fluid into the porous region. Keh and Liu [30]
derive exact analytical expressions for coupling coefficients
for the linearized Poisson-Boltzmann equation in a cylindrical
geometry. A pair of articles, by Duval and van Leeuwen [31]
and Duval [32], develop electrokinetic theories for porous
regions of nonuniform charge and resistance, relaxing an
assumption of previous workers; results are presented for
the small-potential (linearized) regime [31], as well as the
nonlinear regime [32]. In a recent publication, we have
reviewed electrokinetics of soft and charged layers from both
theoretical and experimental viewpoints [33].

In this work, we develop general, closed-form integral
expressions describing electrokinetic transport over and within
porous layers of uniform resistance and arbitrary fixed charge
density; these integral expressions require only physicochem-
ical porous layer properties such as porous layer resistance,
porous layer thickness, the distribution of the fixed charge,
and the electrical potential in the system. Our results do not
require knowledge of the potential gradient or velocity within
the channel (other than velocity boundary conditions). Often,
these required quantities may be approximated. Generally, the
values of potential and charge can be reliably computed. In
contrast to previously published results, our expression for
the cross-coupling term applies for arbitrary values of the
fixed charge density, and geometric and resistive parameters,
without regard to the magnitude of the electrical potential in
the system. This general integral formulation also facilitates
our derivation of simple limiting forms that apply accurately
across a wide range of parameter space.

The paper is organized as follows: in Sec. II, we describe
fluid physics in porous layers. In Sec. III, we describe generat-
ing formulas for all electrokinetic phenomena, incorporating
domain inhomogeneities introduced in the previous section.
Coupling formulas are then applied to systems with a hard
surface in Sec. IV. These results are contrasted with (and used
to motivate) the porous layer coupling coefficients we derive
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and present in Sec. V. In Sec. VI, we derive limiting cases of
porous layer coefficients, and in Sec. VII, we present numerical
representations of coefficients for cases not described by
simplifying limits.

II. FLUID PHYSICS IN POROUS LAYERS

We consider momentum transport at low Reynolds number,
governed by the Stokes equation of motion. Fluid forcing in the
Stokes equations is linear and additive: Gradients in pressure
or external electrical potential actuate the fluid independently,
and solutions for flows driven by gradients of pressure or
electric fields may be superimposed. In the pure-fluid region,

0 = η �∇2u − �∇p − ρe
�∇φext. (4)

Here η is the fluid viscosity, u is the velocity field, and ρe

is the free charge density. Equation (4) holds outside of the
porous layer. Within the porous layer, we add a term linear
in the velocity which accounts for the added resistance of the
porous layer beyond the unbounded fluid,

0 = η �∇2u − ku − �∇p − ρe
�∇φext. (5)

The constant, k, describes the resistivity of the porous region.
In both Eqs. (4) and (5), gradients in pressure and external
electrical potential are equivalent in the porous layer and pure
fluid.

Multiple schemes have been proposed to connect porous
layer and pure fluid flows; we use the Brinkman approach
because of the ability to obey both boundary conditions in the
porous layer, as well as the ubiquity of the Brinkman approach
for the type of problem that we consider here. The Brinkman
approach to the momentum distribution is widely used for
planar (or nearly planar) porous layers between a solid surface
and pure fluid [28,30–32,34–39] and has been reviewed in this
context by Dukhin et al. [40]. Although we work with the
Brinkman-modified Stokes equation to connect the porous-
layer and pure-fluid flows, coupling between free-fluid and
porous layer flows may also be done using the Beavers-Joseph
boundary condition [41]; both approaches are approximate
and exhibit deficiencies in predicting the velocity profile
at the interface between the porous and pure-fluid phases
and have been the subject of much discussion [13,42–46].
Although the Beavers-Joseph condition matches the velocity
at the porous layer-fluid interface, it assumes a Darcian flow
inside the porous layer and does not explicitly obey the no-slip
condition at the solid wall-porous medium boundary. Although
this may be unimportant for macroscale systems (porous layer
thickness �

√
η

k
) with low porosity, we consider systems with

porous layers that may be thin relative to
√

η

k
, requiring that

the no-slip condition at the solid boundary be obeyed.
Equations (4) and (5) are typically solved in response

to a single momentum source. We indicate forcing with
superscripts: u(p) for pressure-driven flow and u(e) for flows
driven by electric fields. Furthermore, we label the velocity in
the porous layer with subscript 1, i.e., u(p)

1 , and in the fluid
with subscript 2, as u(p)

2 .
Momentum distributions in the porous layer and in the

pure fluid connect via boundary conditions. For the one-
dimensional geometry we consider (Fig. 1), a no-slip condition

is applied at the fluid-solid interface, and a symmetry condition
is imposed at the channel centerline. The boundary conditions
at the interface between the porous and pure-fluid regions
require continuity of velocity and stress as follows:

u1(0) = 0 u1(δ) = u2(δ)
du1

dy

∣∣∣∣
y=δ

= du2

dy

∣∣∣∣
y=δ

du2

dy

∣∣∣∣
y=h

= 0. (6)

Here, the Brinkman resistance term −ku is absent, as the
boundary conditions are dominated by the tangential stresses;
the Brinkman resistance acts on a fluid volume and is lost in
the limiting process.

The free charge distribution is determined from the Poisson
equation with a fixed-charge that is zero in the pure fluid and
nonzero in the porous layer. In general,

�∇ · (−εεo
�∇φ) = ρe(x) + ρf (x). (7)

Here, the distribution of fixed charge is given by ρf (x) and may
exhibit a dependence on the potential. The electrical potential
distribution is determined by the form of the free charge
density, ρe, the distribution of fixed charge in the domain,
ρf , and boundary conditions. The dielectric constant of the
solvent is given by ε, and εo is the vacuum permittivity. The
pure-fluid phase cannot support a fixed charge distribution, so
ρf = 0 in this region of the domain,

�∇ · (−εεo
�∇φ2) = ρe(x). (8)

Again, we use the subscript 2 to indicate quantities in the
pure-fluid region of the domain. The porous layer is the only
region with nonzero fixed charge density. Fixed charges reside
throughout the wetted volume of the porous material. In the
porous region,

�∇ · (−εεo
�∇φ1) = ρe(x) + ρf (x). (9)

The potential distributions in Eqs. (8) and (9) also couple
through boundary conditions. We prescribe a fixed potential
on the hard boundary at y = 0 and zero potential slope at
the channel centerline. At the interface between the fluid
and porous layer, continuity in potential and electric flux
density, for uniform permittivity, implies matching potential
and potential gradient as follows:

φ1(0) = φo φ1(δ) = φ2(δ)
dφ1

dy

∣∣∣∣
y=δ

= dφ2

dy

∣∣∣∣
y=δ

dφ2

dy

∣∣∣∣
y=h

= 0. (10)

Equality between dielectric constants in the pure-fluid and
porous regions is implicitly assumed in the field gradient
relation. This constraint was relaxed by Ohshima and Ohki [47]
in their analysis of potential profiles across charged biological
membranes.

The free-charge density depends upon the local concen-
tration of ions. Typically, a mean-field approximation is used
to relate the free-charge density to the potential. By further
considering the free ions as point charges, we arrive at the
Boltzmann relation for the free-charge density [48]:

ρe(x) = F
∑

i

zici,∞e− zi Fφ(x)
RT . (11)
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Here R is the ideal gas constant, T the absolute temperature,
F is Faraday’s constant, and zi and ci,∞ are the valence and
bulk concentration of the i th ionic component.

The potential within a porous layer at a point where free
and fixed charges exactly balance is known as the Donnan
potential [49] and implies that the potential is curvature-free.
The functional form connecting the Donnan potential to the
fixed-charge distribution depends upon the form of the free-
and fixed-charge densities. For a fixed charge density that is
independent of the local potential, and a free charge determined
by (11),

0 = F
∑

j

zj cj,∞e− zj FφD

RT + ρf (x). (12)

For a z:z electrolyte, Eq. (12) has the form φD =
RT
zF

arcsinh( ρf (x)
2zFc∞

), where φD denotes the Donnan potential
in the porous layer.

III. GENERATING INTEGRAL FORMULAS
FOR EKCM COEFFICIENTS

All electrokinetic coupling coefficients may be expressed in
a general integral form. Typically, the EKCM coefficients are
calculated with direct integration in only the simplest systems,
but these forms are the starting point for expressions that we
derive in later sections. We write an integral expression for
χ11 for a pressure-driven flow that proceeds through a surface
S with unit normal �n and corresponding flow field u(p)(x) as
follows:

χ11 = 1∫
S
−�∇p · �n dA

∫
S

u(p)(x) · �n dA. (13)

Terms χ12 and χ21 relate the area-averaged volume and current
fluxes to the application of external electrical potential and
pressure gradients, respectively. The general forms of these
expressions are given by

χ12 = 1∫
S
−�∇φext · �n dA

∫
S

u(e)(x) · �n dA, (14)

χ21 = 1∫
S
−�∇p · �n dA

∫
S

ρe(x)u(p)(x) · �n dA. (15)

The symbols ρe(x), u(e)(x), and −�∇φext denote the free-charge
density, electric-field-driven flow, and the electric field. In
the above expressions, gradients in pressure and electrical
potential are assumed uniform across the surface S.

The final term, χ22, relates the area-averaged current to the
applied electrical potential gradient. We refer to this as the
conductivity term. In general form, we write this as

χ22 = σOhmic + σ
(ex)
Ohmic + σ

(ex)
EO . (16)

We have separated the conductivity term into three com-
ponents. The bulk conductivity, σOhmic, represents the con-
tribution from Ohmic conduction. Contributions to Ohmic
conductivity from boundary effects are included in σ

(ex)
Ohmic.

We have used the superscript (ex) to indicate excess or
surface contributions to the system conductivity. Finally, the
electroosmotic contribution, σ

(ex)
EO , represents the contribution

by electroosmotic transport of current when a field is applied.

In integral form,

σOhmic = 1∫
S

�∇φext · �n dA
F

∑
i

|zi | μi

∫
S

ci,∞ �∇φext · �n dA,

(17)

σ
(ex)
Ohmic = 1∫

S
�∇φext · �n dA

F
∑

i

|zi |μi

×
∫

S

(ci(x) − ci,∞) �∇φext · �n dA, (18)

σ
(ex)
EO = 1

− ∫
S

�∇φext · �n dA

∫
S

ρe(x)u(e)(x) · �n dA. (19)

The symbol μi represents the mobility of the i th ion. In most
microfluidic systems, the excess conductivities are small when
the double layers are thin relative to the system size.

IV. COUPLING TERMS FOR SYSTEMS
WITH RIGID INTERFACES

We present coupling terms for a parallel-plate system with
bare rigid walls as a prelude to the porous layer geometry.
These terms are dependent on the potential distribution and
do not require explicit details of the flow as inputs beyond
boundary conditions and the forces applied to the fluid
(pressure or electrical potential). Furthermore, simplifications
and physical insight proceed quickly from the integral forms
of the coupling terms. Here, the flow u proceeds along the
x direction and varies across the half domain 0 � y � h.
At the solid boundary, we fix the potential, φo, and enforce
a no-slip boundary condition. At the channel centerline,
both velocity and potential obey a homogeneous Neumann
condition. Equations (4) and (8) reduce from partial to ordinary
differential equations as follows:

dp

dx
= η

d2u

dy2
, (20)

−εεo

d2φ

dy2
= ρe(y). (21)

The hydraulic resistance term, χ11, is determined from
Eqs. (20) and (13) along with no-slip boundary conditions,

χ
(hard)
11 = h2

3η
. (22)

The current density in response to a pressure gradient is
computed from

χ
(hard)
21 = 1

−〈 �∇p〉A

∫ 2h

0

∫ w

0
u(p)ρe(y) dzdy. (23)

Here 0 � z � w is the channel width (into the page, in Fig. 1).
We assume that the velocity, potential, and charge profiles are
uniform in this direction. With A = 2hw,

χ
(hard)
21 = 1

−h〈 �∇p〉

∫ h

0
u

(
−εεo

d2φ

dy2

)
dy. (24)

After integration by parts (twice), enforcing boundary con-
ditions u(0) = 0 (no slip), φ(0) = φo, du

dy
|y=h = dφ

dy
|y=h = 0
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(symmetry), and finding the velocity gradient at the wall,

χ
(hard)
21 = −εεoφo

η

[
1 − 1

h

∫ h

0

φ(y)

φo

dy

]
. (25)

To find the flux density of volume in response to an applied
electric field, absent pressure gradients, we compute

χ
(hard)
12 = 2

∫ h

0 u(e) dy

−2wh〈 �∇φext〉
= − 1

h〈 �∇φext〉

∫ h

0
u(e) dy. (26)

The solution is most easily obtained by solving directly for the
field u(e) from the Stokes equations with zero pressure forcing,
a no-slip boundary, and symmetrical velocity profiles about
the centerline

χ
(hard)
12 = − 1

h〈 �∇φext〉

∫ h

0

εεo

η
〈 �∇φext〉 (φo − φ(y)) dy (27)

or

χ
(hard)
12 = −εεo

η
φo

[
1 − 1

h

∫ h

0

φ

φo

dy

]
. (28)

The conductivity term is more complicated, owing to
the convolution of the charge density and electroosmotic
flow; both terms have a direct connection with the electrical
potential. Using earlier results, we express the conductivity for
our 1D flow as

χ
(hard)
22 = F

∑
i

|zi | μi

1

h

∫ h

0
ci(y) dy −

∫ h

0 ρe(y)u(e)(y) dy

h〈 �∇φext〉
.

(29)

The excess conductivity (σ (ex)
EO + σ

(ex)
Ohmic) has been determined

by Bikerman for h 
 λD and a symmetric electrolyte [50],
which we reproduce here under the additional assumption of
balanced mobilities for the electrolyte pair,

χ
(hard)
22 = σOhmic + λD

h

2F 2c∞z2D

RT

(
1 + 3m

z2

)

×
[

cosh

(
zFφo

2RT

)
− 1

]

= σOhmic + 2εεoD

h

(
1 + 3m

z2

)

×
[

cosh

(
zFφo

2RT

)
− 1

]
. (30)

Of critical significance is the parameter m = (RT
F

)2 2εεo

3ηD
,

which relates the relative contributions of excess Ohmic and
electroosmotic conductivities: σ

(ex)
Ohmic = 3m

z2 σ
(ex)
EO . Simplified

relationships for the conductivity outside of the h 
 λD limit
are not available; in such cases we represent excess Ohmic and
electroosmotic conductivities in integral form, written here
assuming a Boltzmann distribution for the free-charge density,

σ
(ex)
Ohmic = F

∑
i

|zi | μici,∞
1

h

∫ h

0

(
e− zi Fφ(y)

RT − 1
)
dy, (31)

σ
(ex)
EO = (εεo)2

η

1

h

∫ h

0

(
dφ

dy

)2

dy

= 2
εεoRT

ηh

∑
i

ci,∞
∫ h

0

(
e− zi Fφ(y)

RT − e− zi Fφmid
RT

)
dy.

(32)

Outside the thin electrical double layer limit, the potential at
the channel centerline is nonzero, represented here by φmid.
We do not consider the conductivity further in this work.

A. Remarks on coupling terms for rigid interfaces

The results derived in this section are general: In χ11

we assume only that the fluid is Newtonian with no-slip
boundaries. Examining the cross terms, χ12 and χ21, we
observe a term depending only on the electrical boundary
condition and an integral term representing the average channel
potential; this integral term is proportional to the ratio 1

h
,

and, since the potential varies appreciably only over λD ,
the contribution of this integral term will be minimal when
λD � h. Finally, the χ12 and χ21 relations apply for all forms
of the charge distribution—the relations do not require a
point-charge or other approximation; hard-sphere corrections,
for example, may be included. These remarks indicate that
for systems with h 
 λD , χ12 and χ21 depend chiefly upon
the boundary value, and details of the mobile or free charge
distribution may be omitted.

The conductivity term, χ (hard)
22 , is the least general, requiring

free-charge and electroosmotic distributions that must be
integrated. Because the excess conductivities are localized
to regions near the charged surface, the importance of these
excess conductivities diminish as the size of the system (i.e.,
h) increases.

V. COUPLING TERMS FOR SYSTEMS WITH POROUS
AND CHARGED INTERFACES

Porous and charged layers affect both electrical potential
and momentum distributions. A system with a porous layer has
increased hydraulic resistance in the porous region, as captured
in the Stokes-Brinkman equation by the added term −ku.
Porous and charged layers contribute a fixed charge density
term in the Poisson equation, ρf (x). For the parallel-plate
system considered here, the differential equations for the
porous layer (0 � y � δ) become

0 = η
d2u

dy2
− ku − dp

dx
− dφext

dx
ρe, (33)

−εεo

d2φ

dy2
= ρe(y) + ρf (y). (34)

Outside of the porous layer of thickness δ (y � δ), we solve
Eqs. (20) and (21). These equations are coupled by the
boundary conditions presented in (6) and (10).

A. χ11 with porous and charged interfaces

A porous layer reduces the hydraulic conductance of the
channel. The porous layer exhibits a resistance beyond the
viscous retardation of the fluid alone; this effect is captured
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in the −ku term. Below, we solve for the velocity in the
channel and then describe the hydraulic conductance, χ

(soft)
11 .

For convenience and clarity, we work in the dimensionless
variable y∗ = y/δ and define β = h/δ, which is the half-height
of the channel normalized by the porous layer thickness. We
introduce parameters λo =

√
η

k
, a measure of the penetration

of momentum from the pure fluid into the porous layer, α = δ
λo

,
to characterize the thickness of the porous layer relative to the
penetration distance of momentum from the pure fluid into the
porous layer, and G = δ2

η
〈 �∇p〉, a modified pressure gradient

with units of velocity.
The shape of the velocity profiles are strong functions of α

and β. Equations (35) and (36) show the nonlinear dependence
in the parameter α as follows:

u
(p)
1 = G

α2

(
cosh(αy∗) − 1 − sinh(αy∗)

cosh(α)

× [α(β − 1) + sinh(α)]

)
, (35)

u
(p)
2 = G

α2

(
1

cosh(α)
+ α2

2
(y∗ − 1)(1 + y∗ − 2β)

− 1 − α(β − 1) tanh(α)

)
. (36)

These equations are plotted in Fig. 2, showing the velocity
profiles across the channel for small, moderate, and large
resistance parameters (α). Perturbations induced by the porous
layer on the momentum distribution are dependent on β,
mostly by constriction effects, as α becomes large. For values
of β approaching unity, nearly all nonvanishing values of α

will have some effect on the velocity profiles.
For the one-dimensional geometry considered, we compute

χ
(soft)
11 from Eq. (13). This yields

χ
(soft)
11 = h2

3η

[
1 − 3α2β2 − 3α2β + α2 − 6β + 3

α2β3

− 6(β − 1)

α2β3 cosh(α)
+ 3

(
(β − 1)2

α
− 1

α3

)
tanh(α)

β3

]
.

(37)

FIG. 2. (Color online) Velocity profiles about the channel cen-
terline for varying layer resistance parameter α and relative channel
height β. At left, β = 2, the velocity profile is strongly perturbed from
parabolicity by large and moderate values of α. At right, β = 10, the
channel is large relative to the porous layer thickness, and retarding
effects are mainly confined to the porous layer and do not interfere
strongly with momentum transport in the pure fluid region.

In addition to the nondimensional parameters α and β, Eq. (37)
contains two dimensional parameters, the domain height, h,
and the viscosity, η. The premultiplying dimensional term
is the exact result for the hydraulic conductivity between
two parallel plates; the additional bracketed terms represent
corrections due to the thickness and resistivity of the porous
layer.

Similarly to the velocity profiles just described, χ
(soft)
11 is

strongly dependent on α. For a porous region that is greatly
resistive, α 
 1,

χ
(soft)
11

h2/3η
= 1 − 3β2 − 3β + 1

β3
+ 3(β − 1)2

αβ3
+ O

(
1

α2

)
.

(38)

In this limit, transport within the porous layer is diminished,
and the porous layer serves to constrict the channel volume. If
the porous layer becomes impenetrable (α → ∞),

χ
(soft)
11

h2/3η
= 1 − 3β2 − 3β + 1

β3
. (39)

For a porous region that is weakly resistive, α � 1, we
describe this layer using a series expansion in the now-small
parameter α,

χ
(soft)
11

h2/3η
= 1 − 3 − 5β(3 − 4β)

20β3
α2 + O(α4). (40)

A vanishingly small resistance corresponds to a porous layer
with no resistance beyond the viscosity of the working fluid
and is equivalent to the limit α → 0. In this case,

χ
(soft)
11

h2/3η
= 1. (41)

Both large- and small-α limits concur with physical intuition.
For a very resistive layer, the channel is throttled by the
impermeable porous layer and a reduced channel height. For a
“porous” layer with zero resistance, χ

(soft)
11 has no dependence

on the layer thickness δ, as the porous layer provides no
additional resistance to the channel. Between these limits, the
hydraulic conductivity varies smoothly across a large range of
α. This behavior is shown in Fig. 3.

FIG. 3. (Color online) Plots of χ
(soft)
11 normalized by the α → 0

limit (left) and the α → ∞ limit (right). In both cases, porous layer
effects are small when the channel height is large relative to the porous
layer thickness (β 
 1).
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B. χ21 with porous and charged interfaces

The current density in response to a pressure gradient is
related through the coupling coefficient χ

(soft)
21 , which is a

convolution of the pressure-driven velocity field and the total
charge density formed by mobile ions. In the presence of a
permeable layer with fixed charge, the magnitude of convected
charge can differ markedly from the rigid interface previously
considered. There are two sources for this change: (1) the
distribution of ions is perturbed by the porous and charged
layer and (2) the distribution of momentum is perturbed by the
porous and charged layer.

We derive χ
(soft)
21 in a general form, accounting for a

uniformly resistive porous layer. Our derivation places no
requirements on the distribution of charge, nor do we assume
a distribution (or magnitude) of potential (beyond that which
solves a general Poisson equation). Thus, our formulation

assumes only the existence of potential and fixed-charge
distributions.

For the parallel-plate geometry, we derive χ
(soft)
21 by sub-

stituting in the Poisson equation and the known velocity
solution and repeatedly integrating by parts. We start with
the following:

χ
(soft)
21 = I/A

−〈 �∇p〉 = − 1

β〈 �∇p〉

∫ β

0
u(p)ρe dy∗. (42)

Here, and in the following Poisson equation, we again scale
the spatial coordinate y by the porous layer thickness δ,

−εεo

δ2

d2φ

dy∗2 = ρe(y∗) + ρf (y∗). (43)

By substituting out the charge density in (42) for the potential
curvature and fixed charge density terms, we obtain the
following:

− 1

β〈 �∇p〉

∫ β

0
u(p)

(
−εεo

δ2

d2φ

dy∗2 − ρf (y∗)

)
dy∗ = 1

β〈 �∇p〉

[
εεo

δ2

∫ β

0
u(p) d

2φ

dy2
dy∗ +

∫ 1

0
u(p)ρf (y∗) dy∗

]
. (44)

The limits of the last integral range only from 0 � y∗ � 1, because ρf vanishes outside the porous layer. After successive
integrations by parts, and invoking the boundary conditions on velocity and potential,

χ
(soft)
21 = εεo

η
φo

[
1

βG

du
(p)
1

dy∗

∣∣∣∣
y∗=0

+ 1

β

∫ β

0

φ

φo

dy∗ + 1

β

∫ 1

0

u
(p)
1

α2G

(
φ

φo

+ δ2

α2εεo

ρf

φo

)
dy∗

]
. (45)

The velocity in the porous layer is known and described in the previous section. The velocity gradient at the boundary between

the rigid wall and porous layer is du
(p)
1

dy∗ |y∗=0 = G( 1−β

cosh(α) − tanh(α)
α

). Including these terms gives

χ
(soft)
21 = −εεo

η
φo

[
1 − 1/β

cosh(α)
+ tanh(α)

αβ
− 1

β

∫ β

0

φ

φo

dy∗

− 1

β

∫ 1

0

(
cosh(αy∗) − 1 − sinh(αy∗)

cosh(α)
(α(β − 1) + sinh(α))

) (
φ

φo

+ δ2

α2εεo

ρf

φo

)
dy∗

]
. (46)

Presently, these equations are nondimensionalized in space only. By introducing the scales φ∗ = φ

RT/F
, ρ∗

f = ρf λ2
D

εεo
RT
F

= ρf

2FIc
,

defining γ = λD

δ
, and noting Ic = 1

2

∑
j cj,∞z2

j is the ionic strength of solution, the quantity contained within the square brackets
is converted to dimensionless form,

χ
(soft)
21 = −εεo

η
φo

[
1 − 1/β

cosh(α)
+ tanh(α)

αβ
− 1

β

∫ β

0

φ∗

φ∗
o

dy∗

− 1

β

∫ 1

0

(
cosh(αy∗) − 1 − sinh(αy∗)

cosh(α)
(α(β − 1) + sinh(α))

)(
φ∗

φ∗
o

+ 1

α2γ 2

ρ∗
f

φ∗
o

)
dy∗

]
. (47)

Last, grouping terms in the final integral into the function H (y∗; α,β),

χ
(soft)
21 = −εεo

η
φo

[
1 − 1/β

cosh(α)
+ tanh(α)

αβ
− 1

β

∫ β

0

φ∗

φ∗
o

dy∗ − 1

β

∫ 1

0
H (y∗; α,β)

(
φ∗

φ∗
o

+ 1

α2γ 2

ρ∗
f

φ∗
o

)
dy∗

]
, (48)

H (y∗; α,β) = cosh(αy∗) − 1 − sinh(αy∗)

cosh(α)
(α(β − 1) + sinh(α)) . (49)

This result succinctly communicates the functional dependence of χ
(soft)
21 on the physicochemical parameters α, β, and γ and the

chemical properties φ∗ and ρ∗
f .
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Four terms contribute to the expression for χ
(soft)
21 . The

first two bracketed terms, 1−1/β

cosh(α) + tanh(α)
αβ

, represent the direct
contribution from the solid charged boundary. This quantity is
linearly related to the pressure-normalized velocity gradient at
the interface and is only reduced by the presence of the porous
layer. The second contribution, − 1

β

∫ β

0
φ∗
φ∗

o
dy∗, is a correction

to the previous boundary potential terms resulting from the
integration of the normalized potential across the channel. This
integral term is minimal when (1) the channel is large relative
to the porous layer thickness (β 
 1) or (2) the Debye length
is small in comparison to all other electrical and boundary
length scales in the system (γ � 1, γ � β). This term plays
an identical role to the integrated potential terms in Eqs. (25)

and (28). The final term − 1
β

∫ 1
0 H (y∗; α,β)(φ∗

φ∗
o

+ ρ∗
f

φ∗
o

1
α2γ 2 ) dy∗

describes current transport within the porous layer. H (y∗; α,β)
is a filterlike function that describes the relative penetration
of momentum into the porous layer as a function of α

and β (or, equivalently, δ, λD , and h). This function H is
proportional to the pressure-driven velocity within the porous
layer, H (y∗; α,β) = α2

G
u

(p)
1 . The second term in this integral,

φ∗
φ∗

o
+ ρ∗

f

φ∗
o

1
α2γ 2 , is a modified representation of the free charge

density within a porous layer bearing fixed charge.
The behavior of the filterlike function, shown in Fig. 4, is a

strong nonlinear function of α and a weak function of β. Here
plots of − 1

β
H (y∗; α,β) over y∗ for varying α and β illustrate

the weighting of φ∗
φ∗

o
+ ρ∗

f

φ∗
o

1
α2γ 2 at various points in the porous

layer. For β = 1, the porous layer occupies the entire width
of the channel, and transport varies from a nearly parabolic
flow profile (small α) to a top-hat-like shape dominated by
the Brinkman term at large α. For larger values of β and
small values of α, transport within the porous layer layer again
mimics the portion of the parabolic profile contained in the
porous layer. As α increases, the dominant contribution is
contributed by the porous layer edge, due to strongly retarded
flow toward the interior of the porous layer.

C. χ12 with porous and charged interfaces

Although the coupling coefficient χ
(soft)
12 is identical to

χ
(soft)
21 by Onsager reciprocity, the direct computation of
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FIG. 4. (Color online) Behavior of the filterlike function
− 1

β
H (y∗; α,β) as function of space over a range of α (columns)

and β (rows). The horizontal axes in all plots range over 0 � y∗ � 1.

χ
(soft)
12 is substantially more difficult than χ

(soft)
21 because

the expressions for electroosmotic flow are more compli-
cated than the corresponding pressure-driven flow relations.
The generating formula for χ

(soft)
12 in our one-dimensional

system is

χ
(soft)
12 = − 1

β〈∇φext〉
∫ β

0
u(e) dy∗. (50)

The field-driven fluid velocities are computed from the
following set of equations:

0 = d2u
(e)
1

dy∗2 − α2u
(e)
1 + 1

η

dφext

dx

(
εεo

d2φ

dy∗2 + δ2ρf

)
, (51)

0 = d2u
(e)
2

dy∗2 + 1

η

dφext

dx
εεo

d2φ

dy∗2 , (52)

along with the flow boundary conditions from Eq. (6). This set
has the solution

u
(e)
1 = C1e

αy∗ + C2e
−αy∗ −

∫ y∗

0

〈∇φext〉eαy∗
e−αs

2αη

(
δ2ρf (s) + εεo

d2φ

ds2

)
ds

+
∫ y∗

0

〈∇φext〉e−αy∗
eαs

2αη

(
δ2ρf (s) + εεo

d2φ

ds2

)
ds, (53)

u
(e)
2 = C3 + y∗C4 − εεo

η
〈∇φext〉φ(y∗), (54)

with constants

C1 = 1

2 cosh(α)

[∫ 1

0

〈∇φext〉
αη

cosh(α(1 − s))

(
δ2ρf (s) + εεo

d2φ

ds2

)
ds − εεo

αη
〈∇φext〉φ′

δ

]
, (55)

C2 = −C1, (56)
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C3 =
∫ 1

0

sinh(αs)

cosh(α)

〈∇φext〉
αη

(
δ2ρf (s) + εεo

d2φ

ds2

)
ds − εεo

αη
〈∇φext〉(φ′

δ tanh(α) − αφδ), (57)

C4 = 0. (58)

The coupling coefficient χ
(soft)
12 follows from a direct

integration of the velocity expressions above. The process is
tedious but eventually yields the result χ

(soft)
12 = χ

(soft)
21 . See the

Supplemental Material [51] for further details on simplifying
χ

(soft)
12 .

VI. ANALYSIS AND LIMITING FORMS
OF χ

(soft)
21 AND χ

(soft)
12

The coupling coefficients χ
(soft)
12 and χ

(soft)
21 (collectively

written χ
(soft)
ij ) presented in Eqs. (48) and (49) are superior

to alternate forms that depend on free charge, electrical
potential slope, and electrical potential concavity terms. Our
representation of χ

(soft)
ij depends upon quantities that are known

exactly in certain regions of the porous layer and are typically
straightforward to approximate or bound in the remaining
regions. These forms of χ

(soft)
ij depend solely on parameters

α, β, and γ and spatial distributions of potential (φ) and fixed-
charge density (ρf ). Specifically, the fixed charge density may
be approximated with information about the chemistry of the
charge-generating mechanism. Typically, such bound charge is
controlled by pH-dependent chemistry [28,52,53]. Regardless
of the charging mechanism, the charge is a nonlinear function
of the potential, and estimations of charge densities require
estimations of potential, not potential curvature or slope. Using
exact, numerical, or approximate expressions for the potential
and fixed-charge profiles, these expressions are used as inputs
in the function χ

(soft)
ij . Furthermore, using our form of χ

(soft)
ij ,

we obtain physical limits by varying parameters α, β, and γ ,
absent specific information on the form of the potential and
charge distributions.

Our analysis of χ
(soft)
ij is informed by the interactions

between distributions of momentum, potential, and charge.
The Stokes and Poisson equations couple directionally—
distributions of charge and potential are unaffected by the
transport of momentum, whereas the free-charge distribution
strongly affects electroosmotic transport. The quantity α

contributes only to hydrodynamics, affecting the degree to
which flow is retarded within the porous region. The term γ

controls the decay of the potential profile generated by the fixed
charge embedded in the porous region and rigid boundary.
Although this term does not affect the pressure-driven flow,
it does have an effect on the electroosmotic flow. Finally, β

contributes to both the momentum and charge distributions
by adjusting the separation between momentum and electrical
boundary conditions. Furthermore, regions of net free charge
(and nonzero potential) are typically confined to the charged
porous region plus a distance of several γ ’s into the pure fluid
phase. In general, the parameters α and γ directly control
the transport behavior of the system, whereas β indicates the

relative magnitude of fluid transport within and outside of the
porous region.

We implement analytical approximations and numerical
solution methods to resolve the behavior of χ

(soft)
ij for varied

parameters α, β, and γ . In our analyses, we assume the
conventional Boltzmann forcing of the Poisson equation. The
Poisson-Boltzmann equation is strongly nonlinear and has no
general closed-form solution for our geometry and boundary
conditions. Thus, we implement approximate analytical so-
lutions where the potential, φ∗, can be estimated. Outside of
approximate limits, we perform numerical computations to
determine χ

(soft)
ij .

The parameter α = δ
λo

determines the penetration of ve-
locity from the pure fluid into the porous region, strongly
affecting the value of χ

(soft)
ij . When α → 0, the resistance of the

porous layer is minimal and momentum transfers freely from
the fluid into the porous layer; conversely, α → ∞ implies
that the porous layer is highly resistive, and transport in the
porous layer is throttled. For α � 1, we perform a series
expansion in the small parameter α. Then, to zeroth order
in α,

χ
(soft)
ij

− εεo

η
φo

≈ 1 − 1

β

∫ β

0

φ∗

φ∗
o

dy∗ +
∫ 1

0

(
y∗ − y∗2

2β

)
ρ∗

f

φ∗
oγ

2
dy∗.

(59)

Equation (59) shows the limit for χ
(soft)
ij in system having

a weakly resistive porous layer is equal to the sum of χij

for a hard surface [the first two terms, which are equivalent
to Eq. (25)] and contributions from the fixed-charge-density
term (the last integral). Further reducing this expression in
the limit of β 
 1 removes the second, overlap-correction
term. In essence, then, the first and third terms are boundary
terms, because they are wholly or partially in the limit where
reductions by double layer overlap are minimized (β 
 1) as
follows:

χ
(soft)
ij

− εεo

η
φo

≈ 1 +
∫ 1

0

ρ∗
f

φ∗
o

y∗

γ 2
dy∗. (60)

All forms of χ
(soft)
ij remain bounded even when γ → 0 or

λD → 0 in this limit because ρ∗
f ∼ γ 2 ∼ λ2

D .
The small-α case offers insight into the importance of

the solid-wall potential boundary condition versus the fixed-
charge distribution in the porous region. For porous regions
thick relative to the Debye length, γ 2 � 1, we expect that
the solid boundary will contribute minimally because the wall
charge is screened by the charge in the porous layer. For α

and γ � 1, χ
(soft)
ij is heavily dependent on the porous layer

charge, except when the boundary potential greatly exceeds the
Donnan potential, φ∗

o >
z sinh(φ∗

D)
2zγ 2 . Furthermore, thick porous
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layers exhibit minimal concavity in electrical potential far from
porous layer edges, d2φ

dy2 ≈ 0, implying ρ∗
f = 1

z
sinh(zφ∗

D) for
a z:z electrolyte. Recall that φ∗

D is the Donnan potential. For a
uniform fixed charge distribution within the porous layer, and
using the Donnan potential relationship between charge and
potential in the small-γ limit, we obtain:

χ
(soft)
ij

− εεo

η
φo

≈ 1 + sinh(zφ∗
D)

zφ∗
o

1

2γ 2
. (61)

As expected, the thick-layer limit of χ
(soft)
ij is heavily dependent

on the porous layer charge, except when the boundary potential
greatly exceeds the Donnan potential, φ∗

o >
z sinh(φ∗

D)
2zγ 2 .

When β → 1, transport occurs entirely within the porous
region, and the only contribution to χ

(soft)
ij comes from the

porous layer. Applying this condition in Eq. (59) yields, for
uniform charge density,

χ
(soft)
ij

− εεo

η
φo

≈ 1 −
∫ 1

0

φ∗

φ∗
o

dy∗ + 1

3

ρ∗
f

φ∗
oγ

2
. (62)

The term
∫ 1

0
φ∗
φ∗

o
dy∗ can be approximated as φ∗

D

φ∗
o

when (1) the
wall potential matches identically with the potential in the
porous layer (in which case this approximation is exact) or (2)
γ � 1, relegating any perturbation in electrical potential to a
small region of thickness ∼5γ near the wall. In either case,

χ
(soft)
ij

− εεo

η
φo

≈ 1 − φ∗
D

φ∗
o

+ 1

3

ρ∗
f

φ∗
oγ

2
. (63)

Thus, the dominant contribution for a channel completely filled
by a porous layer is the charge carried by the porous layer.
This limiting area of parameter space implies a zero when
ρ∗

f = 3γ 2
∫ 1

0 (φ∗ − φ∗
o ) dy, which can occur only when the

porous layer and wall potentials have opposite sign.
Limiting forms of χ

(soft)
ij for highly resistive porous layers

(α 
 1) are more difficult to obtain than those for weakly
resistive porous layers. A uniform limiting expression for the
filterlike function H (y∗; α,β) is not available for the general
case of large α. The difficulty of obtaining approximations of
χ

(soft)
ij as α 
 1 is well-motivated by Figs. 2 and 4: As α is

increased for all β > 1, flow within the porous layer is zero
nearly everywhere except the porous layer edge; similarly,
1
β
H (y; α,β) tends to zero in all regions but the porous layer

edge, where the value of the function increases substantially.
The first boundary term, however, can be approximated:
The sustained absence of flow near the wall removes the
contribution from the boundary term. Given restrictions on
interchanging the limit and integration operations for the
porous regions integral, we seek further simplifications to

χij by way of approximation for the quantity φ∗
φ∗

o
+ ρ∗

f

φ∗
o

1
(αγ )2 .

Approximate expressions are delicate at the interface between
the porous layer and pure fluid: The potential and fluid velocity
both change appreciably in a thin slice of the domain. We begin
by considering χ

(soft)
ij with α 
 1 and a uniform fixed charge

density. Then,

χ
(soft)
ij

− εεo

η
φo

≈ − 1

β

∫ β

0

φ∗

φ∗
o

dy∗

+ ρ∗
f

φ∗
o

(
1

α2γ 2
+ 1/β − 1

α2γ 2 cosh(α)
− tanh(α)

α3γ 2β

)

− 1

β

∫ 1

0

φ∗

φ∗
o

H (y∗; α,β) dy∗. (64)

Here terms of 1
αn , n � 1, have been omitted; we retain the

term O( 1
α2γ 2 ) since αγ may be of order unity or smaller. In

dimensional form, αγ = λD/λo; this combination of parame-
ters controls the local convection of charge at the porous layer
edge. This dependence of χ

(soft)
ij on (αγ )−2 results from the

coincidence of velocity and potential gradients near the porous
layer edge. As λD decreases, the potential profile sharpens
limiting to a function mimicking the fixed-charge distribution.
Similarly, the velocity profile sharpens (| du

dy
| increasing) with

increasing λo at the porous layer edge.
When γ � 1, the potential profile will mimic a step func-

tion, and the electrical potential everywhere within the porous
layer can be bounded by two limits. Here we estimate the
electrical potential φ∗ in the integral − 1

β

∫ 1
0

φ∗
φ∗

o
H (y∗; α,β) dy∗:

(1) a lower bound where the potential everywhere within the
porous layer is greater than or equivalent to the potential
at the porous layer edge [φ∗(1) = φ(δ) presented in the
Supplemental Material [51]], φ∗ � φ∗

δ , and (2) an upper bound
where the potential everywhere within the porous layer is less
than or equal to the Donnan potential of the porous layer,
φ∗ � φ∗

D . Then

χ
(soft)
12

− εεo

η
φo

∣∣∣∣
min

= − 1

β

φ∗
D + f (z,φ∗

D)

φ∗
o

+
(

ρ∗
f

α2γ 2φ∗
o

+ φ∗
D + f (z,φ∗

D)

φ∗
o

)

×
(

1 + 1/β − 1

cosh(α)
− tanh(α)

αβ

)
, (65)

χ
(soft)
12

− εεo

η
φo

∣∣∣∣
max

= − 1

β

φ∗
D

φ∗
o

+
(

ρ∗
f

α2γ 2φ∗
o

+ φ∗
D

φ∗
o

)

×
(

1 + 1/β − 1

cosh(α)
− tanh(α)

αβ

)
. (66)

These relations are compared and evaluated later in Fig. 6(c)
for α � 1 and Fig. 7 for α 
 1. In particular, we apply
relations (65) and (66) over the entire range of α in Fig. 8
demonstrating the ability of the expressions to bound χ

(soft)
ij .

VII. NUMERICAL REPRESENTATION
OF χ

(soft)
i j FOR ARBITRARY VALUES

OF α, β, AND γ , AND VALIDATION OF
APPROXIMATE ANALYTICAL FORMULAS

We implement numerical methods to determine χ
(soft)
ij

outside of the limits described in the previous section. Further,
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FIG. 5. (Color online) Numerical results for electrical potential distributions and comparison against exact results. For all results, β = 10
with a 1:1 electrolyte; the uniform porous layer terminates at y∗ = 1. (a) Potential profiles for various values of potential and γ (as indicated);
the extents of the data are truncated to highlight the porous layer edge. Panels (b) and (c) highlight the change in potential near the porous layer
edge at y∗ = 1. The legend in (a) also applies to (b) and (c). (d) and (e) display a comparison between the computed potential at the porous
layer edge and the analytical result. The legend in (e) applies to (d) as well.

we use the numerical description of χ
(soft)
ij to validate our

approximate expressions. We numerically determine χ
(soft)
ij in

the parameter space spanned by the charge (or potential) in
the porous layer and quantities α, β, and γ . We assume the
Boltzmann relation for the free charge density. The numerical
quadrature of χ

(soft)
ij is straightforward if φ∗(y∗) and ρ∗

f (y∗)

are known; this is a main feature of our form for χ
(soft)
ij —we

do not require computations of field gradients, which are
prone to numerical errors given the spatially stiff nature of the
Poisson-Boltzmann equation. All numerical representations
of the potential presume a uniformly charged porous layer, as
well as uniform fluid and electrical properties across the entire
domain. The details of the numerical scheme are summarized
in Ref. [51].

We have compared numerical potential simulations to
analytical expressions for the potential at the porous layer
edge, with favorable results. At the porous layer edge, we use
a Grahame-type formula (see the Supplemental Material [51])
to compare against our numerical calculations. These results,
along with potential profiles across the domain for varying
values of the parameter γ , are shown in Fig. 5, demonstrat-
ing quantitative agreement with theoretical predictions and
scaling. As expected, and similarly to the semi-infinite rigid
interface solution, the length scale controlling the decay of
the potential at the porous layer edge is strongly dependent
upon the potential in the porous layer. This decay is illustrated
in Fig. 5(a) and shown more clearly in Figs. 5(b) and 5(c).
Although Figs. 5(b) and 5(c) are qualitatively similar, the
length scale over which Fig. 5(b) decays is 1/10th of the scale
in Fig. 5(c). This disparity in decay length is a direct result
of the nonlinearity of the governing physics. In contrast to the
linearized limit, at large potential the characteristic length scale
is a strong function of the local potential. Furthermore, we
directly compare numerical and analytical results [cf. Eq. (C9)

for the edge potential in the Supplemental Material [51]] in
Figs. 5(d) and 5(e), showing excellent agreement. Figures 5(d)
and 5(e) demonstrate that the porous layer edge potential
matches the analytical result and that the result is invariant
to the value of γ . This invariance to γ is also demonstrated in
Figs. 5(a) through 5(c). These favorable comparisons establish
the validity of our numerical potential simulations to describe
the potential and charge distribution within the porous layer
system.

Parameters α, β, and γ have distinct effects on the
electrokinetic coupling parameters χ

(soft)
ij . We explored the

impact of these parameters on χ
(soft)
ij previously with our

analytical form (48) and here show a more complete picture via
numerics. The parameter α affects only the fluid mechanics of
the system. As α → ∞, momentum transport in the porous
region vanishes, throttling fluid transport. This restriction
occurs independently of the potential profile. The limit of
α → 0 represents the opposite extreme, where the porous layer
exhibits no resistance beyond fluid viscous effects. For most
systems, α is the dominating factor governing the magnitude
of the coupling coefficients. This dominance is demonstrated
in Fig. 6, showing the cross-coefficients (χ12 and χ21) over
seven decades of α, while β and γ are simultaneously varied.
The results shown in Fig. 6(a) communicate the importance of
transport within the porous layer. At low values of α, transport
is permitted in the porous region and overall charge transport is
enhanced by the coincidence of fluid motion and fixed charge
density, with minimal sensitivity to the value of β. All results
in Fig. 6 are shown for an interior (or Donnan) potential of
φ∗

D = 5, i.e., φD = 128 mV. The boundary potential, φo, is
assumed equal to the Donnan potential for these cases.

The selections of β = 1 and 100 illustrate χ
(soft)
ij for a porous

layer completely filling the channel (β = 1) and a porous
layer forming a thin region of fixed charge relative to the
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FIG. 6. (Color online) Behavior of the coupling coefficients χ
(soft)
12 and χ

(soft)
21 over seven decades of α for β = 1 [red lines in (a) and (b)],

β = 100 [black lines in (a) and (b)], and various values of γ , indicated with various line styles. Panel (c) compares numerical values and
analytical approximations of χ (hard) in the α � 1 limit as a function of γ (x axis) and β for φ∗

D = 5, showing excellent agreement.

pure fluid phase (β = 100). Furthermore, we consider a range
of γ indicating porous layers that are similar in size to the
Debye length of the fluid (solid lines) to layers that are much
larger than the Debye length (dash-dot and dotted lines). The
discrepancy between the large- and small-β limit is attributable
to convection of charge in the double layer beyond the edge
of the porous region. This layer is not present in the β = 1
limit (as the porous region fills entirely the channel) and thus
contributes neither fluid nor current flux. For strongly resistive
layers, the data presented in Fig. 6(c) demonstrates that χ

(soft)
ij

exhibit greater sensitivity to the value of β when α becomes
large. Here, the porous layer is strongly resistive and transport
occurs mainly in the pure fluid region. For β = 1, the entire
channel is filled with a strongly resistive layer; the flow is
throttled, and the fluxes vanish.

The parameter γ affects the coupling coefficients χ
(soft)
12

and χ
(soft)
21 at nearly all values of α. When α � 1, the coupling

coefficients reach their limiting maximum form and exhibit
a scaling of 1/γ 2. This behavior is shown most clearly in
Fig. 6(b), in which the coupling coefficient is plotted as a
function of γ for α � 1, while simultaneously varying the
height of the channel (β). The γ −2 scaling is confirmed by the
favorable comparison between our low-α analytical relation,
Eq. (60), and the results of our numerical representations for
the potential and coupling coefficients. These results display
not only correct scaling but also the accuracy of our analytical
approximations in this region.

The value of γ does not affect the limiting result of
the coupling coefficients as α 
 1. Rather, the parameter γ

controls the value of α at which this limiting result is achieved,
as illustrated in Fig. 6(c). This behavior can be explained by
considering the potential in regions with fluid transport. For a

porous layer with α � 1, transport occurs near and beyond
the porous layer edge, having been diminished within the
porous layer. In the context of pressure-driven flow, for the
large-α limit, flow is relegated to a thin region of thickness
order λo near the porous layer edge or α in dimensionless
space. Similarly, the fixed charges within the porous layer
generate a potential whose decay length is equal to λD or γ

in dimensionless space. As γ decreases, the potential profile
limits to the step function defined by the fixed charge in the
porous layer (e.g., Fig. 5). This limiting case exhibits zero
potential curvature everywhere in the porous layer except at
the edge, and within the porous layer the free charge is equal
and opposite to the fixed charge. Thus, any transport in this
region necessarily depends on both α and γ —increasing values
of α will decrease charge transport by reducing fluid velocities
at the porous region edge, and decreasing values of γ will
increase the charge transport by enhancing the amount of free
charge that may be convected near the porous region edge.

Numerical simulations of χ
(soft)
ij show that the upper and

lower limits for χ
(soft)
ij bound the cross-coupling coefficient

at large α. Agreement is shown in Fig. 7 for α = 100 and
φ∗

o = 5 over a range of β and γ . Furthermore, these results
communicate that strong changes in the electrical potential
profile and transport at the interface are responsible for
variations in χ

(soft)
ij . Both of these effects are apparent when

comparing results for β = 1 to all other cases. When β = 1,
gradients in fluid velocity occur at the solid boundary, and
there are no gradients in electrical potential or charge; the
approximation matches the numerical data. For β �= 1, there
is a decay in potential from φ∗

D in the porous layer toward
the bulk (midline) value; the decay length is governed by the
parameter γ . As γ decreases, the dominant flux contribution
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FIG. 7. Upper and lower limit forms of χ
(soft)
12 for α = 100.

is from the value of the fixed charge density. Conversely, when
γ becomes large, the potential terms become dominant: Since
the potential is estimated everywhere within the porous layer
and at the boundary of the porous layer and fluid, the large-γ
case yields the largest errors.

Furthermore, the upper and lower bounds derived for χ
(soft)
ij

at large α [Eqs. (65) and (66)] accurately approximate χ
(soft)
ij

over a large range of α. This matching, and the associated
errors, is shown in Fig. 8. The accuracy of these expressions
over the entire range of α is somewhat surprising, as they were
developed only for the large-α limit. Given our assumptions on
the fixed charge distribution within the porous layer, however,
we are able to exactly capture the contribution from each
term containing ρ∗

f . Because this fixed charge density term

is dominant at low α, the approximation for φ∗ in the system
does not contribute at small α, no matter the accuracy of the
estimated value for α. As α is increased, the φ∗ term in the
integral contributes a greater amount as compared to the ρ∗

f

term, and the estimated value of the potential in the porous
layer does play an important role, as seen in Figs. 7 and 8. At
large α the exact and approximated values of χ

(soft)
ij diverge,

producing errors of about 10%.

VIII. CONCLUSION

We have developed simplified analytical expressions for
χ

(soft)
11 and χ

(soft)
ij that are functions of known and/or estimable

properties of a system with porous and charged layers. These

FIG. 8. [(a) through (d)] Large α limit applied over the entire range of α. [(e) through (h)] Errors (as percentages) in χ
(soft)
12 applied over the

entire range of α. The nonmonotonicity observed in the errors is results from taking the maximum error of the difference between the numerical
value and upper and lower estimations of χ

(soft)
ij .
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expressions are improvements over earlier works on similar
systems by removing the functional dependence on potential
curvature and fluid velocity, which are typically not known.
Prior workers have examined limiting regions of the parameter
space that we consider in full.

Our results consider the limits of system parameters α,
β, and γ rather than φD or φo, which extends the generality
of our results. We have described the system using physical
and chemical properties that can be measured or inferred: the
solid wall potential (φo), fixed charge in the porous layer (ρf ),
porous layer thickness (δ), porous layer resistance (k), Debye
length (λD), the system height (h), and the fluid viscosity
(η). These properties can be further reduced to a set to
dimensionless parameters, chiefly, the quantities α, β, and γ ,
which describe distributions of momentum and charge within
the system.

With numerical solution of the governing equations, we
have validated our approximate analytical forms of the
coupling coefficients and have shown that two simple ana-
lytical expressions, Eqs. (65) and (66), faithfully describe the

behavior of the terms χ
(soft)
ij to within 10%. Equations (65)

and (66) make no assumptions on the magnitude of the poten-
tial or fixed charge density within the porous layer but do as-
sume that the fixed charge is uniformly distributed and the po-
tential deep within the porous layer is gradient-free. Similarly,
we have derived and validated expressions for χ

(soft)
ij when the

parameter α is small, and the small-α limit applies more gen-
erally to systems with arbitrary distributions of fixed charge.

The theory, modeling, and analysis herein forms a structure
through which systems with porous layers may be analyzed. If
system parameters are known, expressions for χ

(soft)
11 and χ

(soft)
ij

give predictive capability for several phenomena. Conversely,
if the coupling parameters are known from experimental
measurements, system parameters may be determined.
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