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Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon
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A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid
interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at
a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation
is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett. 95, 084504 (2005)] and
provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in
addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations
uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular
velocities normal versus tangential to the interface. It is also found that the evaporation and condensation
coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation
coefficient of the normal velocity component is almost unity, while that of the tangential component shows
a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity
distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of
the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from
the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the
interface. The liquid-temperature dependence of the present KBC is also discussed.
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I. INTRODUCTION

Nonequilibrium mass and energy transport phenomena
across phase interfaces play crucial roles in many fields of
physics, chemistry, biology, and other areas (e.g., our climate)
[1–4]. Vapor-liquid interfaces are ubiquitous, and transport at
the interfaces has been a focus of discussion [5], particularly
in atmospheric science in heterogeneous environments such
as aerosol surfaces [6] and in engineering problems as, for
example, encountered in bubble dynamics [7–11]. Mass and
energy transfer at a vapor-liquid interface are prescribed by
the boundary condition for the Boltzmann equation (kinetic
boundary condition, KBC) [12–15], and the vapor flows can
be strongly influenced by the KBC [16]. There has been a
long history of KBC studies since the pioneering work by
Hertz [17] and Knudsen [18], and several mathematical and
empirical models have been suggested based on a variety of
different assumptions [7,12–14]. However, a KBC should be
able to be formulated theoretically in a first-principles manner
based on actual molecular interactions of the participating
molecules. In this paper, we demonstrate that a KBC at
a vapor-liquid interface can uniquely be constructed on a
molecular interaction potential, albeit only with the help of
numerical simulations. A KBC at the vapor-liquid interface
of argon, which covers a fairly wide range of nonequilibrium
states of vapor, is constructed based on molecular dynamics
(MD) calculations of velocity distribution functions valid at
the interface.
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The velocity distribution function (VDF) f is defined by
(see, e.g., [14])

dN = 1

m
f (X,ξ ,t)d Xdξ , (1)

where X = (x,y,z) and ξ = (ξx,ξy,ξz) are the molecule
position with its Cartesian coordinates and the molecular
velocity with its Cartesian velocity components, respectively,
dN is the number of molecules in the six-dimensional volume
element d Xdξ at time t , and m is the mass of a molecule. A
KBC at a vapor-liquid interface means specifying the VDF
of molecules outgoing from the interface [19]. It includes
information on the number and the velocities of molecules
emitted from the interface. From mass, momentum, and energy
conservation, all transport of molecules across the interface
is prescribed by the KBC. A KBC also includes which
fraction of molecules incident on the interface condenses onto
the interface. The “condensation coefficient” or the “mass
accommodation coefficient” αc has been widely used as the
parameter to specify the condensation probability, and it has
long been studied experimentally [20–22] and theoretically
[23,24].

The MD simulation is a quite useful tool to resolve
heat and mass transfer at the interface from a molecular
point of view, and details of the molecular condensation
mechanism have been reported [25–34]. The evaporation from
a liquid is also relevant for the mass transfer at a vapor-liquid
interface [35,36], and the “evaporation coefficient” αe as well
as the condensation coefficient has been a matter of debate
[37–42]. However, energy transfer is not determined uniquely
only by the condensation-evaporation ratio. The “thermal
accommodation coefficient” αt is frequently used to specify
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to what extent the molecules reflected to the vapor phase
are thermally accommodated to the liquid temperature [14].
In most studies, the parameters αc, αe, and αt have been
examined separately. However, as we shall demonstrate, those
coefficients and corresponding VDFs should not be examined
separately, because mass and energy transfer is uniquely given
in the framework of VDFs (i.e., KBCs). In this paper, we derive
the KBC containing αc, αe, and αt and determine their values
for a real monoatomic molecule.

The present KBC study is based on a series of previous
results [37,43], and an extension of a previous letter [44], where
the modeling of energy transfer had not yet been completed.
The present investigation provides a more complete form of the
boundary condition including αt . We also discuss molecular
mechanisms leading to the KBC constructed in this study.
Section II describes the outline of the KBC construction.
Readers may find an essential part pertaining to the present
context and results in Sec. II without consulting the previous
publications and other sections in detail. In Sec. III, details
of the present MD procedures are summarized. Section IV
is devoted to the calculation results of the VDF of molecules
leaving the interface and of the three coefficients αc, αe, and
αt . Some additional analyses to clarify the physical origin of
the KBC form derived are presented there together with a
discussion of the temperature dependence of the new KBC.
Concluding remarks follow in Sec V.

II. FORMULATION OF THE KINETIC BOUNDARY
CONDITION AT A VAPOR-LIQUID INTERFACE

Here we outline the present formulation of the KBC and
the results of MD simulations to be discussed in detail in
the subsequent sections. As shown in Fig. 1, vapor molecules
colliding with a plane vapor-liquid interface and molecules
outgoing from the interface thereby crossing a transition layer
are considered. The VDFs of those molecules are defined as
f coll and f out, respectively. The mass fluxes of those molecules
are then determined without any assumptions as

〈J coll〉 = −
∫

ξz<0
ξzf

colldξ , (2a)

〈J out〉 =
∫

ξz>0
ξzf

outdξ , (2b)

Bulk vapor phase

Bulk liquid phase 〈J cnds〉

〈J ref 〉

〈J out 〉

〈J coll 〉〈J evap〉

Transition layer

z

evap ref

FIG. 1. Definitions of velocity distribution functions f and
molecular fluxes J at a vapor-liquid interface.

where ξz is the molecular velocity component normal to
the interface, and the positive z direction is defined as the
direction from liquid to vapor. Hereafter, we denote the three-
dimensional integral

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ dξxdξydξz as

∫
dξ and the

three-dimensional half-space integral
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞ dξxdξydξz

as
∫
ξz>0 dξ , and so on. In the equilibrium state at temperature

T , f coll(−ξz) = f out(ξz) = ρv(T )f̂ ∗(T ) (for ξz > 0) holds,
where ρv(T ) is the saturated vapor density at temperature
T , and f̂ ∗(T ) denotes the normalized Maxwell VDF at
temperature T ,

f̂ ∗(T ) = f̂ ∗
x (T )f̂ ∗

y (T )f̂ ∗
z (T ), (3)

where f̂ ∗
ι (T ) is the one-dimensional, normalized Gaussian

distribution function of the molecular velocity with a temper-
ature T of the ιth direction (ι = x,y,z), Tι, here also called
component VDF:

f̂ ∗
ι (Tι) = 1√

2πRTι

exp

(
− ξ 2

ι

2RTι

)
, (4)

where R = kB/m is the gas constant with kB(= 1.380 65 ×
10−23 J/K) being the Boltzmann constant. It may be con-
sidered as one component of the Maxwell VDF. In the
above expressions, ∗ represents a Gaussian distribution, and
ˆ represents a function normalized in the whole molecular
velocity space.

f coll is usually obtained as a solution of the Boltzmann
equation, while f out (i.e., the KBC) is unknown at the level
of kinetic theory and should be modeled in MD calculations.
Intuitively, f out should depend on both gas and liquid states.
Here, we assume that f out is a function of f coll and liquid tem-
perature T�, as well as molecular velocity ξ : f out(f coll,T�,ξ ).
The problem is how to model f out as a function of f coll at a
fixed T�. The temperature dependence of f out will be discussed
in the next step (Sec. IV G).

The KBC approach by Ishiyama et al. divides f out into the
following two parts [37]:

f out(f coll,T�,ξ ) = f out(0,T�,ξ )

+ [f out(f coll,T�,ξ ) − f out(0,T�,ξ )]

= f evap(0,T�,ξ ) + f ref(f coll,T�,ξ ). (5)

Here, we call the first term on the right-hand side of
Eq. (5) the VDF of molecules evaporating from the interface
spontaneously, since it is independent of f coll.

f evap can uniquely be determined in vacuum evaporation
MD simulations [37,43], and then the mass flux of evaporating
molecules is obtained as

〈J evap〉 =
∫

ξz>0
ξzf

evapdξ . (6)

There may be other, different ways to split f out, if f out is
well modeled in some range of nonequilibrium states [26,33,
45–47]. Actually, some studies employed another way to split
f out into two VDFs by labeling an outgoing molecule as an
evaporated or a reflected one [26,33,45]. We emphasize here
that the splitting of f out in Eq. (5) is free from such a distinction
of individual molecules.

Next, some mass fluxes at the vapor-liquid interface
are defined, as schematically shown in Fig. 1: 〈J coll〉,
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〈J out〉, and 〈J evap〉 are defined above, and 〈J ref〉 is the
mass flux of molecules reflected at the interface, defined
as 〈J out〉 − 〈J evap〉, and then 〈J cnds〉 is that of molecules
condensing onto the interface, defined as 〈J coll〉 − 〈J ref〉:

〈J ref〉 = 〈J out〉 − 〈J evap〉, (7a)

〈J cnds〉 = 〈J coll〉 − 〈J ref〉. (7b)

All the VDFs and mass fluxes introduced can be determined
without any ambiguity in MD simulations. The condensation
coefficient αc and the evaporation coefficient αe are defined as

αc = 〈J cnds〉
〈J coll〉 , (8a)

αe = 〈J evap〉
〈J out〉e

= 〈J evap〉
ρv(T�)

√
RT�/(2π )

, (8b)

where 〈J out〉e is the outgoing mass flux in the equilibrium
state. In the equilibrium state, αc = αe holds, since 〈J coll〉 =
ρv(T�)

√
RT�/(2π ) and 〈J cnds〉 = 〈J evap〉, while these relations

are not necessarily guaranteed in nonequilibrium states.
In Sec. IV C, αc will be examined at a constant liquid

temperature of 85 K of argon in a wide range of nonequilibrium
states of its vapor. In previous reports [37,44] it has been
demonstrated that f evap and f out, obtained from the MD
simulations, can be expressed in the following functional
forms:

f evap = σ evapf̂ ∗
x (T�)f̂ ∗

y (T�)f̂ ∗
z (T�) (ξz > 0), (9)

f out = σ outf̂ ∗
x (Tt )f̂

∗
y (Tt )f̂

∗
z (T�) (ξz > 0), (10)

where σ evap and σ out will be determined by the mass flux
relations, Eqs. (7a) and (7b), as described subsequently, and
Tt will be defined and related to other quantities further
below. Substituting Eq. (9) into Eq. (6), we have 〈J evap〉 =
σ evap√RT�/(2π ), and from the definition of αe [Eq. (8b)],

σ evap = αeρv. (11)

Thus f evap can be expressed as

f evap = αeρv(T�)f̂ ∗
x (T�)f̂ ∗

y (T�)f̂ ∗
z (T�) (ξz > 0). (12)

Similarly, substituting Eq. (10) into Eq. (2b), we
have 〈J out〉= σ out√RT�/(2π ) = 〈J evap〉+ 〈J ref〉 = 〈J evap〉+
〈J coll〉(1 − 〈J cnds〉/〈J coll〉), where the mass flux relationships
of Eqs. (7) are applied. Thus we obtain [44]

σ out = αeρv + (1 − αc)〈J coll〉/
√

RT�/(2π ), (13)

f out = [αeρv + (1 − αc)σw]f̂ ∗
x (Tt )f̂

∗
y (Tt )f̂

∗
z (T�) (ξz > 0),

(14)

where σw = 〈J coll〉/√RT�/(2π ). Equation (14) is the physi-
cally correct KBC which we have sought, but the parameter Tt

in Eq. (14) is still unknown as a function of f coll and the next
step is to express Tt in a suitable form.

A component temperature of a VDF f is defined as
[7,12–14]

Tι = 1

ρR

∫
(ξι − vι)

2f dξ (ι = x or y or z), (15)

where the density ρ and the velocity vι are defined as

ρ =
∫

f dξ , (16)

vι = 1

ρ

∫
ξιf dξ . (17)

According to these definitions, a component temperature of
the outgoing molecules, T out

ι (ι = x or y or z), is defined by

T out
ι = 1

ρoutR

∫
ξz>0

(
ξι − vout

ι

)2
f outdξ , (18)

where

ρout =
∫

ξz>0
f outdξ , (19)

vout
ι = 1

ρout

∫
ξz>0

ξιf
outdξ . (20)

Substituting Eq. (10) into Eqs. (18), (19), and (20), we obtain
ρout = σ out/2, vout

ι = 0 for ι = x or y, vout
z = √

2RT�/π ,

T out
ι ≡ Tt , for ι = x or y, (21)

and T out
z = (1 − 2/π )T�.

It will be shown in Sec. IV B (compare Ref. [44]) that
T out

ι (= Tt ) for ι = x or y may largely deviate from T�

depending on the states of vapor. We discuss the mechanism
why Tt deviates from T� in terms of anisotropic energy
relaxation at the interface in Sec. IV E.

The tangential temperature Tt is given by f out in Eq. (18),
but, in principle, it should be a function of the VDF of the
incident, colliding molecules, f coll. In Ref. [44], Tt was given
as a linear function of the incident energy flux, Ecoll. In this
paper, we develop a more advanced expression for Tt to give
the KBC a more tractable form in an actual application.

In the following, Tt is formulated as a function of f coll

by introducing the thermal accommodation coefficient αt (see
below). From Eqs. (5), (12), and (14) f ref can be formulated
as

f ref = f out − f evap (22a)

= {[αeρv + (1 − αc)σw]f̂ ∗
x (Tt )f̂

∗
y (Tt )

−αeρvf̂
∗
x (T�)f̂ ∗

y (T�)}f̂ ∗
z (T�) (ξz > 0) (22b)

≡ σ reff̂ ref
x f̂ ref

y f̂ ∗
z (T�) (ξz > 0), (22c)

where f̂ ref
ι (ι = x or y) is the normalized VDF of the reflected

component tangential to the interface and is not necessarily a
Gaussian distribution. Similar to the case of T out

ι , defined in
Eq. (18), a component temperature of the reflection is defined
as

T ref
ι = 1

ρrefR

∫
ξz>0

(
ξι − vref

ι

)2
f refdξ (ι = x or y or z),

(23)

where

ρref =
∫

ξz>0
f refdξ , (24)

vref
ι = 1

ρref

∫
ξz>0

ξιf
refdξ . (25)
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Substituting Eq. (22b) into Eqs. (23), (24), and (25), we
obtain ρref = σ ref/2, vref

ι = 0 for ι = x or y, vref
z = √

2RT�/π ,
and T ref

z = (1 − 2/π )T�. σ ref in Eq. (22c) can be evaluated
by taking the integral

∫
f refdξ for Eqs. (22b) and (22c) to

get

σ ref = (1 − αc)σw, (26)

and T ref
ι ≡ Tr for ι = x or y can be written as Tr = Tt +

(Tt − T�)αeρv/[(1 − αc)σw], or, rearranged for Tt ,

Tt = αeρvT� + (1 − αc)σwTr

αeρv + (1 − αc)σw

. (27)

For Tr = T�, the tangential temperature Tt of a mixture
consisting of spontaneously evaporating and of reflected
components becomes T�, as it should be.

Equation (27) expresses the relationship between Tt and
Tr . The remaining problem is how to model Tr as a function
of f coll. To do this, we introduce the thermal accommodation
coefficient αt defined through

Tr = αtT� + (1 − αt )Tc, (28)

where Tc ≡ T coll
ι (ι = x or y) is the tangential temperature of

incident, colliding molecules:

T coll
ι = 1

ρcollR

∫
ξz<0

ξ 2
ι f colldξ (ι = x or y), (29)

in which

ρcoll =
∫

ξz<0
f colldξ = σ coll/2, (30)

because f coll = σ collf̂ coll. In Eq. (29), we assume that
f coll has symmetry in x and y directions, i.e., vcoll

ι =∫
ξz<0 ξιf

colldξ/ρcoll = 0 for ι = x and y. We finally obtain

f out as a function of f coll via the three parameters αe,αc,
and αt .

Equation (28) provides us with a physical picture that
the temperature of the reflected molecules can be viewed
as an intermediate state between complete accommodation
(the first term with αt = 1) and no accommodation at all (the
second term with αt = 0). In this sense, the functional form
that Eq. (22c) contains f̂ ∗

z (T�) implies that the normal (per-
pendicular) temperature of outgoing molecules is completely
accommodated (i.e., αt = 1 in the z direction). In Sec. IV D,
we will actually calculate the value of αt for argon in MD
simulations and model αt as a function of the states of vapor.
The mechanism of the anisotropic behavior of αt is discussed
in Sec. IV E. Once αt is modeled, Tt can be determined as
a function of f coll from Eqs. (27), (28), and (29), and hence
the correct KBC f out, Eq. (14), is given as a function of f coll

explicitly with the help of the coefficients αe, αc, αt . Heat
and mass transfer at the interface can be described by those
coefficients. Note that the correct KBC should show Tt → T�

in the cases of vacuum evaporation (f coll = 0) and equilibrium
state [f coll = ρvf̂

∗
x (T�)f̂ ∗

y (T�)f̂ ∗
z (T�)]. One can easily check

that these necessary conditions are automatically satisfied in
the above formulations.

Lg
∗Temperature 

controlled region
Lc
∗

z∗

Density 

O

T�Bulk 
condensed phase

Position of the boundary

fcoll

fcollfcoll

z(a)

(b)

FIG. 2. (a) The molecular dynamics system. (b) Schematic of the
control variables in the moving coordinate system z∗.

III. MOLECULAR DYNAMICS PROCEDURES

The MD procedures are essentially the same as the
ones in a previous report [44]. Here, we give a more
detailed description of the computation. The phenomenon
considered here is the one-dimensional steady evaporation
or condensation flow in the macroscopic sense. To construct
such a nonequilibrium system, we prepare a rectangular MD
simulation cell containing a liquid slab and its vapor [Fig. 2(a)].
The two vapor-liquid interfaces are formed in the (x,y) plane.
The lateral dimensions are set to Lx × Ly = 50 × 50 Å

2
,

and the initial length Lz is 88.3 Å, which is changed in
the course of calculation as explained later. Initially, the
simulation cell imposing three-dimensional periodic boundary
conditions contains 2000 argon molecules in a vapor-liquid
equilibrium state at 85 K, forming a liquid slab with thickness
∼38.2 Å at the center of the cell. The 12-6 Lennard-Jones
potential φ(rij ) = 4ε[(σ/rij )12 − (σ/rij )6] is applied for the
intermolecular potential of argon molecules with a cutoff
length of 15 Å, where σ = 3.405 Å, ε/kB = 119.8 K, and
rij is the intermolecular distance between the ith and j th
molecules. Newton’s equations of motion are integrated nu-
merically using the leapfrog algorithm with a time step of 1 fs.

After the equilibration during several hundreds of picosec-
onds, the boundary condition in the z direction (normal to the
interface) is changed in the following way to construct the
nonequilibrium steady evaporation and condensation states.
Note that the periodic boundary condition is kept in the x and
y directions. At the boundaries of the simulation cell faces in
the ±z direction (hereafter referred to as the top and bottom
faces, respectively) we utilize an algorithm widely used in
the direct simulation Monte Carlo method [48]. That is, we
give the positions and velocities of molecules colliding with
the interface across the top or bottom face probabilistically
with the help of uniformly distributed random numbers Rn

(0 � Rn � 1), and we eliminate the molecules exiting across
these boundaries. The position of the ith molecule entering
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the cell is determined as (xi,yi) = (LxR1,LyR2) in the top or
bottom face. To avoid unphysical overlap of intermolecular
potentials, the position (xi,yi) is rejected if rij < σ for
some j th molecule, and the random numbers are regenerated
until rij > σ is satisfied for any other j th molecule. The
velocities of molecules penetrating the interface are given,
according to the direct method [48], on the basis of a specified
distribution function f coll, for which we assume the Maxwell-
type distribution function,

f coll = βρvf̂
∗
x (γ T�)f̂ ∗

y (γ T�)f̂ ∗
z (γ T�), (31)

for ξz < 0 on the top face and for ξz > 0 on the bottom one. In
the direct method, the velocity of the ith molecule according
to f coll in Eq. (31) is determined as

ξ i
x =

√
−2γRT�ln(R1) cos 2πR2,

ξ i
y =

√
−2γRT�ln(R1) sin 2πR2,

ξ i
z =

√
−2γRT�ln(R3).

Here, β and γ are parameters that represent the deviation from
the equilibrium state. The factors β and γ can be considered as
describing, respectively, a deviation from the saturation vapor
density ρv (ρv → βρv) and a vapor temperature deviation
from the liquid temperature T� (T� → γ T�). The equilibrium
state corresponds to β = γ = 1, and the vacuum evaporation
state [37] is realized when β = 0. We present the results of
numerical simulations for 20 different sets of β = 0.5, 1.0,
2.0, 3.0, and 4.0 and γ = 1.0, 2.0, 3.0, and 4.0. As shown later,
the net condensation occurs in the parameter sets of β > 1.0
and γ > 1.0, since the temperature and pressure in the vapor
phase become higher compared with those in the equilibrium
state. On the other hand, the simulations with β = 0.5 create
systems with net evaporation in the range of γ < 4.0. Note
that the compression factor p/(ρRT ) is confirmed to be nearly
unity in all cases, and hence the vapor can be regarded as an
ideal gas.

From now, we focus on the dynamics of molecules in the
right-half region in the cell [Fig. 2(a)] because the vapor-liquid
system is symmetric with respect to the center of the liquid
layer in the macroscopic sense. The thickness of the liquid slab
increases with time when net condensation occurs, whereas it
decreases when net evaporation occurs. In the former (latter)
case, the interface moves toward the vapor (liquid) phase. We
therefore introduce the moving coordinate system z∗, as shown
in Fig. 2(b), where

z∗ = z − (Zm − vst)

δ
, (32a)

vs = Js

ρ�

, (32b)

where Zm and δ are, respectively, the center position (the
so-called Gibbs dividing surface position [49]) and the 10–90
thickness of the transition layer (6.3 Å at 85 K for argon), which
have already been obtained in the equilibrium simulation [37],
vs is the speed of the moving coordinate, t is the time from
the beginning of the simulation, ρ� is the liquid density, and
Js is the nonaveraged net mass flux across the top face. To
realize a steady condensation state, the distance between the
top face and Zm, L∗

g in Fig. 2(b), should be unchanged during

the simulation. The cell length Lz is therefore changed so as
to maintain this distance. The liquid slab is thermostatted at
T� with the velocity scaling method [50] for the region of
z∗ < −L∗

c in Fig. 2(b). We checked that the present results
are insensitive in the range of 2 < L∗

g < 4 and 0 < L∗
c <

1, and we employed L∗
g = 4 and L∗

c = 1. After a steady
state is established, samples are accumulated throughout the
simulation time of several tens of nanoseconds, and statistical
averages are calculated on the z∗ coordinate from tens of
millions of samples.

IV. RESULTS AND DISCUSSION

A. Density, velocity, and temperature near the interface

In Fig. 3, density, velocity, and temperature profiles cal-
culated by MD simulations for various (β,γ ) sets are shown
versus the moving coordinate z∗. In the case of β = γ = 1.0
(crosses), one can confirm that the vapor-liquid equilibrium is
realized (i.e., ρ = ρv , v = 0, and T = T�). For β = γ = 2.0
(filled circles) and 4.0 (solid squares), the vapor has a higher
density than ρv and negative velocities of the molecules, which
means a net condensation state. In the case of β = 0.5,γ = 1.0
(open circles), on the other hand, net evaporation occurs. One
can also see that the profiles are almost constant in the region
of 2 < z∗ < 4 of width 2δ compared to the transition region
(0 < z∗ < 2). This suggests that molecular collisions among
vapor molecules rarely occur and/or attractive interaction
from the liquid is negligible in the region 2 < z∗ < 4. Since
the Knudsen numbers [=mean free path/(2δ)] in the region
2 < z∗ < 4 are large compared to unity for the present
nonequilibrium vapor [44], the kinetic interface may be located
at an arbitrary z∗ position in the range 2 < z∗ < 4. We
therefore evaluate f out by sampling the molecular velocity
in the region 2 < z∗ < 4.
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FIG. 3. Density, velocity, and temperature distributions for some
cases of (β,γ ). The dashed line in (a) denotes the saturated vapor
density ρv for T� = 85 K: ρv = 4.59 × 10−3 g/cm3.
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FIG. 4. (Color online) Normalized velocity distribution function of molecules incident onto the interface, f̂ coll (red squares), and outgoing
from the interface, f̂ out (blue circles), calculated in MD simulations at T� = 85 K, where ζι = ξι/

√
2RT� (ι = x,z). The solid curves in the left

panels denote one-dimensional, normalized reduced half-Maxwell velocity distributions with T� (= 85 K): (2/
√

π ) exp(−ζ 2
z ) (ζz > 0); those in

the right panels denote one-dimensional, normalized reduced Maxwell velocity distributions with T�: (1/
√

π ) exp(−ζ 2
x ). The dotted curves in the

right panels are one-dimensional, normalized reduced Maxwell velocity distributions with different temperatures Tt :
√

T�/(Ttπ ) exp(−ζ 2
x T�/Tt ).

B. Functional form of f out in nonequilibrium states

VDFs of molecules outgoing from the interface into the
vapor, f out, are examined by sampling the molecular velocity
with ξz > 0 in the region 2 < z∗ < 4 under various f coll

determined by Eq. (31). Figure 4 shows some representative
results for f coll with the parameter sets (β,γ ) = (1,1), (2,2),
(3,3), and (4,4). In the upper panels in Fig 4, the normalized
VDFs in the case of β = γ = 1.0 (i.e., the equilibrium state)
are shown, where Figs. 4(a1) and 4(b1) show the VDFs
normal and tangential to the interface, respectively. The red
squares denote f̂ coll and the blue circles denote f̂ out. One
can clearly see that the equilibrium state is realized in the
case of β = γ = 1. Now we focus on the left panels of
Fig. 4. f̂ coll

z has a wider distribution from upper (a1) to
lower (a4) panels, since the input parameter γ increases.
Nevertheless, the response f̂ out

z shows the (half) component
Maxwell VDF at T�. Interestingly, the situation is different
in the case of the tangential components, as shown in the
panels of Fig. 3. One can clearly recognize that the response
f̂ out

x shows the component Maxwell VDF with the temperature
Tt , and Tt is in the range between the liquid temperature T�

and the temperature of the input vapor (γ T�). In Table I,
Tt values calculated in MD simulations by Eq. (18) are
listed.

Accordingly, the functional form of f out shown in Eq. (10)
is demonstrated. The result suggests that the normal velocity
component is completely accommodated at T�, while the
tangential velocity component shows incomplete accommoda-
tion. In Sec. IV D, we will show the thermal accommodation

coefficient for the present parameter sets (β,γ ) calculated in
MD simulations and discuss the mechanism of the anisotropic
accommodation in Sec. IV E.

C. Evaporation and condensation coefficients

Here, we evaluate the condensation coefficient αc in
nonequilibrium MD simulations via Eq. (8a). The evaporation
coefficient has already been reported for argon at 85 K as
αe ∼ 0.868 [37], which is equal to the condensation coefficient
in the equilibrium state by definition. In MD simulations, 〈J out〉
and 〈J coll〉 can easily be evaluated by counting the number
of molecules per unit area and per unit time leaving (〈J out〉)
or entering (〈J coll〉) the simulation boundary [see Fig. 2(b)].
〈J out〉 and 〈J coll〉 values are listed in Table I. 〈J evap〉 has already
been obtained in vacuum evaporation simulations [37]. The
mass fluxes 〈J ref〉 and 〈J cnds〉 are determined by Eqs. (7). The
calculated condensation coefficients obtained from Eq. (8a)
are shown as a function of β and γ in Fig. 5 and in Table I.
In the range of net condensation states (β > 1.0 and γ > 1.0),
αc is almost constant and equal to αe. In the net evaporation
regime (β = 0.5), αc seems to be slightly lower than αe. An
accurate evaluation of αc for the net evaporation regime may
be more difficult to obtain than that for the net condensation
regime, since 〈J coll〉 in the denominator of Eq. (8a) is
small, and the value of αc may be sensitive to the value
of 〈J evap〉. Nevertheless, αc ≈ αe is a good approximation
near the equilibrium state; such a relation between αc and
αe is confirmed by experiments for water and methanol (see
Fig. 3.24 of [7]).
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TABLE I. The results of the nonequilibrium simulations of argon at 85 K.

β γ 〈J coll〉 [g/(cm2 s)] 〈J out〉 [g/(cm2 s)] αc Tt (K) Tc (K) αt

0.5 1.0 12.71 23.94 0.834 83.12 86.26 —
1.0 1.0 25.39 24.51 0.894 85.06 85.08 —
2.0 1.0 51.08 26.48 0.909 88.67 87.73 —
3.0 1.0 76.18 29.05 0.905 85.81 85.28 —
4.0 1.0 102.22 32.38 0.897 88.47 85.66 —
0.5 2.0 17.70 24.22 0.865 88.26 158.85 0.947
1.0 2.0 36.10 25.79 0.89 98.70 165.31 0.810
2.0 2.0 71.74 28.66 0.905 105.35 162.77 0.721
3.0 2.0 106.79 31.51 0.909 112.34 162.72 0.632
4.0 2.0 144.19 38.35 0.885 115.70 162.68 0.594
0.5 3.0 21.74 24.81 0.863 92.76 231.04 0.939
1.0 3.0 43.81 26.26 0.899 104.03 235.18 0.860
2.0 3.0 87.91 31.8 0.887 125.19 242.94 0.734
3.0 3.0 130.82 36.27 0.89 136.64 243.00 0.663
4.0 3.0 173.72 46.05 0.861 146.71 252.66 0.625
0.5 4.0 25.64 25.67 0.85 100.91 316.54 0.923
1.0 4.0 50.57 27.95 0.879 119.40 310.72 0.836
2.0 4.0 101.77 36.3 0.858 143.46 314.93 0.738
3.0 4.0 148.70 41.69 0.866 157.02 321.68 0.689
4.0 4.0 203.11 50.14 0.861 172.18 318.11 0.620

D. Thermal accommodation coefficient

The thermal accommodation coefficient αt is evaluated by
using MD simulations in the following way. Equation (28) is
rewritten as

αt = Tc − Tr

Tc − T�

, (33)

where T� is prescribed (here at 85 K), Tc can be evaluated by
Eq. (29) in the region 2 < z∗ < 4 (see Table I), and Tr is taken
from Eq. (27) by rearrangement,

Tr = αeρv

(1 − αc)σw

(Tt − T�) + Tt . (34)
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1

0

FIG. 5. The condensation coefficient αc in nonequilibrium states
at T� = 85 K. The open triangle denotes the evaporation coefficient
estimated in the previous study [37].

Tr is now known because all the quantities on the right-hand
side of Eq. (34) are obtained by MD simulations including Tt .
Thus αt can be obtained via Eq. (33).

Figure 6(a) shows the thermal accommodation coefficient
αt calculated from the present MD simulations (the values of
which are listed in Table I), where the values of αt for γ = 1.0
are omitted because Tc ∼ T� in the case of γ = 1.0, and the
denominator of the right-hand side of Eq. (33) approaches zero,
indicating that αt is indefinite. One can see that αt decreases
with increasing β, whereas αt is insensitive to changes of
γ . This fact is clearly seen in the two-dimensional plot of
Fig. 6(b), which is the projection of Fig. 6(a) onto the (β,αt )
plane. In the limit of β → 0, αt seems to approach unity;
i.e., complete accommodation is obtained. This means that the
KBC approaches the widely used isotropic form [12–14] in
the limit of β → 0:

f out = [αeρv + (1 − αc)σw]f̂ ∗
x (T�)f̂ ∗

y (T�)f̂ ∗
z (T�) (ξz > 0).

(35)

Note that this form is also valid approximately near the
equilibrium state since Tt approaches T�. When β increases,
however, the interface tends to become unstable since most
incident molecules condense onto the interface and some
finite time may be required to accommodate the liquid
temperature T� completely. Thus the energy relaxation is
insufficient for larger β. We further discuss the energy
relaxation and its anisotropic behavior in the following
sections.

For the purpose of an actual application of the KBC, we
provide a fitting function for αt as a function of β as

αt = exp(−ktβ), (36)
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FIG. 6. (Color online) The thermal accommodation coefficient αt

in nonequilibrium states at T� = 85 K. Note that data for γ = 1.0 are
omitted since αt is indefinite (see the text). (a) The three-dimensional
plot for αt as a function of (β,γ ) sets, and (b) its projection onto the
(β,αt ) plane. The dotted line in (b) is the fitting function Eq. (36).

where kt is a parameter, and β is obtained from Eq. (31) to be

β =
∫
ξz<0 f colldξ∫

ξz<0 f ∗(T�)dξ
= σ coll

ρv

. (37)

In Eq. (37), f ∗(T�) is the Maxwell VDF of saturated vapor at
T�. The least-squares-fitted value of kt is 0.137 for argon at
85 K. In Fig. 6(b), the fitting function Eq. (36) is plotted. The
thermal accommodation coefficient αt is now known, from
which Tr and then Tt can be evaluated by Eqs. (28) and (27),
with Tc being prescribed.

In Sec. IV G and the Appendix, the temperature dependence
of kt will be discussed.

E. Tangential component of the velocity distribution function

In Sec. IV B, we obtained the result that f out can be
expressed in the functional form of Eq. (10), i.e., as a
product of the reduced VDFs at the tangential temperature
Tt ( �= T�) and at the perpendicular temperature T�. This
manifests that the molecular velocity component normal to the
interface is completely accommodated, whereas the tangential
velocity component is not. Here, we discuss the molecular

mechanism of the inhomogeneity of the three-dimensional
velocity distribution by further analyzing MD simulations.

First, we speculate that the relaxation times of the molecular
velocities normal and tangential to the interface are different.
That is, the normal velocity component ξz of molecules inci-
dent on the interface is rapidly relaxed, whereas their tangential
velocity components ξx and ξy are slowly relaxed in the
anisotropic environment of the transition region. Qualitatively,
this picture may be valid because ξz of incident molecules must
be reversed if the molecules are to be reemitted, i.e., strong
interaction has to take place, whereas ξx and ξy do not have to
be reversed. This indicates that ξz is easily relaxed at the liquid
temperature T�, whereas the initial values of ξx and ξy can be
retained to a certain extent. The following analysis actually
supports this picture.

1. Analysis of the time correlation function of molecular velocity

Now we introduce the velocity autocorrelation function
(VAF) of the molecular velocity ξ i of the ith molecule as

Cξξ (t) = 〈ξ i(0) · ξ i(t)〉, (38)

where ξ i = (ξx,i ,ξy,i ,ξz,i). From the Green-Kubo relation,
we have the self-diffusion coefficient from Cξξ (t):
Ds = ∫ ∞

0 Cξξ (t) dt [51]. From Eq. (38), we have the x

and z components of Cξξ (t) as

Cξξ,x(t) = 〈ξx,i(0)ξx,i(t)〉, (39a)

Cξξ,z(t) = 〈ξz,i(0)ξz,i(t)〉. (39b)

We pay attention to these two components only, because
Cξξ,x(t) = Cξξ,y(t). The normalized VAF is defined as
Ĉξξ (t) = Cξξ (t)/Cξξ (0), where limt→0 Ĉξξ (t) = 1 and
limt→∞ Ĉξξ (t) = 0. To estimate the relaxation time τι of the
molecular velocity components, Ĉξξ,ι(t) is fitted with the
following function:

Ĉξξ,ι(t) = exp

(
− t

τι

)
(ι = x or y). (40)

To analyze the relaxation time of the molecular velocity as a
function of interfacial depth in the z direction, we introduce
the following VAF:

Cξξ,ι(t,z) = 〈ξι,i(0)ξι,i(t)δ(z − zi(0))〉 (ι = x or z), (41)

where zi(t) is the z position of the ith molecule at time t . The
time correlation functions were calculated according to the
algorithm in Ref. [50].

Figure 7 shows the normalized VAF tangential (thick
red lines) and normal (thin blue lines) to the interface,
Ĉξξ,ι(t,z∗= −1.75) (liquid) and Ĉξξ,ι(t,z∗= 1.75) (interface),
ι = x or z, defined in Eq. (41). Note that the initial molecular
position z∗ changes as time progresses due to molecular
diffusion. Nevertheless, the qualitative behavior of the
molecular velocity components in the liquid and in the
interface (transition region) can be discriminated in Fig. 7.
In the case of the interior of the liquid (z∗ = −1.75),
Ĉξξ,ι (ι = x or z) rapidly decreases and converges to zero
within ∼1 ps, whereas Ĉξξ,ι (ι = x or z) slowly decreases
in the transition region (z∗= 1.75). The rapid decrease in
the liquid phase is due to the packing effect by surrounding
molecules. The negative sign of Ĉξξ,ι (ι = x or z) at about
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FIG. 7. (Color online) The time correlation function of molecular
velocity tangential (thick red lines) and normal (thin blue lines) to the
interface for the initial molecular positions z∗ = ±1.75.

0.4 ps in the case of the interior of the liquid (z∗= −1.75)
reveals the oscillating behavior of argon molecules in the
liquid. The most important manifestation in Fig. 7 is that
Ĉξξ,x and Ĉξξ,z are almost the same in the interior of the
liquid (z∗ = −1.75), while in the transition region (z∗=1.75)
the relaxation of Ĉξξ,z is more rapid than that of Ĉξξ,x , clearly
indicating the anisotropic relaxation of molecular velocity.

Shown in Fig. 8 are the relaxation times τx and τz of
molecular velocity components [least-squares-fitted values of
Eq. (40)] as a function of z∗. One can see that the relaxation
time in the x direction, τx , deviates from that in the z direction,
τz, in the transition region of 2 > z∗ > 0. In that region, τx is
about three times larger than τz. These results are consistent
with the molecular picture of an anisotropic relaxation stated
at the beginning of this section.

2. Analysis of the friction coefficient in Langevin dynamics

Here we consider the anisotropic relaxation found in the
preceding sections from another aspect, Langevin dynamics.
Langevin dynamics enables us to trace a permeating molecule
(a tagged molecule) among surrounding molecules as three-
dimensional Brownian motion:

m
d2X(t)

dt2
= −∂G(X,Y,Z)

∂x
− γ ′

X(X,Y,Z)
dX(t)

dt
+RX(X,Y,Z,t), (42a)
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FIG. 8. (Color online) The relaxation time of molecular velocities
tangential (red circles) and normal (blue squares) to the interface. The
solid line indicates the density profile of the equilibrium state at 85 K.

m
d2Y (t)

dt2
= −∂G(X,Y,Z)

∂y
− γ ′

Y (X,Y,Z)
dY (t)

dt

+RY (X,Y,Z,t), (42b)

m
d2Z(t)

dt2
= −∂G(X,Y,Z)

∂z
− γ ′

Z(X,Y,Z)
dZ(t)

dt
+RZ(X,Y,Z,t), (42c)

where X, Y , and Z are, respectively, the reaction coordinates
in the x, y, and z directions for the tagged molecule, t is
the time, m is the mass of the molecule, G is the potential
of the mean force in the z direction, γ ′

X, γ ′
Y , and γ ′

Z are,
respectively, the space-dependent friction coefficients in the
x, y, and z directions, and RX, RY , and RZ are random forces.
We assume that molecular motions are homogeneous in the x

and y directions; therefore Eqs. (42a) and (42b) are identical.
The averaged potential of the mean force and the friction
coefficients can be calculated by using MD simulations as
functions of the coordinate Z. We will suppose that the Z

coordinate of the tagged molecule is first fixed at a certain
position of Z = Z0 for Eqs. (42a) and (42c), and for Eq. (42a)
the X coordinate is fixed during the MD simulations; the X and
Y coordinates in Eq. (42c) and the Y coordinate in Eq. (42a) are
allowed to move during the MD simulations. Then, by using
the fluctuation-dissipation theorem [52,53], the following
relations hold (see the Supplemental Materials [54]):

γz(Z0,t) = 1

kBT
[〈Fz(Z0,0)Fz(Z0,t)〉 − 〈Fz(Z0)〉2],

(43a)

γx(X0,Z0,t) = 1

kBT
[〈Fx(X0,Z0,0)Fx(X0,Z0,t)〉] (43b)

and

γ ′
z(Z0) =

∫ ∞

0
γz(Z0,t) dt, (44a)

γ ′
x(X0,Z0) =

∫ ∞

0
γx(X0,Z0,t) dt, (44b)

where T is the system temperature (=85 K), Fz(Z0,t) is a
force in the z direction at time t exerted on the tagged molecule
at the fixed position z = Z0, and Fx(X0,Z0,t) is a force in
the x direction at time t exerted on the tagged molecule at the
fixed positions x = X0 and z = Z0. The symbol 〈 〉 denotes
the ensemble average. The dynamics of the tagged molecule
in the liquid and in the vapor is well described by Eqs. (42a)
and (42c), and here we calculate the friction coefficients near
the interface in the x and z directions, γ ′

x and γ ′
z , respectively,

in MD simulations by Eqs. (44a) and (44b).
Figure 9 shows the MD simulation result of the friction

coefficients, where the dotted line denotes the friction coeffi-
cient of bulk liquid from the experimentally reported diffusion
coefficient [55] (D = 1.53 × 10−9 m2/s) and the Einstein
relation D = kBT /γ ′. One can clearly see the existence of
anisotropic friction near the interface. The friction coefficients
monotonically increase from vapor to liquid. On the vapor
side of the transition region (−0.5 < z∗), γ ′

z > γ ′
x , indicating

that the friction normal to the interface is larger than the
tangential component. This corresponds to a picture in which
the molecular velocity normal to the interface is quickly
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FIG. 9. (Color online) The space-dependent friction coefficient of
argon near the vapor-liquid interface in the equilibrium state at 85 K.
Red and blue lines denote γ ′

x and γ ′
z defined in Eqs. (43), respectively.

The dashed line is the friction coefficient of bulk liquid estimated
from the experimental diffusion coefficient and the Einstein relation
(see text). The thick black line is the potential of the mean force G

calculated from the thermodynamic integration method [50,51] (see
also the Supplemental Materials [54]): G(z) = − ∫ zvap

zliq
〈Fz(z)〉zdz.

relaxed compared to the tangential velocity, which is consistent
with the result of the multicomponent VDF for f out. On the
liquid side of the interface (z∗ < −0.5), the relation is reversed:
γ ′

x > γ ′
z . This can be explained by the surface tension of the

liquid, which is defined as the difference between normal
pressure and tangential pressure [56]. In the liquid, the virial
pressure always shows a minus sign due to the attractive
interaction, and hence the positive surface tension of the liquid
means that the tangential pressure is greater than the normal
pressure in absolute value. This may lead to the fact that
γ ′

x > γ ′
z .

Additionally, in Fig. 9, the calculated potential of the mean
force G is plotted as a function of the interfacial depth z∗.
One can see that G monotonically decreases from vapor to

liquid and that the change of G occurs on the vapor side of
the interface (0 < z∗ < 1) rather than in the middle of the
transition layer (z∗ ∼ 0). G has a constant value on the liquid
side (z∗ < 0), while the friction coefficients still change in
the range of −2 < z∗ < 0. This indicates that a molecule
experiences diffusional processes different from those in
the bulk region near the interface. The calculated �G value
between vapor and liquid is −4.01 kJ/mol, a value consistent
with those of other reports of the free energy for argon (e.g.,
see Ref. [57]).

Here we also notice that the calculated G has no potential
barrier on the vapor side of the interface, which is consistent
with the recent report on water evaporation by Varilly and
Chandler [58]. This would indicate that the evaporation
coefficient αe (the condensation coefficient in the equilibrium
state) should be unity [58]. However, in Sec. IV C, αe in the
present simulations exhibits a value of 0.868 (slightly smaller
than unity). In the Appendix, we provide a fitting function for
αe as a decreasing function of T�. This discrepancy can be
explained as follows: With increasing T�, the mass flux of the
outgoing molecules tends to correlate with that of the incident
molecules by phenomena such as “molecular exchange” [25].
In our definition of f out given in Eq. (5), the part of the outgoing
molecules influenced by incident molecules is classified as
the component of reflection. This is the reason why our
simulations indicate that αe has a value smaller than unity
even though the potential of the mean force has no distinct
barrier.

F. Mechanism of the behavior of αt

In the preceding sections, we have seen the multicomponent
VDF for f out with the tangential directions being characterized
by the tangential temperature Tt , and we have discussed its
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FIG. 10. Temperature profile of
molecules incident onto and outgoing
from the interface. The upper, mid-
dle, and lower graphs show the re-
sults of simulations for (β = 0.5,γ =
2.0), (β = 0.5,γ = 4.0), and (β =
4.0,γ = 2.0), respectively. The left
and the right panels are the normal
and the tangential components, re-
spectively. The open (filled) circles
are the temperatures of molecules in-
cident onto (outgoing from) the in-
terface T in

ι (T out
ι ), calculated from∫

ξz<(>)0 ξ 2
ι f dξ/(ρR) (ι = x or z).

The dashed lines indicate the tem-
peratures estimated from f coll(β,γ )
[Eq. (31)], which become γ T� for
ι = x and γ (1 − 2/π )T� for ι = z,
respectively. The solid lines indicate
the temperatures estimated from the
reduced Maxwell velocity distribution
at T�, which become T� for ι = x and
(1 − 2/π )T� for ι = z, respectively
(see the text for details).
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mechanism. The tangential temperature Tt is formulated by
the thermal accommodation coefficient αt in Sec. II, and
the present MD simulations show that αt is a decreasing
function of the parameter β specifying the density of the
incident molecules, whereas it is only slightly dependent
on γ specifying the temperature of the incident molecules.
This indicates that a reflected molecule is less accommodated
thermally to the liquid temperature if the nonequilibrium vapor
has a higher density compared to the saturated vapor density.
In this section, we discuss a molecular mechanism for this β

dependency of αt .
To observe the behavior of the tangential and the normal

temperatures for f out influenced by f coll in detail, the
temperature profiles of molecules incident onto and outgo-
ing from the interfaces are shown in Fig. 10. The results
of three nonequilibrium simulations are compared in the
figure: the upper graphs show the normal temperature Tz

[Fig. 10(a1)] and the tangential temperature Tx [Fig. 10(a2)]
in the simulation of f coll(β = 0.5,γ = 2.0), the middle ones
[Figs. 10(b1 and 10(b2)] show those in the simulation of
f coll(β = 0.5,γ = 4.0) to see the γ dependence of the results,
and the lower ones [Figs. 10(c1) and 10(c2)] show those
in the simulation of f coll(β = 4.0,γ = 2.0) to see the β

dependence of the results. The open (filled) circles are the
temperatures of molecules incident onto (outgoing from) the
interface T in

ι (T out
ι ), calculated by [see Eq. (18)]

∫
ξz<(>)0(ξι −

vι)2f dξ/(ρR) for ι = x or z. The dotted lines indicate
the temperatures estimated from f coll(β,γ ) [see Eq. (31)]:∫
ξz<0 ξ 2

ι f colldξ/(σ collR) for ι = x or z, which become γ T� for

ι = x and γ (1 − 2/π )T� for ι = z. The solid lines indicate the
temperatures estimated from the reduced Maxwell VDF at T�,
f ∗(T�):

∫
ξz>0(ξι − vι)2f ∗dξ/(R) for ι = x or z, which become

T� for ι = x and (1 − 2/π )T� for ι = z.
First, we focus on Figs. 10(a1), 10(b1), and 10(c1). T in

z

(open circles) in the vapor region z∗ > 2.0 well corresponds
to the dotted lines, and the profiles gradually decrease to the
values characterized by the liquid temperature when going
from vapor to liquid in the transition region, and finally
the temperatures become homogeneous in the liquid. T out

z

(filled circles), on the other hand, is homogeneous in all
regions. These results indicate that f out is hardly influenced
by f coll, and the marginal distribution f̂z becomes the reduced
Maxwell VDF at T�, f̂ ∗(T�), resulting in complete thermal
accommodation αt = 1. Next, we focus on Figs. 10(a2),
10(b2), and 10(c2). In the case of f coll(β = 0.5,γ = 2.0)
[Fig. 10(a2)], T out

x (filled circles) is hardly influenced by the
incident temperature T in

x , similarly to the case of the normal
(perpendicular) temperature. In the case of f coll(β = 0.5,γ =
4.0) [Fig. 10(b2)], the qualitative behavior is the same as
in the case of f coll(β = 0.5,γ = 2.0), even though T in

x in
Fig. 10(b2) is twice as large as that in Fig. 10(a2). In the
case of f coll(β = 4.0,γ = 2.0) [Fig. 10(c2)], however, T out

x

is strongly shifted by the influence of T in
x , and a temperature

gradient can be seen in the region near the interface. This
temperature gradient in the transition region for T out

x leads
to the decrease of αt . Now we have a physical picture for
the molecular interaction in the transition layer being strongly
anisotropic.
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FIG. 11. (Color online) Normalized velocity distribution function of molecules incident onto the interface, f̂ coll (red squares), and outgoing
from the interface, f̂ out (blue circles), calculated in MD simulations at T� = 90 K, where ζι = ξι/

√
2RT� (ι = x,z). The solid curves in the left

panels denote one-dimensional, normalized reduced half-Maxwell velocity distributions with T� (=90 K): (2/
√

π) exp(−ζ 2
z ) (ζz > 0); those in

the right panels denote one-dimensional, normalized reduced Maxwell velocity distributions with T�: (1/
√

π) exp(−ζ 2
x ). The dotted curves in the

right panels are one-dimensional, normalized reduced Maxwell velocity distributions with different temperatures Tt :
√

T�/(Ttπ ) exp(−ζ 2
x T�/Tt ).
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FIG. 12. (Color online) Normalized velocity distribution function of molecules incident onto the interface, f̂ coll (red squares), and outgoing
from the interface, f̂ out (blue circles), calculated in MD simulations at T� = 100 K, where ζι = ξι/

√
2RT� (ι = x,z). The solid curves

in the left panels denote one-dimensional, normalized reduced half-Maxwell velocity distributions with T� (=100 K): (2/
√

π ) exp(−ζ 2
z )

(ζz > 0); those in the right panels denote one-dimensional, normalized reduced Maxwell velocity distributions with T�: (1/
√

π) exp(−ζ 2
x ).

The dotted curves in the right panels are one-dimensional, normalized reduced Maxwell velocity distributions with different temperatures Tt :√
T�/(Ttπ ) exp(−ζ 2

x T�/Tt ).

Here we consider the reason why αt is affected by the vapor
state (especially β). In Sec. IV E2, we discussed the reason
why αe and αc are smaller than unity in spite of the barrierless
process: an incident molecule tends to stick to the interface
without reflection, and alternatively other molecules staying
near the interface are influenced by an incident molecule,
effectively increasing the mass flux of reflection. This kind of
correlation effect can also explain the behavior of αt . If ξz of an
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FIG. 13. The condensation coefficient αc in nonequilibrium states
at T� = 90 K. The open triangle denotes the evaporation coefficient
estimated in the previous study [37].

incident molecule is rapidly relaxed at T� as demonstrated in
the previous section, there may be no correlation between ξz of
an incident molecule and ξz of a reflected molecule. In the case
of molecular velocity tangential to the interface, our analysis
showed a slow relaxation to T�, indicating that ξx (or ξy) of
the reflected component tends to be affected by the incident
molecules. This produces a non-negligible gradient for T out

x

in the interfacial region discussed above, which accounts for
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FIG. 14. The condensation coefficient αc in nonequilibrium states
at T� = 100 K. The open triangle denotes the evaporation coefficient
estimated in the previous study [37].
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the reason why αt shows a β dependence in the present MD
simulation.

G. T� dependence of the KBC

In an application of the present KBC to actual heat and mass
transfer problems, one often needs to treat unsteady states, in
which the temperature changes in time. Thus, in this section,
we examine the dependence of the KBC on the temperature of
the condensed phase, T�. The methodology of MD simulation
and the analysis are essentially the same as in the previous
sections, and some remarks on the MD procedures and the
numerical values of the simulation data are described in the
Supplemental Materials [54].

The normalized VDFs of outgoing molecules, f̂ out, at
T� = 90 K as a function of β and γ are shown in Fig. 11.
In comparison with the case of T� = 85 K in Fig. 4, the
qualitative features are the same in the case of β = γ = 1,2,3;
that is, the normal VDFs (blue circles) are well fitted with
the (half) Gaussian distribution at T�, while the tangential
VDFs deviate from the Gaussian distribution at T�, though
the degree of the deviation may be different for T� = 85 K and
T� = 90 K. We will return to the temperature dependence of
the thermal accommodation coefficient in a later discussion. A
noticeable feature can be seen in Fig. 11(a4); f̂ out

z in the case
of β = γ = 4 deviates from the (half) Gaussian distribution
and shifts to a Gaussian at a higher temperature than T�. This
feature can be more clearly seen in the case of T� = 100 K
shown in Fig. 12. In the case of β = γ = 3 at T� = 100 K
[Fig. 12(a3)], f̂ out

z has already deviated from the Gaussian at
T�. This deviation indicates that not only does the thermal
accommodation coefficient (αt ) tangential to the interface
become less than unity but so does that normal to it. This
may not be a surprising result because f̂ out

z can be affected
by the vapor in a strong nonequilibrium state. If f̂ out

z deviates
from the Gaussian at T�, Eq. (13) derived from the mass flux
relationships fails to hold, and hence the deviation from T� (i.e.,
the deviation of the thermal accommodation coefficient for the
normal velocity component from unity) can be regarded as an
indication of the range of applicability of the present KBC,
which is further discussed below. Nevertheless, even in the
high-temperature cases, the present KBC still holds unless the
vapor condition is very far from equilibrium.

Next, we focus on the condensation coefficient αc in
nonequilibrium states at two temperatures different from T� =
85 K. Figures 13 and 14 show, respectively, αc at T� = 90 K
and T� = 100 K. In the case of T� = 90 K, αc has an almost
constant value, being similar to the case of T� = 85 K. In
the case of T� = 100 K, on the other hand, αc decreases,
especially in the high-γ and in the high-β cases. Fortunately,
however, the treatment of constant αc (i.e., αc = αe) in
nonequilibrium states may still hold near equilibrium even
in the high-temperature cases. In an actual application of the
present KBC, one should bear in mind that such a treatment
may fail in a strong nonequilibrium state. In the Appendix,
we provide a fitting function for αe as a function of T� for
an actual application, which is derived from previous MD
simulation results [37,43].

Lastly, we shall discuss the temperature dependence of
the thermal accommodation coefficient αt for the tangential

velocity component. In Figs. 15 and 16, αt values in the
nonequilibrium states at T� = 90 K and T� = 100 K are
shown, respectively. The qualitative features are the same as
in the case of T� = 85 K shown in Fig. 6; αt is a decreasing
function of β, while it is less affected by γ . The least-squares
fitting of the data to the function of Eq. (36) [Figs. 15(b) and
16(b)] leads to kt = 0.183 at T� = 90 K and kt = 0.269 at
T� = 100 K. Figure 17 shows kt as a function of T�, indicating
that the present data are well fitted with a linear function of
T�. In the Appendix, we also provide the least-squares-fitted
function for an actual application.

Shown in Fig. 18 is the thermal accommodation coefficient
for the normal velocity component at T� = 85, 90, and 100 K,
where the data were evaluated based on Eq. (33) for the normal
temperatures given by Eqs. (18) and (23) (with numerical
values of the data being tabulated in the Supplemental
Materials [54]). One can clearly recognize that αt ≈ 1 holds at
T� = 85 K, and also at T� = 90 K, whereas it decreases with
increasing β at T� = 100 K, which is qualitatively the same as
the case of the tangential velocity component discussed above.
We again notice that the deviation of the value from unity is
an indication of the range of applicability of the present KBC.
Fortunately, the deviation may not be serious compared to the
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FIG. 15. (Color online) The thermal accommodation coefficient
αt in nonequilibrium states at T� = 90 K. Note that data for γ = 1.0
are omitted since αt is indefinite (see the text). (a) The three-
dimensional plot for αt as a function of (β,γ ) sets, and (b) its
projection onto the (β,αt ) plane. The dotted line in (b) is the fitting
function Eq. (36).
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FIG. 16. (Color online) The thermal accommodation coefficient
αt in nonequilibrium states at T� = 100 K. Note that data for
γ = 1.0 are omitted since αt is indefinite (see the text). (a) The
three-dimensional plot for αt as a function of (β,γ ) sets, and (b) its
projection onto the (β,αt ) plane. The dotted line in (b) is the fitting
function Eq. (36).
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FIG. 17. The fitting parameter kt in Eq. (36) for the thermal
accommodation coefficient αt as a function of the temperature T�.
T ∗ is the reduced temperature defined by Eq. (A1), and the dotted
line is the fitting function Eq. (A3).
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FIG. 18. The thermal accommodation coefficient for the normal
velocity component at T� = 85, 90, and 100 K.

case of αt for the tangential velocity component. Surely, the
difference in the thermal accommodation coefficient between
tangential versus normal velocity components stems from the
anisotropic relaxation of molecular velocities discussed in
Sec. IV E.

V. CONCLUSIONS

In this study, a modeling procedure for a KBC at a
vapor-liquid interface has been demonstrated, and a physically
correct form of the KBC at the vapor-liquid interface of argon
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near its triple point temperature, which covers a wide range
of nonequilibrium vapor states, has been derived. The present
KBC includes evaporation and condensation coefficients that
specify the mass transfer and the thermal accommodation
coefficient that specifies the energy transfer at an interface.
When the VDF of molecules incident on an interface, f coll,
is given, the VDF of molecules outgoing from the interface,
f out, is uniquely determined. The MD simulations show that
f out has the functional form of the multicomponent VDF as
given by Eq. (10) and that it approaches the Maxwell VDF
at the liquid temperature, Eq. (35), as the number of incident
molecules decreases. It was also found that the evaporation
and the condensation coefficients are almost constant in
a wide range of nonequilibrium states, while the thermal
accommodation coefficient is a decreasing function of the
density of incident molecules. The molecular mechanism of
why the tangential temperature of f out deviates from the
liquid temperature was discussed. The analysis of velocity
autocorrelation functions and friction coefficients clearly
showed the anisotropic relaxation of incident molecules at
the interface and that the tangential relaxation is slow while
the normal one is rapid.

KBC studies for other substances [59–61] such as wa-
ter [43] and mixtures [62] (for instance, of water and
argon) will be required to apply the KBC to actual prob-
lems (e.g., the hybrid Rayleigh-Plesset molecular dynamics
model [63] for bubble dynamics). These studies are now in
progress.
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APPENDIX: FITTING FUNCTIONS OF αe (αc IN THE
EQUILIBRIUM STATE) AND αt AS A FUNCTION OF T�

In this Appendix, we shall provide a fitting function for the
evaporation coefficient αe, which is equal to the condensation
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FIG. 19. (Color online) The evaporation coefficient αe, which
equals the condensation coefficient in the equilibrium state, for argon
[37], water [43], and methanol [43], as a function of the reduced
temperature T ∗. The dotted line is the fitting function Eq. (A2).

coefficient in the equilibrium states by the definition of
Eqs. (8), to apply the present KBC to an actual problems.
In Ref. [64], αe values of argon [37], water [43], and methanol
[43] calculated in MD simulations were found to agree well
with each other at the reduced temperature T ∗ defined as

T ∗ = T�

Tcritical
, (A1)

where Tcritical is the critical temperature (which, in the case of
argon, is 150.7 K). As shown in Fig. 19, the data are well fitted
with the following function:

αe = log10(B1 − B2(T ∗ − B3)) + B4. (A2)

The least-squares fit [65] leads to the following values of B:
B1 = 0.6795, B2 = 1.9757, B3 = 0.6608, and B4 = 0.9403
for T ∗ > 0.424.

In the case of αt , the fitting function of Eq. (36) was found
by introducing the parameter kt , and in Fig. 17, kt was found
to be well fitted with a linear function of T ∗ as

kt = B5T
∗ − B6, (A3)

where B5 = 1.322 and B6 = 0.6077 are derived by a least-
squares fit for argon.

Note that the values of B may depend on the substances
employed.
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