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We study the behavior of colloidal magnetic fluids at low density for various dipolar interaction strengths by
performing extensive Langevin dynamics simulations with model parameters that mimic cobalt-based ferrofluids
used in experiments. Our study mainly focuses on the structural and dynamical properties of dipolar fluids and
the influence of structural changes on their dynamics. Drastic changes from chainlike to networklike structures
in the absence of an external magnetic field are observed. This crossover plays an important role in the slowing
down of dynamics that is reflected in various dynamical properties including the tracer diffusion and the viscosity
and also in the structural relaxation.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of ferromagnetic
nanoparticles that are stabilized against agglomeration by
coating with surfactants or by surface charges. The change
in physical properties of ferrofluids, with an externally
applied magnetic field, has several technological and med-
ical applications [1,2]. Thus, there is an evolving interest
in understanding the influence of dipolar interactions and
magnetic fields on the structure and dynamics of ferrofluids
and the phase transitions. The structure and phase behavior of
ferrofluids is determined by steric repulsion, attractive van der
Waals interactions, and dipole-dipole interactions, which are
anisotropic in nature [3,4].

For the zero-field case, in the regime of low magnetic
interaction strength (with negligible anisotropic interactions),
the structure and phase behavior are determined by attractive
and repulsive interactions in the system [5]. For repulsive
systems, a fluid-solid-like phase transition is expected with no
critical point [6]. For attractive systems, the phase diagram is
very rich, containing a fluid-solid phase transition, a liquid-gas
phase transition, and an associated critical point that has been
well studied [7].

In the case of high magnetic interaction strengths, the
classical work of de Gennes and Pincus [8] has shown that
ferrofluids having strong dipolar strength are inclined to form
clusters and chains depending on the density of the system.
Various theoretical studies have attempted to understand the
chain formation in dipolar fluids either with straight and rigid
chain models [9–14] or with a flexible chain model [15,16] by
neglecting interchain interactions. The chain model predicts an
exponential decay behavior of the cluster size distribution that
has indeed been observed using computer simulations [17–21].
The chain, ring, and other microstructure formation in dipolar
fluids is relevant for understanding the phase behavior of the
system. The existence of a gas-liquid phase transition in dipolar
fluids is still an open question [22–25] in the absence of a
magnetic field.

The influence of structural changes on the dynamics of
ferrofluids has not been studied systematically in the absence
of a magnetic field so far. One of the widely studied dynamic
quantities is the self-diffusion (D). The dependence of D on
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the dipolar interaction strength, volume fraction, and scattering
length scale has been reported in previous works [26–29]. The
microstructure formation in the system considerably affects
the self-diffusion and other dynamic quantities which will be
one of the aspects we discuss in the present work. We believe
that the dependence of structural changes on dynamics can be
used as a tool to understand the origin of anisotropy in the
viscosity of ferrofluids in the presence of a weak magnetic
field.

The presence of a magnetic field favors chain formation
and influences the liquid-gas phase transition [14,22,28,30,31].
Among various properties of ferrofluids, the magnetoviscous
effect (MVE) [32], i.e., the change in viscosity with a change
in magnetic field, plays an important role in fundamental
research due to its many applications ranging from engineering
and technology to medical treatments [33–36]. It is an
experimentally observed fact that chain-forming ferrofluids
show a large MVE [37,38]. The origin of the MVE and its
anisotropic behavior with change in the orientation of the
magnetic field requires better understanding [39–42].

In this paper, we investigate the zero-field properties of
model ferrofluids for parameters that mimic the cobalt-based
ferrofluids used in experiments [42]. A systematic study
of structural properties and the corresponding changes in
dynamics of the system for a range of dipolar interaction
strength is presented here. Structural properties characterized
by the pair correlation function, the connectivity, the static
structure factor, and the cluster size distribution show the for-
mation of complex microstructures constituted of chains and
node-forming structures with increase in the dipolar coupling
constant. The dynamics of the system has been studied by
computing the mean square displacement, the orientational
correlation function, the incoherent scattering function, and
the stress correlation function. We observe a crossover region
in terms of the dipolar interaction strength beyond which the
structural and dynamic properties show characteristic changes
in their behavior. We provide a comparison of our results with
the existing theoretical model to explain the the role of the
crossover region in the structural and dynamic transitions.

The paper is organized as follows. The model potentials
and equations we use for our simulation study are described
in Sec. II. The structural and dynamic properties are explained
in Secs. III and IV, respectively. A discussion and conclusions
are provided in Sec. V.
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II. MODEL

A. Interaction potential

In the present work, we study model ferrofluid systems
where magnetically hard point dipolar particles have short-
range repulsive interactions along with long-range dipole-
dipole interactions [17,28,40,43–47]. The short-range repul-
sive interaction mimics the steric repulsion in stabilizing the
ferrofluid systems and is given by

ULJ
ij = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6

− C(rc)

]
, (1)

where ε is the depth of the potential, rij is the distance between
two particles, and C(rc) is to ensure continuity at the cutoff of
rc = 21/6σ . The long-range dipole-dipole interaction is given
by

U
dip
ij = μ0mimj

4πr3
ij

[ui · uj − 3(ui · r̂ij )(uj · r̂ij )], (2)

where ui is the orientation and mi is the magnitude of the
magnetic moment of particle i. rij = ri − rj is the connector
vector of the two particles, rij = |rij |, r̂ij = rij

rij
, and μ0 =

4π × 10−7 H/m. The long-range dipolar interactions are
treated with the reaction field (RF) method [48]. In this method,
a cavity of radius rRF (here rRF = 8.0σ ) is defined within which
the interactions of dipolar particles are treated explicitly. The
particles outside this cavity form a dielectric continuum (εs)
which develops a reaction field inside the cavity. The strength
of the reaction field acting on particle i is given by

εi = 2(εs − 1)

2εs + 1

1

r3
RF

∑
j

mj ,

where the summation extends over molecules inside the cavity.
We choose rRF much greater than rc of the short-range
interactions. We have compared the results obtained by the RF
method with those of the Ewald sum method [48], both with
metallic boundary conditions (εs → ∞) [17]. For the present
range of parameters, we find that both methods give identical
results within numerical uncertainties. Since we find the RF
method to be computationally more efficient than the Ewald
sum method, we choose to perform our simulations with the
RF method [49].

B. Model equations and parameters

We have performed Langevin dynamics (LD) computer
simulations using translational and rotational Langevin equa-
tions of motion [48,50] to study the model ferrofluid system,
and the equations are given by

M v̇i = −ξTvi(t) + fB
i (t) + Fi , (3)

I · ω̇i = −ξRωi(t) + τB
i (t) + τ i , (4)

where M and I are the mass and inertia tensor of the particle
with linear and angular velocity vi and ωi , respectively, ξT is
the translational friction coefficient, and ξR is the rotational
friction coefficient. For a solvent of viscosity ηs, ξT = 3πηsσ

and ξR = πηsσ
3. fB

i (t) and τB
i (t) are Gaussian random forces

and torques. The potential forces and torques are given by Fi =

−∇ri
U and τ i = −LiU , respectively, with U = 1

2

∑
ij (ULJ

ij +
U

dip
ij ) and the rotational operator Li = ui × ∂

∂ui
.

We performed the simulations with the package “Large-
scale Atomic/Molecular Massively Parallel Simulator”
(LAMMPS) [51]. The dimensionless parameters we used in
the ferrofluid study are the magnetic volume fraction φ =
ρπd3

m/6, where ρ is the number density and dm is the magnetic
core diameter, and the dipolar interaction strength (dipolar
coupling constant), which is given by

λ = μ0m
2/4πkBT d3

m, (5)

where m is the magnetic dipole moment and T is the
temperature. We work with reduced units where we express
the different observables in units of energy (ε), length (σ ), and
mass (M).

The LD simulations have been performed with N = 1000
spherical particles with diameter σ (monodisperse) keeping the
same volume fraction φ = 0.007 as used in the experimental
system [42]. We mimic the experimental system by reproduc-
ing the magnetization curve of cobalt-based ferrofluids that is
used in experiments. The parameters we adopt for mapping
are the saturation magnetization and the volume fraction. We
find that for the dipolar interaction strength λ = 4.62 our data
from the simulation reproduce the experimental magnetization
curve.

The equilibration is judged by looking at the relaxation time
obtained from the self-intermediate scattering function. 5 ×
106 LD steps were used for equilibration and 6 × 106 LD steps
for data production using a time step of �t = 0.002τB, where
τB = d3

mξT/6kBT is the time taken to diffuse the magnetic
core diameter dm. We carried out the simulations for four
independent samples to get rid of the correlation with the initial
configuration and to improve statistics. Some simulations have
been performed for different system sizes in order to discuss
possible finite-size effects.

III. STRUCTURAL PROPERTIES

We investigate the structural properties for various dipolar
coupling constants at a fixed volume fraction (φ = 0.007). The
structural properties are characterized by the radial distribution
function, the structure factor, the coordination number, and the
cluster size distribution. From our analysis, we find interesting
structural behavior at high λ values, which we discuss in this
section.

A. Radial distribution function

We first analyze the radial distribution function g(r) which
is defined as [52]

g(r) = V

N2

〈∑
i

∑
j �=i

δ(r − rij )

〉
, (6)

where V is the volume of the system. For an isotropic system,
4πr2ρg(r)dr gives the number of neighbors a reference
particle has between r and r + dr , where ρ is the number
density of the system.

In Fig. 1, we show g(r) obtained from the simulations
carried out at different dipolar coupling constants varying
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FIG. 1. (Color online) The radial distribution function g(r) at
volume fraction φ = 0.007 for systems with different λ values.
The inset shows a close-up view of the second, third, and fourth
coordination shells.

from 2.37 to 6.17. We observe that g(r) shows gaslike
behavior at λ = 2.37 and 3.37 due to weak dipolar interactions.
As λ increases further, the system attains a local structural
arrangement, which is evident from the peaks in g(r). We find
that the amplitude of the sharp first peak increases with λ,
indicating a well-defined first coordination shell [17,53,54]
due to one-dimensional structure formation. For higher λ

values we observe peaks at various length scales, indicating
a structural rearrangement beyond the first coordination shell.
As we increase interaction strength, around λ = 4.62, g(r)
shows a well-defined second peak corresponding to the second
coordination shell as well as a growing third peak, which
exhibits the increase in local ordering of the system as λ

increases. A recent study on the structure of dipolar hard
sphere fluids shows a monotonic decrease in the first minimum
of g(r) with decreasing temperature (or increasing λ) [55].
We observe a nonmonotonic behavior in the first minima
of g(r) after crossing λ ≈ 4.62, which we consider as the
crossover λ value, λt. The well-defined first minimum in g(r)
is due to the ordering of particles in the system; in our case
chain formation causes the well-defined minimum and it is
prominent for all higher interaction strengths from λt on.
The shifting of the first minimum towards shorter distances
indicates the presence of connected chains, due to which the
second peak of g(r) starts around 1.4σ . We study the structural
crossover from disordered to ordered structures at this partic-
ular value of λ (λt) in detail with the help of other structural
properties.

B. Connectivity

The fraction of particles having coordination number n,
C(n), is a measure of the local connectivity of the system.
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FIG. 2. (Color online) The fraction of particles having coordina-
tion number n, C(n), at volume fraction φ = 0.007, for systems with
different λ values.

Here, two particles are considered to be neighbors if they
are closer than a distance 1.5σ . Figure 2 shows that in
the weakly interacting regime, the majority are isolated
particles; only a few one-coordinated and two-coordinated
particles are present. The error bars are of the symbol
size if not shown. With increasing λ, the fraction of one-
coordinated and two-coordinated particles increases at the
expense of isolated particles and at λt = 4.62, the probabilities
of finding isolated, one-, and two-coordinated particles are
almost equal. Beyond λt, the fraction of two-coordinated
particles keeps on increasing at the cost of isolated and
one-coordinated particles, which explains the presence of
chains in the system. We also observe a slight increment
in the number of three- and four- coordinated particles
which shows the presence of more complicated and multiply
connected structures in the system. Such properties in con-
nectivity have been observed in colloidal gels and gel-forming
systems [53,54,56].

This structural quantity clearly shows the transformation of
a system with mainly isolated particles to chainlike and then to
networklike structures with increasing λ. We have checked the
results for different bonding criteria based on distances (rc =
1.3–1.6) for higher λ values (λ = 5.37 and 6.17). We have
observed only a small quantitative change in the connectivity
as we change the bonding criteria. Since our choice is rc = 1.5
and the minimum of g(r) for higher λ values changes to 1.4
for λ = 5.36 and to 1.3 for λ = 6.17, we do not observe any
significant change in the result. In addition, for all bonding
criteria we have observed same trend in the connectivity
with λ.

C. Static structure factor

In order to study the extent of spatial correlations, we
analyze the static structure factor S(q) which is the density
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FIG. 3. (Color online) The static structure factor S(q), at volume
fraction φ = 0.007, for systems with different λ values, in a log-linear
plot. The inset shows the same data for dipole moments greater than
4.0 in a log-log plot with dashed lines showing the power-law behavior
at small q values.

correlation function in Fourier space, defined as [52]

S(q) = 1

N

∑
j

∑
k

〈exp(−iq · (rj − rk)〉, (7)

where q is the wave vector and q = |q|. As observed in the
pair correlation function, S(q) also shows gaslike behavior
in the weakly interacting regime. The large-length-scale
characteristics of S(q) change with increasing λ value and
show a power-law behavior beyond λt in the regime 0.26 <

q < 4.0. It is known that the static structure factor scales as
S(q) ∼ q−d , where d is the fractal dimension of clusters and
for rodlike molecules d = 1 [57]. The transient nature of the
power-law exponent d is shown in Fig. 3. Exponents d less
than 1 have been interpreted as showing a crossover region
to a gel-like regime [58,59]. A similar scaling behavior of
S(q) has been found in strongly interacting dipolar colloids
with moderate volume fraction [47,60]. In our study, we find
larger amplitudes of S(q) at low q even for λ values less
than those used in the above works. We have verified that
the scaling behavior does not change with system size in
the range of N = 1000 to N = 8000 particles. We therefore
conclude that these large-scale structures are quite sensitive to
the concentration.

D. Cluster size distribution

We investigate the structure formation of dipolar colloids
by monitoring the cluster size distribution g(n), which gives
information on the number of large clusters in the system. The
particles are considered to be in the same cluster according
to the same criterion that has been considered to find the
connectivity. We find that the cluster size distribution below
λt is described by an exponential decay. This observation
agrees with the prediction of the chain model [14,61] that the
chain size distribution decays exponentially as given by g(n) ∝
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FIG. 4. (Color online) The cluster size distribution g(n) as a
function of cluster size n, at volume fraction φ = 0.007, for systems
having different λ values, in a log-log plot. The exponential fit to
simulation data is indicated by dashed lines. The power-law fit to the
cluster size distribution of the system at λ = 6.17 is shown in dotted
lines.

exp(−n/〈n〉), where n is the number of particles in a cluster
and 〈n〉 is the average cluster size. The latter is true only when
the average chain size is much larger than 1. For the general
case we fit the chain size distribution by g(n) ∝ exp(−n/a0),
where the average chain size 〈n〉 = [1 − exp(−1/a0)]−1.

From Fig. 4, it is evident that the average cluster size
increases with interaction strength, and we see larger clusters
than those reported in a simulation study by Wang et al. [17],
where the volume fraction is higher than that we study in
this work. At higher λ values, the cluster size distribution
deviates from exponential decay behavior and the tail region
follows a power law g(n) = n−ν with an exponent ν ≈ 2.4. In
the presence of a percolating cluster, in a three-dimensional
system, the exponent ν can vary in the range 2 < ν < 5/2 [57].
In colloidal gels, the exponent value is found to be 2.2 [58].
We have observed the node-forming ability of the system from
the other structural quantities; the power-law exponent ν from
the cluster size distribution also supports this observation.

We calculate 〈n〉 as described in the chain model for the
zero-field case as a function of λ [15],

〈n〉 = 1

2
+

(
1

4
+ φ

exp(2λ)

3λ3

)1/2

. (8)

We compare the result with 〈n〉 both from simulation and
from the exponential fit to simulation data which is shown in
Fig. 5. We find that the theoretical prediction underestimates
the average cluster size at higher λ values due to the
lack of interchain interactions. We could clearly observe in
simulations the node-forming ability of the system; thus we
conclude that interchain interactions cannot be neglected in
getting full information on the structural properties of the
system.

In Fig. 6, we show snapshots of the system for various
λ values. Particles are colored according to the number of
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FIG. 5. (Color online) Average cluster size 〈n〉, at volume fraction
φ = 0.007, for systems with different λ values. The red data points
show the average cluster size obtained from simulations. The green
smooth curve is the prediction from the chain model. The filled violet
circles indicate the average cluster size obtained from the exponential
fit to simulation data.

neighbors. Isolated particles are colored gray; particles having
one and two neighbors are shown in red (shaded dark in off-line
version) and these particles participate in chain formation. We
observe also particles with more than two neighbors which are

(a) λ = 2.37 (b) λ = 3.37

(c) λ = 4.00 (d) λ = 4.62

(e) λ = 5.36 (f) λ = 6.17

FIG. 6. (Color online) Snapshots of the system, at volume fraction
φ = 0.007, with different λ values. The color coding is explained in
the text.

colored green (shaded light in off-line version). These particles
form nodes that connect chains and thereby create networklike
structures. It is evident from the different snapshots of the
system that there is no columnar structure [62] formation, for
which the static structure factor is entirely different from the
one we obtained in our system. Our system shows similar static
structure factor characteristics as observed in gel systems or
in systems having spanning clusters [54–56].

In order to understand the zero-field properties of fer-
rofluids, we studied the structural properties and found a
crossover region in terms of the dipolar interaction strength.
This crossover region helps in understanding the structural
transitions of ferrofluids, and we focus in the following on
dynamic properties to gain further insight into this crossover
region.

IV. DYNAMIC PROPERTIES

The Langevin dynamics given by Eqs. (3) and (4) allows us
to study also dynamical properties, in particular, the diffusion
coefficients (from the mean square displacement and the
orientational correlation function), the structural relaxation
time (from the incoherent scattering function), and the shear
viscosity (from the stress correlation function) for different
dipolar interaction strengths in the absence of hydrodynamic
interactions (we expect that these interactions will not play a
significant role due to the very low density of the system [29]).
We also attempt to understand the change in dynamics in terms
of the underlying change in structure.

A. Diffusion

The single-particle translational diffusion can be traced by
calculating the mean square displacement (MSD) of particles
which is defined as [52]

〈r2(t)〉 = 1

N

N∑
i=1

〈|ri(t) − ri(0)|2〉, (9)

where ri(t) − ri(0) is the displacement vector of particle i over
a time interval t . In order to improve the statistics, we average
the MSD over different time origins.

The translational self-diffusion coefficient Dtrans is obtained
from the slope of the long-time regime of the mean square
displacement using the Einstein formula given by

Dtrans = lim
t→∞

〈r2(t)〉
6t

. (10)

We find that below λt the translational diffusion coefficient
decreases with increasing λ, similar to Arrhenius behavior. But
a dramatic decrease is observed beyond λt (Fig. 7). This sudden
decrease in Dtrans has not been observed in systems having
higher volume fractions [26–28,31,63,64]. As discussed in
the previous section, beyond λt, we find an increase in the
population of two-coordinated and three-coordinated particles
that form elongated chains or connected structures.

We also explored the effect of dipolar interaction strength
on the rotational diffusion. We extract the rotational diffusion
coefficient Drot from the orientational autocorrelation function
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FIG. 7. (Color online) The scaled diffusion coefficients D/D0

for translational and rotational dynamics (Dtrans/D0 and Drot/D0)
for different λ values at volume fraction φ = 0.007. D0 is the bare
diffusion coefficient defined as D0 = kBT /ξ , where ξ is ξT for
translational dynamics and ξR for rotational dynamics. The filled
circles and diamonds represent the translational and the rotational
diffusion coefficients, respectively. The continuous curve is the
quadratic fit to the rotational diffusion coefficient. The inset (a) shows
the mean square displacement [Eq. (9)] and the inset (b) shows the
orientational correlation function [Eq. (11)] for different λ values
between 2.37 and 6.17.

CR(t) of dipole moments which is defined as [50]

CR(t) = (1/N )

〈∑
i

ui(t) · ui(0)

〉
. (11)

For short times, the orientational correlation function decays
exponentially, CR(t) ∼ exp(−2Drott). The rotational diffusion
coefficient extracted from the orientational autocorrelation
function is shown as diamond symbols in Fig. 7. We find that
the rotational diffusion coefficient decreases with increasing
dipolar interaction strength. This feature has not been observed
in previous experimental and simulation studies of magnetic
fluids with weak dipolar interaction [65,66]. We find that
the dependence of Drot on λ fits a quadratic function of the
form Drot/D0 = 1.0 − A0λ

2, which is in agreement with the
theoretical calculation of the rotational diffusion coefficient of
ferrofluids [27].

We show in Fig. 8 the translational and rotational diffusion
coefficients as functions of the average chain size, which
clearly shows that the structural formation causes a slowing
down of the dynamics of the system. According to the
chain model, the translational diffusion coefficient decays
as Dtrans/D0 = ln〈n〉/〈n〉, which is shown as the continuous
green curve in Fig. 8. As can be seen, the chain model predicts
qualitatively the trend of Dtrans with change in the chain size.
We find that the translational diffusion coefficient varies as
2/〈n〉, which describes collective diffusion of the particles in a
chain by addition of the diffusion coefficients of each particle
belonging to the chain. The factor of 2 comes from the simple
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D
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0

FIG. 8. (Color online) The translational and rotational diffusion
coefficients as functions of average cluster size 〈n〉. The circles
represent the translational diffusion coefficient and the diamonds
represent the rotational diffusion coefficient. The continuous green
curve is from the chain model prediction. The dashed curve is a fit of
the form Dtrans/D0 = 2/〈n〉.

assumption that the translational diffusion of small chains (two
particles per chain) matches single-particle diffusion (see the
dashed curve in Fig. 8). The rotational diffusion coefficient
also decreases with increasing interaction strength. But there
is no dramatic decrease in Drot such as we observe in Dtrans.

B. Incoherent scattering function

We obtain information about single-particle dynamics at
various length scales by computing the incoherent scattering
function Fs(q,t), which can also be obtained in scattering
experiments, defined as [52]

Fs(q,t) = 1

N

N∑
i=1

〈exp{−iq · [ri(t) − ri(0)]}〉. (12)

To begin with we study the behavior of Fs(q,t) at the q value
corresponding to the first peak of S(q) (q ∼ 7) for various λ

values. We find that at these short length scales, the relaxation
times τ (q)—obtained either from the exponential fit or by
taking the time which corresponds to Fs(q,t) = 1/e—do not
change considerably with the interaction strength [τ (q)/τB =
0.3300(±0.0003) − 0.390(±0.014)]. As noted before, for
interaction strengths beyond λt we find structural changes
which include long chains and node-forming particles and
hence it would be interesting to look at the q dependence of
Fs(q,t).

For λ = 6.17, we show in Fig. 9 the behavior of Fs(q,t) for
different q values. We find that with a decrease in q value, the
relaxation times are increasing and also the decay of Fs(q,t)
follows a stretched exponential behavior (discussed below).
For different interaction strengths, the variation of relaxation
time at q = 0.29 (half of the box length) is shown in Fig. 10.
We find for λ greater than λt a rapid increase in the relaxation
time which is due to the presence of slowly relaxing structures.
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FIG. 9. (Color online) The incoherent scattering function Fs(q,t)
for the system having λ = 6.17 for different wave vectors.

The Fs(q,t) curves are fitted well by the Kohlrausch-
Williams-Watts (KWW) form which is given by Fs(q,t) =
A exp{−[t/τ (q)]β} where A is a constant, τ is the relaxation
time, and β is the KWW exponent. We find that at large length
scales the value of β changes from single exponential (β =
1.000 ± 0.009) to stretched (β = 0.84 ± 0.02) exponential
behavior as λ varies from 2.37 to 6.17. The single exponential
decay results from normal Arrhenius behavior of the density
correlation function, whereas stretched exponential decay is
due to the presence of structures having different relaxation
times which slow down the overall dynamics. Thus the
average relaxation time corresponding to the KWW form is
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FIG. 10. (Color online) The relaxation time τ (q) at large length
scales for different λ values. The inset shows the large-length-scale
behavior of Fs(q,t).
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FIG. 11. (Color online) The time-dependent stress correlation
function, at volume fraction φ = 0.007, for different λ values.

defined by

〈τ 〉 =
∫ ∞

0
exp{−[t/τ (q)]β}dt.

We find that the average relaxation time 〈τ 〉 matches τ (q)
calculated from Fs(q,t) up to the crossover dipolar interaction
strength λt. The deviation of 〈τ 〉 from τ (q) beyond λt is related
to the stretched exponential decay of Fs(q,t). The KWW
form of Fs(q,t) is also observed in gel- and glass-forming
systems [54,67].

C. Viscosity

We calculate the shear viscosity η, which is related to the
rate of momentum transport through the system, using the
Green-Kubo formula [48]

η = V

kBT

∫ ∞

0
〈σxy(t)σxy(0)〉dt, (13)

where σxy is the off-diagonal element of the stress tensor,

σxy = 1

V

⎛
⎝ N∑

i<j

rijxfijy +
N∑

i=1

pixpiy

M

⎞
⎠ , (14)

where fij is the force exerted on particle i by particle j and
pi(t) = Mvi(t).

The stress correlation function 〈σxy(t)σxy(0)〉 for systems
with different interaction strengths (Fig. 11) shows that the
amplitude of the correlation increases with increasing λ in
the short-time regime. A significant long-time tail develops
beyond λt, indicating a sustaining stress in the system. The
long tail has to be integrated correctly to get an accurate value
of η.

We calculate the viscosity from Eqs. (13) and (14). Further,
we investigate the viscosity change with dipolar interaction
strength and with chain size. In Fig. 12, it is shown that the
viscosity increases linearly with chain size, η/ηs = 1 + A1〈n〉
(dashed curve in the bottom panel). The viscosity change with
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FIG. 12. (Color online) The viscosity for different λ values at
volume fraction φ = 0.007 is shown in the top panel. In the bottom
panel, the viscosity is plotted as a function of chain size. The data
points show the simulation results and the continuous green curves
are from the chain model. The blue dashed curves are fitting functions
to the data (given in the text).

dipolar interaction strength shows an exponential behavior at
higher λ values and the data points more or less have a similar
trend as the function η/ηs = 1 + A2 exp(λ) (dashed curve in
the top panel). Further, we compare the viscosity results with
the theoretical prediction by Zubarev and Iskakova [14,41],
which is based on the assumptions that chains are considered
to be straight and rigid and the interchain interactions are
neglected. The chain model prediction for viscosity in the
absence of field and flow is given by

η

ηs

= 1 +
∑

n

5φn

(
Q1 + 2

3
Q3 − 2

15
Q23

)
, (15)

where φn is the volume fraction of n-particle chains. In
the chain model, each chain is modeled as a rigid ellipsoid
with an axis ratio n equal to the chain size. The coefficients
Qi depend only on the axis ratios of the ellipsoids which
are given in the Appendix. Due to these assumptions, we
observe that the theoretical model overpredicts the influence
of chain size and underpredicts the influence of dipolar
interaction strength on viscosity (continuous curve in both
panels).

The reaction field approach contributes to the calculation
of the torque due to long-range dipole-dipole interaction but
it does not contribute to the calculation of the force, and
consequently there is no contribution to the stress tensor either.
To overcome this approximation, we have chosen a very large
cutoff for the reaction field, rRF = 8σ , which is nearly half of
the box length, so that it does not affect the stress relaxation
and the viscosity of our system. We have cross-checked
the results with a larger cutoff than this and have found
no visible change in the viscosity and the stress correlation
function.

V. CONCLUSIONS

In this work we study the structural and dynamic prop-
erties of dilute magnetic colloids by varying the dipolar
interaction strength using Langevin dynamics simulations. We
parametrize the interaction potential to mimic the cobalt-based
nanoparticles that are used in experiments [42]. The strength
of the interaction is further varied (below and above the
values corresponding to that which mimic the experiments)
in this study. From the structural analysis we observe the
formation of complex microstructures which constitute chains
and node-forming structures. The dynamics of the system show
a slowing down at higher interaction strength. We find that the
structural and dynamic crossovers happen at around the same
interaction strength, and a systematic connection between the
structure and dynamics of the system is observed. The existing
theoretical model qualitatively predicts the trend of changes in
the diffusion coefficient and viscosity with increase in chain
size, but a clear quantitative difference is observed at larger
values of interaction strength, where we find a steep increase in
the zero-shear viscosity in a narrow range of dipolar interaction
strengths. We hope that the present study can give hints toward
improving the theoretical modeling of dilute and interacting
ferrofluids.
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APPENDIX

The geometric coefficients occurring in the viscosity
formula of the chain model are given by [14,41]

Q0 = 2(n2 − 1)2

5n2(2n2β − β − 1)
, (A1)

Q1 = 4(n2 − 1)2

5n2(3β + 2n2 − 5)
, (A2)

Q2 = Q1

3

[
1 − 2n2 + 1 − (4n2 − 1)β

4(2n2 + 1)β − 13

]
, (A3)

Q3 = Q1

[
[n2(β + 1) − 2](3β + 2n2 − 5)

4[β(2n2 − 1) − 1](n2 + 2 − 3n2β)
− 1

]
, (A4)

where β = 1

n
√

|n2−1|cosh−1(n), for n > 1, and

Q23 = 3Q2 + 4Q3.
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