
PHYSICAL REVIEW E 88, 042405 (2013)

Self-organization and nanostructure formation in chemical vapor deposition
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When thin films are grown on a substrate by chemical vapor deposition, the evolution of the first deposited
layers may be described, on mesoscopic scales, by dynamical models of the reaction-diffusion type. For
monatomic layers, such models describe the evolution of atomic coverage due to the combined effect of
reaction terms representing adsorption-desorption and chemical processes and nonlinear diffusion terms that
are of the Cahn-Hilliard type. This combination may lead, below a critical temperature, to the instability of
uniform deposited layers. This instability triggers the formation of nanostructures corresponding to regular spatial
variations of substrate coverage. Patterns wavelengths and symmetries are selected by dynamical variables and
not by variational arguments. According to the balance between reaction- and diffusion-induced nonlinearities,
a succession of nanostructures including hexagonal arrays of dots, stripes, and localized structures of various
types may be obtained. These structures may initiate different growth mechanisms, including Volmer-Weber
and Frank–Van der Merwe types of growth. The relevance of this approach to the study of deposited layers of
different species is discussed.
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I. INTRODUCTION

Overwhelming progress has recently been made in the area
of nanoscale science and technology. For example, the for-
mation of self-assembled and self-organized nanostructures in
deposited layers on solid surfaces has become the subject of in-
tense research activity due to its fundamental and technological
relevance. Due to the ever-growing technological importance
of on-demand tailored nanomaterials, it is of capital economic
and scientific interest to understand and master their formation
and growth since growth mechanisms usually determine most
of their properties and textures. Furthermore, the ability to
probe structure-property relationships on an appropriate length
scale is a primary driver of progress in nanotechnology. As a
result, the modeling of nanostructure formation and properties
is one of the most active research areas in materials science [1].

For thin-film growth, for example, numerous computer
simulation methods have been developed since the 1970s.
These investigations revealed detailed information on growing
films, such as island shapes, step formation, and surface
roughening [2,3]. Unfortunately, in molecular dynamics and
Monte Carlo approaches, the computational time required to
simulate thin-film growth under realistic deposition rates is
often excessive. Effectively, a significant constraint of these
methods is that, due to their atomistic nature, they can deal
only with small systems, with linear dimension under a
micron. Other approaches, based on discrete lattices, are able
to simulate thin-film growth under realistic deposition rates
even in three dimensions. Nevertheless, attempts to bridge
molecular dynamics and Monte Carlo method succeeded in
simulating small polycrystalline films [4]. This is why con-
tinuum approaches are particularly interesting, since they are
capable of simulating growth of thin films of larger dimensions
[5]. In these methods, the film surface is represented by a
series of mesh points that move according to material flux
exchanged between neighboring regions. The drawback of
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continuum simulations is that they provide information about
the film surface only. Textures and microstructures are thus
ignored in these descriptions. In contrast, continuous models,
based on rate equations of the partial differential equation
type, have also been proposed to describe mesoscopic scales,
with the hope to improve the understanding of deposition
processes and film surface evolution at scales inaccessible by
both traditional equipment (macroscopic) and feature scales
(microscopic) models [6].

Up to now, these models have had limited predictive
capability because of a rough description of kinetic processes
such as atomic diffusion or deposition. Nevertheless, such
capability could be greatly enhanced in the framework of
multiscale modeling. Effectively, the concept of multiscale
material modeling has been developed to bridge the gap be-
tween atomistic and continuum methods and to link them in a
consistent way [7,8]. The aim is to obtain a reliable description
of material behavior, from microscopic to macroscopic scales.
This program should be realized by coupling models for
different length scales. The results from smaller scales are
fed to larger scales, with appropriate mesh redefinition, and the
results from larger scales are being fed back to the smaller ones,
in a back and forth process hopefully ending in a quantitatively
reliable solution. In the case of thin-film growth, if information
from each scale is transferred correctly to the other scales,
one would expect to be able to follow the evolution of film
textures, surface topography, the effect of microstructures on
local deposition rates, etc. In this framework, the interest
of mesoscopic continuous models would be to link micro-
and macroscales and provide not only qualitative but also
quantitative descriptions of thin-film growth and nanostructure
formation.

In this framework, continuous mesoscopic models have
already been proposed to describe the spontaneous ordering of
nanostructures or quantum dots in multicomponent epilayers
on a substrate. In some of them, ordering result from the
balance between coarsening effects induced by the spinodal
decomposition of the solid solution that forms the film and
refining effects induced by concentration-dependent surface
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stresses [9–12]. Other models describe surface growth through
phenomenological evolution equations, of the gradient type,
similar to the Cahn-Hilliard equation, and coupled with atomic
attachment kinetics, wetting or de-wetting, and stress effects
to mimic atomic deposition and film-substrate interactions,
driven by substrate elasticity, wetting stress, or misfit strains
[13–18]. They describe the formation of quantum dots and
their self-organization in regular patterns. These patterns are
usually unstable and coarsen in time, except when wetting
interactions are able to damp long-wave perturbations, which
makes the instability Turing-like. In most of these cases, the
zero wave number remains marginally stable [16,18], which
should lead to the formation of unexpected patterns due to
nonlinear couplings between critical and zero modes [19].

In contrast, one may think that the instability of the de-
posited layer and the formation of self-organized nanophases
occurs in far from thermal equilibrium conditions and results
from dynamics combining nongradient terms and gradient
ones, similarly to the case of microstructures developing in
surface chemical reactions [20]. Furthermore, it should occur
in both monatomic layers and binary epilayers, as suggested
in [21,22] and [23,24], respectively. It is why I proposed
a reaction-diffusion model to describe, at the nanoscale,
structure formation and texture evolution in an adsorbed
monolayer on a substrate [25,26]. With this model, it has been
shown that, even in monocomponent films, the competition
between atomic deposition and the underlying instability of an
adsorbed atomic layer may stabilize nanoscale spatial patterns,
already in the first deposited layers. These patterns correspond
to regular spatial distributions of high- and low-coverage
domains, which may induce corresponding distributions of
grains with different orientations or symmetries, and serve
as templates for the later stages of film texture evolution.
Patterns with different symmetries may be selected according
to the relative values of experimental parameters such as
deposition rate, substrate temperature, and atomic mobility.
In systems with isotropic diffusion, successive transitions
between hexagonal arrays of dots and striped nanostructures
are predicted for increasing coverage or concentration. In this
approach, pattern formation has a dynamical origin, in contrast
to methods based on gradient dynamics, which ultimately
result in the minimization of a potential [9–12,18].

This model has been extended to include growth effects in
the third dimension to describe how the nanostructures may
extend into the bulk of the growing film [27]. In this case the
instability mechanism is only one among various instability
mechanisms one may think of [28]. Another extension has
been made on incorporating long-range interactions between
deposited atom clusters mediated by the substrate [29]. In
this case cluster-cluster interactions slightly favor stripes. The
length scale of natural self-organized structures has been
found to be in the range of tens of nanometers. Imposition
of a substrate periodic strain field by subsurface interfacial
dislocations has also been considered and has been shown to
dramatically change the self-organized pattern and its length
scale. Qualitative agreement between these predictions [29]
and experimental observations on self-organized Ge quantum
dots on Si substrate has been obtained [30,31]. This model
has also been rederived, including more general desorption
processes, and has been shown to generate highly nonlinear

structures, corresponding to regular arrays of low-coverage
holes in high-coverage background or to regular arrays of
dots in a low-coverage background, as well as stable isolated
localized structures [32].

Up to now the simplest deposition processes have been
considered. They depend linearly on the atomic coverage of
the growing film and may correspond to sputtering or laser-
assisted deposition [25,26]. This linear dependence has two
effects. On the one side its lowers the instability temperature
and, on the other side, it restricts the wavelength range for
unstable spatial modes to a finite domain around a critical
one. In this case, the nonlinear part of the dynamics, which
defines pattern selection and stability through selective mode
couplings, comes from the atomic diffusion in the first
deposited layers only. However, in chemical vapor deposition,
adsorption-desorption mechanisms are more complex [33] and
the process is clearly a nonequilibrium one [34]. In fact, it is
the competition between nonlinearities arising, on the one side,
from the chemical reaction kinetics and, on the other side, from
surface diffusion, which should determine pattern formation,
selection, and stability in the deposited layer. It is why the aim
of this paper is to extend the previous model to the case of
chemical vapor deposition and to analyze how nonlinearities
resulting from this process may affect the properties of the
nanostructures described earlier [25,26].

The paper is organized as follows. First, the dynamics
of a deposited atomic layer on a substrate is reviewed and
a reaction-diffusion model appropriate for chemical vapor
deposition processes is derived in Sec. II. The stability of
uniform deposited layers is analyzed in Sec. III. The weakly
nonlinear dynamics is analyzed close to instability and the
resulting pattern formation and selection beyond instability
are analyzed for different types of nonlinearities and diffusion
coefficients in Sec. IV. The possibility of experimental
realization of the proposed instability mechanism is discussed
in Sec. V. Finally, a summary and perspectives for future work
are presented in Sec. VI.

II. DYNAMICS OF A DEPOSITED
LAYER ON A SUBSTRATE

As already discussed in previous work, the evolution of a
monatomic layer, deposited on a substrate, may be described
by a continuous dynamical model of the reaction-diffusion
type [25,26]. Relevant examples of such systems are Al or
Cu layers deposited on Si substrates or SiO2 and TiN layers
deposited on Ti or Al substrates. In such cases, the dynamics
is governed by atomic adsorption, desorption, and reaction
on the substrate, as well as by diffusion or transport. For a
sufficiently small lattice misfit between film and substrate,
elasticity and stress effects may be neglected and the film
evolution may be described by atomic coverage dynamics
only. Among the examples listed above, this may be the
case for Al on Si(111) [35], Cu on Si(100) [36], or Cu on
Si, where the Cu(111) fcc plane is identical to the Si(0001)
hcp plane and a perfect match can be achieved. Misfit strains
may also be strongly reduced through domain matching, as
in Cu on TiN|Si and TiN on Si(100) [37], or buffer layers
[38]. When misfit strains cannot be neglected, they may be
relieved by surface deformation or dislocation nucleation and

042405-2



SELF-ORGANIZATION AND NANOSTRUCTURE FORMATION . . . PHYSICAL REVIEW E 88, 042405 (2013)

the deposited layer dynamics has to be coupled with the
film elasticity. How this may affect nanostructure formation
in the spirit of our adsorption-desorption-diffusion model is
discussed elsewhere [11,12,39,40]. Let me recall that, for this
model, the corresponding kinetic equation has been derived
in the framework of chemical kinetics and has the following
structure [26]:

∂tc = R(c) − ∇ · J, (1)

where c = c(r,t) is the local atomic coverage of the substrate,
which is defined as the average occupancy number, or average
atom number per lattice site; R(c) represents reaction terms;
and J is the atomic mass current in the deposited layer.

A. Dynamics of chemical vapor deposition

In chemical vapor deposition (CVD), typical procedures
consist in the deposition of precursor molecules, which contain
the active species of the growing film, on the substrate. These
molecules dissociate through chemical reactions and liberate
the active species atoms that remain adsorbed on the substrate
to form the film. Some of them may recombine and desorb.
Precursor dissociation may be autocatalytic and the chemical
scheme of the process is of the type

Pg + n ∗ (+mC) → P (+mC), P + pC → qC,
(2)

rC → B, B → Bg + r ∗ ,

where the asterisk represents vacant lattice sites, the subscript
g represents gas phase concentration, P represents precursor
molecules, and C is the active species that forms the film
and also recombines in desorbing molecules B. For large
Knudsen number, the precursor transport is ballistic and one
may neglect flow transport processes of the precursor, its
interaction with the surface being the dominant process. Then
C is the only diffusing species and the kinetic rate equations
for the corresponding coverage may be written as

∂tP = α(1 − C)nCm − ρPCp,
(3)

∂tC = ρPCp − βCr − ∇ · J, ∂tB = βCr − κB.

In this dynamical system, the reaction rates are directly
inferred from the reaction scheme (2) and are proportional
to the concentrations (expressed here in lattice coverage)
of each active species up to a power corresponding to its
reaction order [41]. Here α, β, ρ, and κ are kinetic constants.
They are functions of the physical parameters of the reaction
mechanisms and have to be evaluated from experiment or
atomistic simulations. In addition, n represents the number of
lattice sites required for the adsorption of a P molecule, m

represents the autocatalytic nature of this process, and r is the
order of the recombination reaction with respect to C in the
desorption process. Nontrivial uniform steady states are given
by B0 = β

κ
Cr

0, P0 = β

ρ
C

r−p

0 , and (1 − C0)nCm−r
0 = β

α
(with

n � 1 and r � 2 in nontrivial cases).
Many metal CVD deposition are autocatalytic, such as,

for example, Cu deposition on SiO2 [42]. Autocatalysis is
also associated with the fact that deposition is enhanced by
already deposited material, as in Si, Cu, TiN, or Pt deposition
[43]. The surface reaction controls the deposition rate at low
temperatures and pressure when the precursor diffuses rapidly

to the surface. In contrast, mass transport controls the rate
at high temperature and high pressure when the precursor
diffuses slowly to the surface. In situations where the surface
reaction kinetics is the rate limiting process, the precursor
P and desorbed B species may be adiabatically eliminated
in (3), which leads to the following kinetic equation for the
active species coverage:

∂tc = α(1 − c)ncm − βcr − ∇ · J(c). (4)

When m < r , the order of autocatalysis is higher for
adsorption than for desorption, which makes the latter less
efficient since coverage varies between 0 and 1 [26]. A spatially
uniform finite-coverage steady state should thus be expected.
Effectively, in this case, the steady state is given by

[α(1 − c)n − βcr−m]cm = 0 (5)

and there is one trivial c0 = 0 and one nontrivial c0 �= 0
solution. With the evolution of homogeneous perturbations
σ of the trivial solution being given by

∂tσ = [α(1 − σ )n − βσ r−m]σm � ασm, (6)

it turns out that this solution is unstable. In contrast, with
the linear evolution of homogeneous perturbations of the
nontrivial solution being

∂tσ = −n
[
α(1 − c0)n−1 + (r − m)βcr−m−1

0

]
cm

0 σ < 0, (7)

this steady state is stable.
When m = r , besides a trivial steady state, there is one

nontrivial steady state if β < α. In this case, the trivial steady
state is unstable while the nontrivial one is stable.

When m > r , desorption is favored over adsorption and a
state with zero coverage should remain as such. This does not
rule out that a sufficiently large perturbation could lead to film
growth. Effectively, besides the trivial steady state, for

β

α
<

nn(m − r)m−r

(m + n − r)m+n−r
=

(
β

α

)∣∣∣∣
max

,

there a two nontrivial ones c± given by

α(1 − c±)ncm−r
± − β = 0. (8)

The stability of the trivial solution is given by

∂tσ = [α(1 − σ )nσm−r − β]σ r = −β[1 − O(σn�1)]σ r, (9)

which shows that it is linearly or marginally stable. If one
defines c∗ = m−r

m+n−r
as the steady state corresponding to

( β

α
)|max [for ( β

α
)|max, c+ = c− = c∗], the linear stability of the

nontrivial steady states is given by

β(n + m − r)
c∗ − c±

c±(1 − c±)
< 0 (10)

and the state c− < c∗ is unstable while the state c+ > c∗ is
stable. These behaviors are illustrated in Fig. 1, where steady
states for the different regimes are displayed.

B. Transport

It is now necessary to model atomic motion adequately. As
already mentioned elsewhere [26,32], the conditions required
to apply Fick’s law are not met in adsorbed layers, where
interactions between adsorbed particles may be important.
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FIG. 1. Examples of uniform steady states of Eq. (4) for m > r

(m = r + 1), m = r , and m < r (m = r − 1) versus β with α = 1
(solid lines correspond to stable states versus uniform perturbations,
dashed lines correspond to unstable states, and the mixed line is for
the c = 0 state, the stability of which is different in each regime).

In this case, diffusion is governed by a spatially varying
chemical potential and linear nonequilibrium thermodynamics
provides the necessary tools to describe this situation [44]. The
Gibbs-Duhem and Onsager reciprocity relations hold, and, as
a result [45], for isothermal diffusion, which is the case here,
the atomic mass current of the active species is proportional
to the gradient of the chemical potential. Since the chemical
potential is the functional derivative of the free energy, one has

J = −L∇ δF
δc

, (11)

where F is the free energy of the adsorbed layer formed by
the active species C and L is the surface mobility. In the mean
field approximation, an explicit expression for the free energy
may be obtained, which reads [26,32]

F =
∫

S

dr[kBTf (r) − 1
2ε0c(r)2 + 1

2ξ 2
0 |∇c(r)|2], (12)

where c(r) is the local coverage and f (r) = [1 − c(r)] ln[1 −
c(r)] + c(r) ln c(r) − ε0c. For nearest-neighbor attractive in-
teractions between deposited atom, ε0 = γ ε and ξ 2

0 = γ εl2,
where γ is the lattice coordination number, ε is the pair inter-
action energy, and l is the lattice constant. Interaction between
the substrate and adsorbed particles may be introduced through
an extra contribution equal to εsc(r) in the local free energy.
The local chemical potential may then be easily obtained from
the resulting free energy and is written

μ(r) = δF
δc

= εs − ε0c(r) + kBT ln
c(r)

1 − c(r)
+ ξ 2

0 ∇2c(r).

(13)

This is the equation of state of the system, which defines the
coverage as a function of temperature, interaction energies,
etc. Let us recall that thermodynamic stability of a state c(r)
requires

∂2f

∂c2
= −ε0 + kBT

1

c(1 − c)
> 0 (14)

and this condition is always satisfied for ε0 < 4kBT , or
T > Tc, with ε0 = 4kBTc.

However, for T < Tc, states in the range

1

2

[
1 −

√
1 − T

Tc

]
< c <

1

2

[
1 +

√
1 − T

Tc

]
(15)

are thermodynamically unstable. Hence, in this range and
without reacting terms, single homogeneous phases are un-
stable and, due to coarsening, the system separates into two
distinct phases, one with low coverage (c < 1

2 ) and one with
high coverage (c > 1

2 ). Here T = Tc defines the critical point
below which phase separation occurs in the adsorbed layer.
The corresponding critical coverage and chemical potential
are cc = 1

2 and μc = εs − 2kBTc, respectively.
Furthermore, the Onsager coefficient L may be written as

L = Ddiff
kBT

, where Ddiff is the surface diffusion coefficient. Its
coverage and temperature dependence are crucial issues for the
development of spatial instabilities. In a first approximation,
it is usually considered as a constant, which is appropriate
for small deviations from steady uniform coverages. However,
for high-coverage variations and, according to the dynamical
processes involved in atomic displacements and to the presence
of clusters or other sinks, its coverage dependence should be
taken into account. For example, expressions such as Ddiff =
D × c(1 − c) may be more appropriate for hopping types of
motion, with D ∝ exp −(�/T ), where � is related to the
activation energy of atomic jumps.

III. STABILITY OF UNIFORM DEPOSITED LAYERS

Since the presence of reaction terms is expected to modify
the stability of uniform deposited layers, it will be studied on
combining the kinetic equation (4) with (13). The dynamics
of the active species coverage then becomes

∂tc(r,t) = R[c(r,t)] − ∇
[
Ddiff

kBT
· ∇

(
ε0c(r,t)

− kBT ln
c(r,t)

1 − c(r,t)
+ ξ 2

0 ∇2c(r,t)
)]

, (16)

where R[c(r,t)] = α[1 − c(r,t)]nc(r,t)m − βc(r,t)r .
Note that the case n = 1,m = 0, which corresponds to

direct absorption, without precursor molecule dissociation,
and in the absence of chemical reaction with the substrate, has
already been extensively studied in previous work [26,32]. I
will thus concentrate on more general cases, which are relevant
for CVD.

A. The case m < r

Let us consider first the case m < r , where the reaction
part of the dynamics admits a single stable uniform steady
state c0. The linear stability analysis of this steady state
versus small nonuniform perturbations σ (r,t) = c(r,t) − c0

is studied through its linear evolution equation, with Ddiff =
D × c(1 − c):

∂tσ (r,t) = −
σ (r,t) − D

kBT
∇2

[
ε0c0(1 − c0) − kBT

+ ξ 2
0 c0(1 − c0)∇2

]
σ (r,t) (17)
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or in a Fourier transform

∂tσ (q,t) = −
[

 + D̂0

(
1 − T

T̂0
− l2q2

)
q2

]
σ (q,t), (18)

where 
 = − dR(c)
dc

|c0 , D̂0 = DT̂0
T

, T̂0 = 4Tcc0(1 − c0), and

l2 = ξ 2
0

ε0
.

Instability may occur if T < T̂0 and its threshold is given

by q2
i = 1

2l2 (1 − T i
0

T̂0
) and 
 = D̂0T̂0

4l2T i
0
(1 − T i

0

T̂0
)2. Uniform steady

states are thus unstable for

T < 4Tcc0(1 − c0)

[
1 − 
l2

D

(√
1 + 2D


l2
− 1

)]
= T i

0 , (19)

where T i
0 is the instability threshold temperature. Note that

the deposition process lowers the threshold temperature with
respect to the pure spinodal case. The system will thus become
unstable on lowering T below T i

0 .

B. The case m > r

When m > r , the reaction part of the dynamics admits one
trivial and two nontrivial uniform steady states. One thus has to
test now the stability versus inhomogeneous perturbations of
the states that are stable versus homogeneous ones. For the sake
of concreteness, let me consider as an example the case n = 1,
m = 2, r = 1, which corresponds to R(c) = α(1 − c)c2 − βc.
If β

α
> 1

4 , the only possible steady state is zero and no steady
deposited layer forms since evaporation dominates deposition.
In contrast, if β

α
< 1

4 there are three possible uniform steady

states, c0 = 0 and c± = 1
2 (1 ±

√
1 − 4 β

α
).

The linear evolution of perturbations of the trivial steady
state c0 = 0 is given by

∂tc(r,t) = −βc(r,t) + D∇2c(r,t), (20)

showing that this state is linearly stable. The linear evolution
of perturbations of the nontrivial steady states c± is given by

∂tσ (q,t) = αc±(1 − 2c±)σ (q,t)

+ D̂±q2

[
1 − T

T̂±
− l2q2

]
σ (q,t),

where D̂± = DT̂±
T

and T̂± = 4Tcc±(1 − c±). As already
known, c− is unstable since 1 − 2c− > 0. In contrast, c+
is stable provided T > T̂+. When T < T̂+, it may become
unstable versus nonuniform perturbations. For c+ = 1

2 , it is
unstable for all perturbations with wave numbers in the domain
defined by 0 < q2 < (1 − T

T̂+
) 1
l2 , which extends to 0 as in

spinodal decomposition. For c+ > 1
2 , this instability domain

does not extend to zero. Since the maximum growth rate
corresponds to q2

m = (1 − T

T̂+
) 1

2l2 , the instability threshold is

defined by αc+(2c+ − 1) = D
4l2

(T̂+−T i
+)2

T̂+T i+
and c+ is unstable for

T < 4Tcc+(1 − c+)

[
1 − �

(√
1 + 2

�
− 1

)]
= T i

+, (21)

where � = l2αc+(2c+−1)
D

and T i
+ is the instability threshold

temperature for the actual reaction scheme. Furthermore, the

band of unstable wave numbers is defined by

q2
m

⎡
⎣1 −

√
1 − T

T i+

(
T̂+ − T i+
T̂+ − T

)2
⎤
⎦

< q2 < q2
m

⎡
⎣1 +

√
1 − T

T i+

(
T̂+ − T i+
T̂+ − T

)2
⎤
⎦ . (22)

IV. WEAKLY NONLINEAR DYNAMICS AND PATTERN
SELECTION BEYOND INSTABILITY

Having determined the instability conditions for uniform
deposited layers versus short-wave spatial modes, nonlinear
analysis is needed to predict which kind of patterns could
saturate the instability. The nonlinear evolution equation for
perturbations σ (r,t) of a uniform steady state c0, derived from
Eq. (16), may be written as

∂tσ (r,t) = −R[c0,σ (r,t)] − ∇
[
D[c0,σ (r,t)]

kBT

×
(

ε0 − kBT

c(r,t)[1 − c(r,t)]
+ ξ 2

0 ∇2

)]
· ∇σ (r,t).

(23)

Close to the instability point, a separation of time and space
scales occurs, which is due to the fact that the real parts of
the eigenvalues of the unstable modes tend to zero or become
positive, whereas in the case of stable modes they remain finite.
Hence the evolution of the unstable modes is much slower than
the evolution of the stable ones. This is equivalent to the critical
slowing down phenomenon in equilibrium phase transitions.
As a result, the faster evolution of the stable modes usually
allows one to perform their adiabatic elimination from the
dynamics. As a result, close to instability points, the dynamics
is governed by the evolution of the unstable modes only. This
reduction leads to a dramatic simplification of the dynamics
that nevertheless captures the asymptotic properties of the
systems evolution. This procedure is now well documented
and has been applied in a large variety of complex nonlinear
systems [1,46–48].

Close to instability, the dynamics may then be expanded
in a series expansion in powers of σ (r,t), limited to the first
nonlinear stabilizing term, which usually corresponds to cubic
nonlinearities. This weakly nonlinear dynamics usually allows
an accurate description of pattern formation, selection, and
stability up to a finite distance beyond instability [49]. Such
weakly nonlinear analysis will now be performed for explicit
expressions of the diffusion coefficient and different types of
reaction processes.

A. Weakly nonlinear analysis for D = D0c(1 − c) and m < r

In this case, the weakly nonlinear evolution equation,
derived from Eq. (23), and limited to cubic nonlinearities is
written

∂tσ (r,t) = −
[

 + D̂0

(
1 − T

T̂0
+ l2∇2

)
∇2

]
σ (r,t)
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−
2σ
2(r,t) − D̂0(1 − 2c0)

c0(1 − c0)

×∇{σ (r,t) · ∇[σ (r,t) + l2∇2σ (r,t)]}

−
3σ
3(r,t) + D̂0

c0(1 − c0)

×∇{σ 2(r,t) · ∇[σ (r,t) + l2∇2σ (r,t)]}, (24)

where 
 = − dR(c)
dc

|c0 , 
2 = − 1
2

d2R(c)
dc2 |c0 , and 
3 =

− 1
6

d3R(c)
dc3 |c0 .

As discussed in the preceding section, uniform coverage is
unstable for T < T i

0 versus nonuniform perturbations. Fourier
modes with q = qi have the maximum growth rate and may be
expected to dominate the system evolution and generate spatial
patterns. Close to instability, pattern evolution and selection
may be studied through their amplitude equations [49,50].
In this analysis, the simplest autocatalytic processes will be
considered (where n = 1, m = 1, r = 2, c0 = α

α+β
, 
 = α,


2 = α + β, 
3 = 0, and n = 1, m = 1, r = 1, with c0 =
α−β

α
, 
 = α − β, 
2 = α, 
3 = 0) to allow an explicit analysis

of the balance between reaction and diffusion generated
nonlinearities. The different types of patterns that may arise
from this dynamics, as well as their stability, will now be
discussed.

1. Stripes

The simplest patterns, able to develop on an isotropic sub-
strate, correspond to stripes such that σ (r,t) = A1(r,t)eiqix +
A∗

1(r,t)e−iqix . On inserting this expression in (24) and ne-
glecting contributions coming from higher harmonics [e.g.,
exp(±inqix)|n�1], their amplitude equation derived from
Eq. (24) is written

τ∂tA1(r,t) = εA1(r,t) + λ

(
∇x + i

2qi

∇2
y

)2

A1(r,t)

− κ|A1(r,t)|2A1(r,t), (25)

where ε = T i
0 −T

T
, τ = 4l2

D

T i
0 T̂0

T̂ 2
0 −(T i

0 )2 , λ = 8l2T̂0

T̂0−T i
0
, and κ =

T i
0

T c0(1−c0) .
In the vicinity of instability ε is small and all terms of this

equation scale as ε3/2 (A scales as ε1/2, time as ε−1, x as
ε−1/2, and y as ε−1/4) [46]. In this sense, this equation may
also be obtained from a multiple scale analysis. This method
is standard now and technical details may be found in various
references [49,50].

Note that this procedure is only justified for a finite range of
unstable wave numbers close to the critical one. Too far in the
unstable domain, the unstable range may become sufficiently
large to include harmonics of the critical mode and even the
zero-wave-number mode. In this case, the weakly nonlinear
analysis breaks down. An exception occurs when the set of
unstable modes contains the zero mode and a separate finite
band of modes around a nonzero critical one. Amplitude
equations may then be derived for critical and zero modes
that are nonlinearly coupled and this coupling may strongly
affect pattern selection and stability [19].

In the present case, steady state stripe patterns of ampli-

tude |A1|2 = |As |2 = ε
κ

= T i
0 −T

T i
0

c0(1 − c0) should develop for

T � T i
0 . However, stripe patterns are unstable versus hexag-

onal ones in a finite-temperature domain as discussed in [49]
and in the next section.

2. Hexagons

Hexagonal planforms, such that σ (r,t) =∑3
i=1 Ai(r,t)eiqi ·r + c.c. with

∑3
i=1 qi = 0 and |q1| = |q2|

= |q3| = qi , are described by the following amplitude
equation:

τ∂tAi = εAi + λ

q2
i

(qi · ∇)2Ai + 2νA∗
i+1A

∗
1+2

− κAi(|Ai |2 + ρ|Ai+1|2 + ρ|Ai+2|2), (26)

where ν = −τ (α + β) + T i
0 (1−2c0)

T c0(1−c0) for r = 2, ν = −τα +
T i

0 (1−2c0)
T c0(1−c0) for r = 1, and ρ = 2. Strictly speaking, ν should
scale as

√
ε for consistency. This is not always the case, but this

equation is nevertheless used when ν may be considered small
[47,51,52]. Common analysis shows that these equations admit
steady state solutions corresponding to hexagonal planforms
of amplitude

|A1| = |A2| = |A3| = R± = 1

5κ
(|ν| ±

√
ν2 + 5κε). (27)

These solutions may appear subcritically for ε > − ν2

5κ
. Here

R− is unstable and R+ is stable provided ε < 16ν2

κ
[49]. Its

existence and stability range are thus given by

T0(h−) = T i
0 (1 − 16�) < T < T i

0

(
1 + �

5

)
= T0(h+), (28)

where � = ν2

κ
. The sign of ν is important since it determines

the type of hexagons that are stable in this domain. Effectively,
for ν > 0 they correspond to H+ hexagons (with the amplitude
maxima at the hexagon centers), while for ν < 0, they
correspond to H− hexagons (with the amplitude minima at the
hexagon centers) [49]. Since in this example 1 − 2c0 = β−α

α+β
,

ν is negative for β < α, i.e., for high coverage (c0 > 1
2 ).

The selected pattern should thus correspond to H− hexagons
with minimum coverage at the center of the hexagons (like
a triangular lattice of holes in the film). If c0 < 1

2 or β > α,

i.e., for low coverage, ν is positive only if α
β

< 1 − T

T i
0

T̂0−T i
0

T̂0+T i
0

for r = 2 or α
β

< 2 − T

T i
0

T̂0−T i
0

T̂0+T i
0

for r = 1. In this case the

selected pattern should be like a triangular lattice of dots on a
low-coverage background. This result is of course the same as
the one discussed in [26]. The only difference is that the limit
between 0 and π hexagons is shifted by reactive terms of the
dynamics that favor the formation of H− hexagons.

As mentioned in the preceding section, striped patterns may
be unstable versus hexagonal planforms. Hexagonal perturba-
tions of stripes of amplitude |As | = ε

κ
and wave vector q1 are

such that σ (r,t) = (As + a1)eiq1·r + a2e
iq2· r + a3e

iq3·r + c.c.
Their linear evolution equations are given by

τ∂ta1 = εa1 − 3κ|As |2a1 = −2εa1,

τ∂ta2 = εa2 + 2νa∗
3A∗

s − 2κa2|As |2 = −εa2 + 2νa∗
3A∗

s ,

τ∂ta
∗
3 = εa∗

3 + 2νa2As − 2κa∗
3 |As |2 = −εa∗

3 + 2νa2As (29)
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and the eigenvalues of the corresponding evolution matrix are
given by ω = −2ε, ω = −ε − 2ν

√
ε
κ

, and ω = −ε + 2ν
√

ε
κ

.

Since the last root is negative only for ε > 4ν2

κ
, stripes

are unstable for 0 < ε < 4ν2

κ
and stable for ε > 4ν2

κ
. As a

result, hexagons and stripes are simultaneously stable in
the bistability domain defined by 4ν2

κ
< ε < 16ν2

κ
or Th− =

T i
0 (1 − 16�) < T < T i

0 (1 − 4�) = Ts .
Note that, since ρ = 2, square patterns are always unstable

when described by such equations. As a result, pattern for-
mation phenomena, discussed in this section, are qualitatively
similar to the case described previously [26]: On decreasing
temperature a sequence of transitions leads from uniform
layers to hexagonal patterns and finally to stripes, with an
intermediate bistability domain for hexagons and stripes. The
effect of more complex reaction processes associated with
chemical vapor deposition, which favor adsorption, is thus
only quantitative and solely modifies the existence and stability
ranges of the different patterns.

B. Weakly nonlinear analysis for D = D0c(1 − c) and m > r

Let us consider now the case where adsorption processes
are autocatalytic, with a higher degree of nonlinearity than
adsorption ones. Corresponding uniform steady states and
their linear stability have been described previously. As far
as the nonlinear dynamics is concerned, two cases have to be
considered.

1. The case of critical coverage c+ = 1
2

This case will be illustrated for n = 1, m = 2, r = 1, and
α = 4β, where 2c+ − 1 = 0, and the nonlinear evolution of
coverage perturbations is written

∂tσ (r,t) = −DTc

T

[
1 − T

Tc

+ l2∇2

]
∇2σ (r,t) − α

2
σ 2(r,t)

−ασ 3(r,t) + DTc

T
[1 + l2∇2]∇[σ 2(r,t)·∇σ (r,t)].

(30)

In a Fourier transform, for T < Tc, the band of unstable wave
numbers q is defined by 0 < q2 < Tc−T

Tcl2 , which includes zero
as in spinodal decomposition. Hence the spatial gradient terms
of the dynamics should induce coarsening of initially develop-
ing patterns since the dynamics would be of the genuine Cahn-
Hilliard type. However, the remaining nonlinear terms coming
from the chemical part of the dynamics damp long-wavelength
modes. They should thus not allow the growth of such modes
nor coarsening. In contrast, they couple the most unstable
short-wavelength modes and saturate their growth, providing
a stabilizing mechanism for nanostructures with finite wave
number. Among them, hexagons should be favored by the
presence of quadratic nonlinearities. However, since the band
of unstable wave vectors extends to zero, amplitude equations
are not appropriate to discuss pattern and wavelength selection.
In this case, they should be studied numerically.

2. The case of high coverage c+ � 1

This case corresponds to m > r and β

α
	 β

α
|max. For

example, for n = 1, m = 2, r = 1, and α 
 4β, 2c+ − 1 � 0

and the nonlinear evolution of coverage perturbations is written

∂tσ (r,t) = −
[
αc+(2c+ − 1) + D̂+

(
1 − T

T̂+
+ l2∇2

)
∇2

]

× σ (r,t) − α(3c+ − 1)σ 2 − D̂+(1 − 2c+)

c+(1 − c+)

× [1 + l2∇2]∇[σ (r,t) · ∇σ (r,t)] − ασ 3

+ D̂+
c+(1 − c+)

[1 + l2∇2]∇[σ 2(r,t) · ∇σ (r,t)].

(31)

Amplitude equations for different types of spatial patterns may
then be derived from this equation in order to analyze their
existence and stability, as in the discussion in Sec. IV A.

3. Stripes

Here also, stripes will be considered first as the simplest
structure to arise from this dynamics. Their amplitude equa-

tions may be written, at lowest order in ε = T i
+−T

T
, as

τ+∂tA1(r,t) = εA1(r,t) + λ+

(
∇x + i

2qi

∇2
y

)2

A1(r,t)

− [3α+ + κ+]|A1(r,t)|2A1(r,t), (32)

where τ+ = 4l2

D

T i
+T̂+

T̂ 2+−(T i+)2 , λ+ = 8l2T̂+
T̂+−T i+

, α+ = 1
c+(2c+−1)

T̂+−T i
+

T̂++T i+
,

and κ+ = T i
+

T c+(1−c+) . Steady stripes of amplitude given by

|A1|2 = A2
+ = ε

3α++κ+
may thus appear supercritically for

ε > 0.

4. Hexagons

In contrast, amplitude equations for hexagonal or honey-
comb planforms are written

τ+∂tAi = εAi + λ+
q2

i

(q1 · ∇)2Ai + 2ν+A∗
i+1A

∗
i+2

− (3α+ + κ+)Ai(|Ai |2 + ρ|Ai+1|2 + ρ|Ai+2|2)

(i = 1,2,3), (33)

where

ν+ = (1 − 3c+)

c+(2c+ − 1)

T̂+ − T i
+

T̂+ + T i+
+ T i

+(1 − 2c+)

T c+(1 − c+)

and ρ = 2. It turns out that ν+ is always negative, which leads
to the formation of π or negative hexagons only. Furthermore,
using the results of standard pattern formation theory [49],
these hexagons, of amplitude

|Ai | = 1

5(3α+ + κ+)
[|ν+| +

√
ν2+ + 5(3α+ + κ+)ε],

are stable in the range

T+(h−) = T i
+(1 − 16�+) < T < T i

+

(
1 + �+

5

)
= T+(h+),

(34)

where �+ = ν2
+

3α++κ+
, while stripes are stable in the range

T < T i
+(1 − 4�+) = T+(s). As a result, hexagons and stripes
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are simultaneously stable in the bistability domain defined by
T+(h−) = T i

+(1 − 16�+) < T < T i
+(1 − 4�+) = T+(s).

5. Pattern selection

Pattern selection resulting from the analysis performed so
far in Sec. IV B may then be summarized as follows.

(i) If β

α
> 1

4 the only possible steady state is zero and no
deposited layer forms since evaporation dominates deposition.

(ii) If β

α
< 1

4 there are three possible uniform steady states

c0 = 0 and c± = 1±
√

1−4 β

α

2 .
(a) For T > T i

+, c0 and c+ are stable and c− is unstable. In
this bistability regime, localized structures corresponding to
isolated dots on the substrate are possible.

(b) For T < T i
+, c0 remains stable and c− unstable;

c+ becomes unstable versus spatial patterns corresponding
to stripes or hexagons. Further, π hexagons may appear
subcritically for T < T+(h+) and are stable for T+(h−)
< T < T+(h+). Stripes, in contrast, are stable for T < T+(s).
Hence hexagons, stripes, and the uncovered substrate may
be simultaneously stable and this can lead to several types
of coexisting or localized patterns. Among them are isolated
dots or patterned islands coexisting with uncovered domains
of the substrate or coexisting domains of hexagonal or
striped patterns. Such types of patterns appear frequently
in other systems described by reaction-diffusion dynamics
or generalized Swift-Hohenberg equations and are analyzed,
for example, in [53–59]. These results are illustrated in the
schematic bifurcation diagram presented in Fig. 2.

We have thus found that reactive autocatalytic terms in
precursor decomposition favor the formation of H− hexagonal
patterns in the growing layer (similar to nanomesh structures)at
temperatures below instability, which is reminiscent of a
Frank–Van der Merwe growth with nanostructures. At temper-
atures above instability, however, localized island formation,

which should initiate a Volmer-Weber type of film growth, can
occur.

stable c+

stable hexagons

stable stripes

linearly stable uncovered state

ThT iTsTh
T

c

0.5

c

1
c

FIG. 2. Schematic bifurcation diagram associated with Eq. (31) in
the coverage-temperature plane. Heavy lines represent stable steady
states and dotted lines represent unstable ones. According to the
temperature, one may observe different multistability domains, which
should allow the existence of various types of localized structures.

C. Weakly nonlinear analysis with Ddiff = D exp −(�/T )
and m > r

As already discussed in [26], for diffusion induced by
thermally activated atomic jumps, the diffusion coefficient
behaves as Ddiff = D exp −(�/T ), where � is proportional
to the activation energy. This temperature dependence may be
discarded for T 
 �. However, for decreasing temperatures
below instability, one may reach the regime where T < �

and diffusion coefficients strongly decrease with decreasing
temperature. In this regime relaxation finally dominates
diffusion, which rules out any instability at sufficiently
low temperatures. There should thus be a finite-temperature
range, with an upper and lower bound, for pattern forming
instability. A weakly nonlinear analysis will now be per-
formed in this case, in considering diffusion coefficients of
the form Ddiff = Dc(1 − c) exp −(�/T ). Equation (31) then
becomes

∂tσ (r,t) = −
[
αc+(2c+ − 1) + D̂+e−�/T

(
1 − T

T̂+
+ l2∇2

)
∇2

]
σ (r,t)

−α(3c+ − 1)σ 2 − D̂+e−�/T (1 − 2c+)

c+(1 − c+)
[1 + l2∇2]∇[σ (r,t).∇σ (r,t)]

−ασ 3 + D̂+e−�/T

c+(1 − c+)
[1 + l2∇2]∇[σ 2(r,t)] · ∇σ (r,t)]. (35)

Since the maximum of the linear growth rate corresponds to

wave vectors such that q2 = q2
m = T̂+−T

2l2T̂+
, instability occurs for

�+ =
(

1 − T

T̂+

)2
T̂+
T

exp −(�/T ) >
4l2αc+(2c+ − 1)

D

= �−. (36)

This condition is satisfied for

4l2αc+(2c+ − 1)

D
< max

[(
1 − T

T̂+

)2
T̂+
T

exp −(�/T )

]

=
(

1 − T ∗

T̂+

)2
T̂+
T ∗ exp −(�/T ∗), (37)
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where

T ∗ = � + T̂+
2

[√
1 + 4T̂+�

(� + T̂+)2
− 1

]

[for small �, T ∗ � �, the necessary condition for instability
is 4l2αc+(2c+ − 1)�e � D]. As mentioned earlier, when
the instability condition (37) is satisfied, uniform layers are
unstable in a finite-temperature range, with an upper and lower
bound. This can be illustrated explicitly for �− � �+. In this
case, the linear growth rate of (35) may be approximated by

−αc+(2c+ − 1) + �∗ (T̂+ − T ∗)2

T̂+T ∗ − �∗
(

T ∗ − T

T ∗

)2

= −�∗
[(

T ∗ − T

T ∗

)2

− δ2

]
, (38)

where �∗ = De−�/T ∗

4l2 ,

δ2 = (T̂+ − T ∗)2

T̂+T ∗ − 4l2αc+(2c+ − 1)

D
e�/T ∗

,

and instability occurs in the temperature range defined by
Ti− = T ∗(1 − δ) < T < T ∗(1 + δ) = Ti+.

Close to instability, the dynamics is by governed by the
evolution of the modes with maximum growth rate, i.e., such
that |q| = qm. This is best illustrated in a Fourier transform,
where Eq. (35), restricted to these modes, may then be
rewritten

τ ∗∂tσ (q,t) = (Ti+ − T )(T − Ti−)

(T ∗)2
σ (q,t)

+
∫

|k|=qm

dk[ν∗(qm,k)]σ (q − k,t)σ (k,t)

−
∫

|k|=qm

dk
∫

|k1|=qm

dk1[κ∗(q,k1)]σ (q − k,t)

× σ (k − k1,t)σ (k1,t) (|q| = qm), (39)

where τ ∗ = 1
�∗ ,

ν∗(q,k) = α(1 − 3c+)

�∗ +
(

T̂+ + T ∗

T̂+ − T ∗

)
1 − 2c+

c+(1 − c+)

q · k
q2

m

,

and

κ∗(q,k1) = α

�∗ +
(

T̂+ + T ∗

T̂+ − T ∗

)
1

c+(1 − c+)

q · k1

q2
m

.

1. Stripes

In this case, amplitude equation analysis shows that for
each T in the range Ti− < T < Ti+ and for � < T ∗, stripes
of amplitude

|Am|2 = (Ti+ − T )(T − Ti−)

(T ∗)2

(2c+ − 1)(1 − c+)

2 − c+

and wave number q2
m = T̂+−T

2l2T̂+
are the preferred one-

dimensional patterns since the coefficient of the cubic coupling
term of the stripes’ amplitude equation is given by

12e�l2α

D
+ 1

c+(1 − c+)
� 2 − c+

(2c+ − 1)c+(1 − c+)
.

linearly stable uncovered state

stable hexagons

stable c+stable c+
unstable

T h T i T i T h
T

c

0.5

c

1
c

FIG. 3. Schematic bifurcation diagram associated with Eq. (35)
in the coverage-temperature plane for δ2 <

4c+(1−c+)
(2−c+)(2c+−1) . Heavy lines

represent stable steady states and dotted lines represent unstable ones.
According to the temperature, the uniform deposited layer solution,
self-assembled hexagonal patterns, and uncovered substrate may be
simultaneously stable.

2. Hexagons

In the same conditions, the coefficient of quadratic nonlin-
earities in the amplitude equations for hexagonal patterns is
given by

ν∗(q2
m

) � 4e�l2α(1 − 3c+)

D
+ 1 − 2c+

c+(1 − c+)
� 1

1 − 2c+
.

Since it is always negative, an analysis similar to the one
performed in previous sections leads to the fact that negative
or π hexagons exist and appear subcritically for(

T ∗ − T

T ∗

)2

< δ2 + c+(1 − c+)

5(2 − c+)(2c+ − 1)
= δ2

h (40)

or

T h
− = T ∗(1 − δh) < T < T ∗(1 + δh) = T h

+ . (41)

In contrast, stripes are only stable for(
T ∗ − T

T ∗

)2

< δ2 − 4c+(1 − c+)

(2 − c+)(2c+ − 1)
= δ2

s (42)

or

T s
− = T ∗(1 − δs) < T < T ∗(1 + δs) = T s

+. (43)

It turns out that if δ2 <
4c+(1−c+)

(2−c+)(2c+−1) , i.e., sufficiently close to
threshold, stripes are always unstable and hexagons are stable.
As a result, for systems with high atomic mobility (� 	 T ∗),
pattern forming instability may occur in a finite-temperature
range and should be excluded at sufficiently low temperatures
as illustrated in the schematic bifurcation diagram presented
in Fig. 3. In this temperature range, bistability should occur
between hexagonally structured deposited layers and uncov-
ered substrate. This could allow the formation of deposited
localized islands of hexagonal patterns on the substrate.

V. DISCUSSION

Having proposed an instability mechanism for coverage
pattern formation in monolayers adsorbed on a substrate via
chemical vapor deposition, it is of course essential to check

042405-9



DANIEL WALGRAEF PHYSICAL REVIEW E 88, 042405 (2013)

whether this mechanism is experimentally possible. The case
of Al, Cu, Ti, or TiN films deposited via adsorption-desorption
mechanisms only have been discussed in [26]. Furthermore,
due to the ever-growing number of experimental processes
developed in this field and the impossibility of considering
every single experimental system, I will just illustrate the
results obtained so far with realistic values of experimental
parameters. This may then trigger interest in performing a
more focused analysis. To do so, let us consider values in
the range of the ones that are commonly used in thin-film
deposition.

For example, for a species crystallizing in fcc lattices,
with a lattice constant l = 5 Å, a pair interaction potential
ε � 0.15 eV, and deposited on (100) surfaces, with a very
small lattice mismatch, ε0 � 0.6 eV and Tc � 1741 K. For a
steady state coverage c0 = 0.9, T̂0 � 627 K. A realistic value
for the atomic diffusion coefficient around this temperature
is D0 � 10−5 cm2 s−1. As a result, for deposition rates in
the range 
 � 10–103 s−1, in systems where n = m = 1,

r = 2, T̂0−T i
0

T̂0
� 10−4–10−3 and qi = 2π

λi
� 1.4 × 107 to 4.47 ×

107 m−1, which corresponds to a critical wavelength in the
range 0.4–0.14 μm. In fact, for such experimental parameters,
the critical wavelength behaves as λi � ( l2D0



)1/4 or for l = 4 Å

and 
 � 102 s−1 (which is in the range of typical values
for deposition rates in electron-beam evaporation, sputtering,
and CVD), λi � 4 × 10−4(D0)1/4 cm (for D0 expressed in
cm2 s−1) and ranges from 40 nm for D = 10−8 cm2 s−1 to
400 nm for D = 10−4 cm2 s−1. This behavior is illustrated in
Fig. 4.

In contrast, close to threshold, � = ν2

κ
� (1−2c0)2

c0(1−c0) . For c0 =
0.9 and � � 7, hexagonal patterns may appear for T < 1.4T i

0
while striped patterns are always unstable versus hexagonal
ones. Hence, for T < T i

0 , hexagonal patterns should be the
only stable ones. For T i

0 < T < 1.4T i
0 , hexagonal patterns and

the uniform steady state are simultaneously stable, allowing
the formation of localized hexagonal patterns in uniform
background. In fact, it may be shown that stable stripes
may only exist for 4 (1−2c0)2

c0(1−c0) < 1 or 0.38 < c0 < 0.62. Similar
results are obtained for systems where m > r , except that
the uncovered steady state remains linearly stable and stable
stripes may only exist for 0.5 < c+ < 0.62.

(nm) 

D0 

396 

222 

125 

71 

39 

10 10 10 10 10 
-8 -7 -6 -5 -4 (cm  /s) 2 

X 0 

l = 4 A  
 = 100 s -1 

FIG. 4. (Color online) Representation of the critical wavelength
dependence on the diffusion coefficient λi � ( l2D



)1/4 for l = 4 Å and


 = 102 s−1 when D = D0c(1 − c).

Ti Tiinstability range

ln +

ln _

20 nm

10 nm

λ

λm

T

10

20

30

FIG. 5. Schematic representation of the instability condition (36)
and the preferred wavelength λm as functions of temperature for
D0 � 3 × 10−2 cm2 s−1, � � 3760 K, l = 5 Å, ε0 � 0.6 eV, c+ =
0.9, and α = 102 s−1.

If one considers thermally activated atomic transport,
the diffusion coefficient behaves as Ddiff = D exp −(�/T );
realistic values for D and � may be D � 3 × 10−2 cm2 s−1 and
� � 3760 K, which correspond to Ddiff � 1.4 × 10−4 cm2 s−1

at 700 K, Ddiff � 1.6 × 10−5 cm2 s−1 at 500 K, or Ddiff �
10−7 cm2 s−1 at 300 K. These values are consistent with
the ones obtained, for example, through molecular dynamics
simulations for surface diffusion coefficient on (100) Al
surfaces [4]. For l = 5 Å, ε0 � 0.6 eV, c+ = 0.9, and α =
102 s−1, we obtain Tc � 1741 K and T̂+ � 627 K. In this
case (�/T̂+) � 6 is not small and the instability condition
is illustrated in Fig. 5. It turns out that uniform coverage
is unstable for Ti− � 147 K < T < Ti+ � 627 K (1 − 10−4).
At the lower instability threshold, the preferred wavelength
corresponds to 5 nm, while at the upper instability threshold it
corresponds to 0.438 μm. In fact, in the range 300 K < T <

600 K it goes from 6 to 20 nm.

VI. CONCLUSION

In this paper, the evolution of a growing monatomic layer,
deposited on a substrate, has been described by a dynamical
model of the reaction-diffusion type. This dynamics combines
reaction terms and nonlinear diffusion and close to the critical
point of the order-disorder transition of the adsorbed layer
it corresponds to modified Cahn-Hilliard equations. Up to
now, in this approach, the simplest deposition processes were
considered. They depend linearly on the atomic coverage of
the growing film and may correspond to sputtering or laser
assisted deposition. However, in chemical vapor deposition,
as discussed here, the reaction part of the dynamics is more
complicated and may also be nonlinear for both adsorption
and desorption. As a result, when uniform deposited layers
become unstable, the competition between nonlinearities
arising from reaction or diffusion terms is expected to affect
pattern formation, selection, and stability in the deposited
layer.

Different types of reaction dynamics have been considered.
When the degree of nonlinearity is lower for adsorption than
for desorption rates, deposition is dominant at low coverage
and favors the initial growth of uniform layers, which may
be further destabilized by nonlinear diffusion. In this case,
pattern formation phenomena should not qualitatively differ
from the case described in [26], where reaction terms are only
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due to linear adsorption and desorption processes. In this case,
the effect of more complex reaction processes associated with
chemical vapor deposition is only quantitative and modifies
the existence and stability ranges of the different patterns,
according to the relative importance of reaction- and diffusion-
induced nonlinearities. When the degree of nonlinearity is
higher for adsorption than for desorption rates, desorption is
dominant at low coverage and covered and uncovered domains
may be simultaneously stable. According to the temperature,
covered domains may become unstable and develop spatial
patterns. This may lead to a rich variety of structures that
include arrays of patterned or uniform islands or dots in an
uncovered background. At low temperatures, a Frank–Van der
Merwe type of film growth with nanostructures is recovered.
At high temperatures, however, localized island formation,

which should initiate a Volmer-Weber type of film growth, can
occur. Instability limits and stability domains for the different
types of patterns have been derived in the framework of weakly
nonlinear analysis. The possible relevance of these results for
realistic experimental data has been discussed and promotes
interest for further study, either to confirm numerically the
proposed pattern formation mechanisms or to link them to
experimental phenomena.
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