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Fluctuations in the time variable and dynamical heterogeneity in glass-forming systems
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We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges
from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We
do this by constructing coarse grained observables and decomposing the fluctuations of these observables into
transverse components, which are associated with the postulated time-fluctuation soft modes, and a longitudinal
component, which represents the rest of the fluctuations. Our test is performed on data obtained in simulations of
four models of structural glasses. As the hypothesis predicts, we find that the time reparametrization fluctuations
become increasingly dominant as temperature is lowered and timescales are increased. More specifically, the
ratio between the strengths of the transverse fluctuations and the longitudinal fluctuations grows as a function of
the dynamical susceptibility, χ4, which represents the strength of the dynamical heterogeneity; and the correlation
volumes for the transverse fluctuations are approximately proportional to those for the dynamical heterogeneity,
while the correlation volumes for the longitudinal fluctuations remain small and approximately constant.
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I. INTRODUCTION

The rapidly increasing relaxation timescales, the presence
of non-exponential relaxation, as well as the violation of
Stokes-Einstein relations between viscosity and diffusivity are
some features observed close to the glass transition in glassy
systems [1–3]. The appearance of these features suggests that
relaxation dynamics is heterogeneous, i.e., that it is faster in
some regions and slower in others [2–4]. Direct microscopic
evidence for this behavior has been found both in simulations
[4,5] and in experiments [4,6–16]. The understanding of
dynamical heterogeneity is believed to be crucial to explain
anomalous behavior of materials near the glass transition,
and even possibly to explain the very presence of the glass
transition itself [2]. Despite many efforts trying to address the
origin of dynamical heterogeneity, this question still remains
open [4,17–20].

In recent years, different tools have been used to probe
dynamical heterogeneity. One such tool is the dynamical sus-
ceptibility, χ4, which depends both on the strength of the local
fluctuations and the spatial extent of their correlations. The
peak value of χ4 has been observed to grow while approaching
the glass transition. However, this tool by itself cannot tell us
much about the origin of dynamical heterogeneity and it may
be desirable to supplement it with other ways of probing the
fluctuations in the system.

In this work, we test the predictions of a theoretical
framework that aims to describe the slow part of the fluc-
tuations in the relaxation dynamics [20–24]. This framework
is based on the hypothesis that in glassy systems the long time
dynamics is invariant under reparametrizations of the time
variable [20–28], but this invariance is broken, giving rise to
Goldstone modes that manifest themselves with the emerge
of heterogeneous dynamics [20–24,29–34]. The Goldstone
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modes correspond to fluctuations in the time reparametrization
t → φ�r (t), i.e.,

C�r (t,t ′) ≈ C[φ�r (t),φ�r (t ′)], (1)

where C(t,t ′) is a global two-time correlation function. Some
indirect evidence in favor of the presence of this kind of
fluctuation in structural glasses has been presented in [29–32].
In this work, we present results for a more direct test, based
on decomposing fluctuations into a transverse part satisfying
Eq. (1) and a longitudinal part containing all other fluctuations.
This procedure allows one to separately quantify the strength
and spatial correlations of both kinds of fluctuations, as
a function of temperature and timescales, for a variety of
glass-forming models both below and above the mode coupling
critical temperature Tc. The same kind of test can also be
applied to particle tracking experimental data from colloidal
and granular systems [4,9–15], thus allowing to investigate
a possible unified explanation of dynamical heterogeneity in
diverse systems. A summary of the results of an early version
of our analysis was published in Ref. [33].

This manuscript is organized in the following way. In Sec. II
we discuss the hypothesis and define the quantities we use to
test it. In Sec. III we present the details of the numerical
simulations used to test the hypothesis and present the results
of our analysis. Finally, we discuss our conclusions in Sec. IV.

II. TIME REPARAMETRIZATION INVARIANCE
AND FLUCTUATIONS

We start by discussing in general terms the expected effects
of time reparametrization invariance on the fluctuations. Let
us consider the global two-time correlation function

C(t,t ′) =
〈

1

N

N∑
j=1

cos{�q · [�rj (t) − �rj (t ′)]}
〉

, (2)

where N is the number of particles, �rj (t) is the position of
particle j at time t , and �q is the wave vector that corresponds

042311-11539-3755/2013/88(4)/042311(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.042311


AVILA, CASTILLO, AND PARSAEIAN PHYSICAL REVIEW E 88, 042311 (2013)

to the main peak of the static structure factor. Here 〈· · · 〉
denotes an average over thermal fluctuations, which in our case
is approximated by an average over independent molecular
dynamics (MD) runs. In equilibrium, and more generally in
time translationally invariant (TTI) systems, this correlation
function depends only on the difference between the two times
t − t ′. In the case of aging, the system is no longer TTI and
C(t,t ′) depends nontrivially on both times t and t ′.

To analyze the fluctuations in the dynamics we define the
local correlation as [29–32]

C�r (t,t ′) = 1

N (Br )

∑
rj (t ′)∈Br

cos{�q · [�rj (t) − �rj (t ′)]}, (3)

where the average over particles in Eq. (2) is now restricted
to a region B�r around point �r , which contains N (B�r ) particles
at time t ′ < t . C�r (t,t ′) probes the mobility of the particles
in a region near �r between times t ′ and t : it is close to
zero for regions where the particle configuration has changed
significantly, and much closer to unity for regions where it has
changed little or not at all.

In this work we will consider a slightly more restrictive
version of Eq. (1), namely [33,35,36]

C�r (t,t ′) ≈ g[φ�r (t) − φ�r (t ′)], (4)

which corresponds to the case when the global correlation has
the form [33,35,36]

C(t,t ′) = g[φ(t) − φ(t ′)]. (5)

In principle, the functions g(x) in Eqs. (4) and (5) could be
different. For example, it has been claimed [2] that stretched-
exponential global relaxation could be the result of combining
local exponential relaxations with different relaxation times, in
which case we would have gglobal = A exp (−|x|β) in Eq. (5)
and glocal = A′ exp (−|x|) in Eq. (4) [34]. In this work, for
simplicity, we impose the condition gglobal(x) = glocal(x) =
g(x). Both this restriction and the restriction imposed in Eq. (5)
could in principle make the results appear to be slightly less
consistent with the hypothesis than they would be otherwise.
The forms of the functions g(x) and φ(t) can be obtained
by fitting the global correlation C(t,t ′), as we do in the next
section. We will assume, for the moment, that g(x) and φ(t)
are known.

As mentioned before, we refer to the fluctuations described
by Eq. (4) as transverse fluctuations and the rest of the
fluctuations as longitudinal fluctuations [37]. To visualize
these ideas in more detail, we define

�ab,�r ≡ g−1(Cab,�r ), (6)

with a,b ∈ {1,2,3} [36], where Cab,�r ≡ C�r (ta,tb). The fluctu-
ating quantity �ab,�r is composed of a transverse contribution,

�ab,�r T = φ�r (ta) − φ�r (tb), (7)

and a longitudinal contribution, �ab,�rL, i.e.,

g−1(Cab,�r ) = �ab,�r = �ab,�r T + �ab,�rL

= φ�r (ta) − φ�r (tb) + �ab,�rL. (8)

This means that in the absence of longitudinal fluctuations,
Eq. (4) would be exact. In order to quantify both kinds of

fluctuations, we define

σ�r ≡ 1√
3

[g−1(C21,�r ) + g−1(C32,�r ) − g−1(C31,�r )]

= 1√
3

(
�21,�rL + �32,�rL − �31,�rL

)
, (9)

π1,�r ≡ 1√
2

[g−1(C21,�r ) − g−1(C32,�r )]

= 1√
2

[(
�21,�r T + �21,�rL

) − (
�32,�r T + �32,�rL

)]
, (10)

and

π2,�r ≡ 1√
6

[g−1(C21,�r ) + g−1(C32,�r ) + 2g−1(C31,�r )]

= 1√
6

[(
�21,�r T + �21,�rL

) + (
�32,�r T + �32,�rL

)
+ 2

(
�31,�r T + �31,�rL

)]
, (11)

with t1 < t2 < t3. As shown above, σ�r contains only longitudi-
nal fluctuations, but π1,�r and π2,�r contain both transverse and
longitudinal components. If Eq. (4) was an exact identity, the
local two-time function would verify the following relation:

g−1(C21,�r ) + g−1(C32,�r ) − g−1(C31,�r ) = 0. (12)

Then, in the case where no longitudinal fluctuations are
present, the vector (σ�r ,π1,�r ,π2,�r ) would be restricted to
be fluctuating in the plane σ�r = 0. We expect that as the
temperature becomes lower, the timescales become longer,
and the system becomes more glassy, transverse fluctuations
should become progressively more dominant, according to the
hypothesis [Eq. (1)] and therefore the probability distribution
ρ(σ�r ,π1,�r ,π2,�r ) should become anisotropic, extending mostly
along the σ�r = 0 plane and not away from it.

An analogous set of quantities can be defined starting from
the global correlation C(t,t ′). We can write the analogs of
Eqs. (7) and (8), i.e.,

�ab
T = φ(ta) − φ(tb), (13)

g−1[C(ta,tb)] = �ab = �ab
T + �ab

L

= φ(ta) − φ(tb) + �ab
L. (14)

However, in this case, the meanings of the symbols are
different. �ab

T and �ab
L do not fluctuate, because they are

computed from the global correlation in the thermodynamic
limit, which is self averaging. If Eq. (5) was exact, then
�ab

L ≡ 0. However, in practice Eq. (5) is only approximate: in
Sec. III we fit the left-hand side by an expression with the form
given in the right-hand side. Thus �ab

T represents the part
of �ab that can be represented as a difference φ(ta) − φ(tb)
according to the fits, and �ab

L represents the part of �ab

that the fit does not capture, or in other words a fitting error.
Additionally, the global variables σ , π1, and π2 can be defined,
by analogy to Eqs. (9), (10), and (11), in the following way:

σ ≡ 1√
3

(�21 + �32 − �31)

= 1√
3

(
�21

L + �32
L − �31

L
)
, (15)

π1 ≡ 1√
2

(�21 − �32) , (16)
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and

π2 ≡ 1√
6

(�21 + �32 + 2�31), (17)

with t1 < t2 < t3. If Eq. (5) was an exact identity, i.e., if the
fit of C(t,t ′) by g[φ(t) − φ(t ′)] had exactly zero residuals,
then σ = 0 and the global two-time function would verify the
relation

g−1[C(t2,t1)] + g−1[C(t3,t2)] − g−1[C(t3,t1)] = 0. (18)

A more extensive analysis of the fluctuations can be
performed by separating longitudinal and transverse com-
ponents in Eqs. (10) and (11). First, we recall that σ is a
purely longitudinal quantity [see Eq. (9)], therefore σ�r T = 0
and �31,�r T = �21,�r T + �32,�r T . Now, we make the following
two assumptions. One is that the transverse and longitudinal
fluctuations are not correlated to each other. The other is that
all slow fluctuations are transverse, or in other words, that
longitudinal fluctuations are short range correlated in time, or
at least they are correlated over times that are shorter than the
shortest time interval between the configurations that are being
considered. This leads to the conditions〈

δ�ab,�rLδ�cd,�r ′ T
〉 = 0 ∀ a,b,c,d,�r,�r ′ (19)

and 〈
δ�ab,�rLδ�cd,�r ′ L

〉 = 0 for a �= c or

b �= d, ∀ �r,�r ′. (20)

Here δx ≡ x − 〈x〉. By using Eq. (7), it can be shown that the
transverse components of Eqs. (10) and (11) are given by

π1,�r T = 1√
2

(
�21,�r T − �32,�r T

)
(21)

and

π2,�r T = 3√
6

(
�21,�r T + �32,�r T

)
. (22)

Regarding the longitudinal components, by using Eq. (20)
it can be shown that〈(

δσ�rL
)2〉 = 1

3

[〈(
δ�21,�rL

)2〉 + 〈(
δ�32,�rL

)2〉
+ 〈(

δ�31,�rL
)2〉]

, (23)〈(
δπ1,�rL

)2〉 = 1
2

[〈(
δ�21,�rL

)2〉 + 〈(
δ�32,�rL

)2〉]
, (24)

and 〈(
δπ2,�rL

)2〉 = 1
6

[〈(
δ�21,�rL

)2〉 + 〈(
δ�32,�rL

)2〉
+ 4

〈(
δ�31,�rL

)2〉]
. (25)

From the last three equations it can be easily seen that〈(
δπ1,�rL

)2 + (
δπ2,�rL

)2 − 2
(
δσ�rL

)2〉 = 0. (26)

By using Eq. (19) we find that, all together, we can compute
the variance of the transverse fluctuations by combining the
fluctuations of Eqs. (9), (10), and (11) in the following way:〈(

δπ1,�r T
)2 + (

δπ2,�r T
)2〉 = 〈(δπ1,�r )2 + (δπ2,�r )2 − 2(δσ�r )2〉.

(27)

Further, we can estimate correlation volumes (in units of
the coarse graining volume Vcg) by using the formula

Vcorr ≡ χ4,a/[Vcg〈(δa�r )2〉], (28)

where χ4,a ≡ V 〈(δa)2〉, a�r is a local coarse grained variable,
a ≡ ∫

dd r
Ld a�r is the spatial average of a�r , and V = Ld is the

volume of the system. Therefore, by using these equations to-
gether with Eq. (27) we can estimate the correlation volume of
transverse and longitudinal fluctuations, respectively given by

V T = χ4,π1
T + χ4,π2

T

Vcg

〈(
δπ1,�r T

)2 + (
δπ2,�r T

)2〉
= V 〈(δπ1)2 + (δπ2)2 − 2(δσ )2〉

Vcg〈(δπ1,�r )2 + (δπ2,�r )2 − 2(δσ�r )2〉 (29)

and

V L = χ4,σ

Vcg〈(δσ�r )2〉 = V 〈(δσ )2〉
Vcg〈(δσ�r )2〉 . (30)

If the time reparametrization hypothesis is correct, we
expect that the variance as well as the correlation volume of
the transverse fluctuations will grow together with those cor-
responding to the dynamical heterogeneities. We also expect
that the variance and correlation volume of the longitudinal
fluctuations should be insensitive to changes in the variance
and correlation volume of the dynamical heterogeneities.

III. TESTING THE HYPOTHESIS

A. Systems

We performed classical molecular dynamics simulations in
systems of N particles that were initially equilibrated at high
temperature Ti  Tc (where Tc is the mode coupling critical
temperature [38]), then instantaneously quenched to a final
temperature T and allowed to evolve for times several orders of
magnitude longer than their typical vibrational times [29–32].
We determined Tc by fitting τα = (T − Tc)γ , where τα is
the equilibrium α-relaxation time defined by the conditions

TABLE I. Details of the numerical simulations analyzed in this
work. We considered systems of N particles, with m particles per
molecule, interacting via either Lennard-Jones (LJ) potentials or
via purely repulsive Weeks-Chandler-Andersen (WCA) potentials,
at final temperature T . Each temperature is also described by its ratio
with respect to the empirically determined mode coupling critical
temperature Tc [38] for the same system. The last column lists the
number of independent runs. Data sets F and H correspond to systems
in equilibrium, all others to systems in the aging regime.

Systems

Label N m Potential T Tc T /Tc Runs

A 8000 10 LJ 0.6 0.833 ≈0.7 100
B 8000 10 WCA 0.4 0.503 ≈0.8 800
C 8000 1 LJ 0.4 0.435 ≈0.9 250
D 1000 1 WCA 0.236 0.263 ≈0.9 5000
E 1000 1 WCA 0.29 0.263 ≈1.1 9000
F 1000 1 WCA - Eq 0.29 0.263 ≈1.1 9000
G 1000 1 WCA 0.4 0.263 ≈1.5 4999
H 1000 1 WCA - Eq 0.4 0.263 ≈1.5 4999
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FIG. 1. (Color online) Global (σ,
√

π 2
1 + π 2

2 ) pairs for all data
sets and all possible times t1 < t2 < t3. Inset: Relaxation time τα(t1)
as a function of the waiting time t1 for all the models and temperatures
considered. τα(t1) is defined by the condition C(t1 + τα(t1),t1) = 1/e.

C(t1 + τα(t1),t1) = 1/e and τα = limt1→∞ τα(t1), as shown in
Ref. [31]. We generated eight data sets by simulating four
atomistic glass-forming models [32]. Two of the systems
are 80 : 20 mixtures of A and B particles, interacting via
either Lennard-Jones (LJ) potentials [39] or via purely re-
pulsive Weeks-Chandler-Andersen (WCA) truncation of the
LJ potentials [40]. The interactions in the particle systems
have the same length parameters, σαβ (α,β ∈ {A,B}), and
energy parameters, εαβ as in the standard Kob-Andersen
mixture, namely [39]: σAA = 1.0, σAB = 0.8, σBB = 0.88,
εAA = 1.0, εAB = 1.5, and εBB = 0.5. The other two systems
are models of short (ten-monomer) polymers, in which all
particles interact with each other via either LJ potentials or via
WCA potentials, with length parameter σAA = 1.0 and energy

parameter εAA = 1.0. Additionally, in our polymer models,
nearest-neighbor monomers along a chain are connected by
a FENE anharmonic spring potential. For both particle and
polymer systems, the LJ potential is truncated at the cut-off
distance rcutoff,αβ = 2.5 σαβ and the WCA potential is truncated
at rcutoff,αβ = 21/6σαβ . We choose the unit of length as σAA, the
unit of energy as εAA and the unit of time as (σ 2

AAM/48εAA)1/2.
For the particle systems, the simulations were performed in an
NVT ensemble, with the temperature being fixed by rescaling
the velocities every 50 time steps. For the polymer systems,
the simulations were performed in an NPT ensemble, with
both the pressure and the temperature being controlled by
the Nose-Hoover method. The details of the simulations are
summarized in Table I.

B. Results

We begin by identifying the functions g(x) and φ(t)
[Eq. (5)] that best describe the global correlations C(t,t ′)
computed from our data sets by using Eq. (2). We find that, for
all data sets, the two-time correlation C(t,t ′) can be well fitted
by using the form g(x) = qEA exp[−(x/θ0)β]. However, as
shown in the inset of Fig. 1, the relaxation for different systems
presents different behaviors, which leads to different forms of
φ(t). The best fits of C(t,t ′) that we obtained correspond to the
following forms: for aging polymer systems φ(t) = lnα(t/t0),
for aging particle systems φ(t) = (t/t0)α , and for equilibrium
φ(t) = t/t0. We can verify our proposed Eq. (5) for the
different cases by using the form of the obtained functions g(x)
and φ(t). For equilibrium we trivially recovered, as expected,
the case of TTI. In the aging cases we can verify that Eq. (5) can
be rewritten in the form C(t,t ′) = f [h(t)/h(t ′)] [33], which is
found in many aging systems [35]. Once the fitting procedure
is performed for a given data set, we can use the known values
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FIG. 2. (Color online) 2D contours of constant joint probability density ρ(|�σ�r |,|�π�r |), computed using coarse graining boxes containing
125 particles on average. By subtracting the global quantities to the local quantities we avoid trivial effects due to differences in the global
values. Each panel from A to H contains results from the corresponding data set, for C(t3,t1) ≈ 0.23, with the times chosen as late as possible
within each data set. Each set of three concentric contours is chosen so that they enclose 25%,50%, and 75% of the total probability.
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FIG. 3. (Color online) Comparison of the contours enclosing 25%
of the probability for the aging WCA systems at three different
temperatures (D, E, and G). The three different panels correspond
to different values of C(t3,t1): (a) C(t3,t1) ≈ 0.23, which is the same
value as in Fig. 2, (b) C(t3,t1) ≈ 0.33, and (c) C(t3,t1) ≈ 0.44.

of the parameters qEA, β and θ0 to compute

�ab = g−1[C(ta,tb)] = θ0
{ − ln

[
q−1

EAC(ta,tb)
]}1/β

(31)

and, by using Eqs. (15)–(17), to compute σ , π1, and π2.
Figure 1 shows the results of plotting the global values
of σ against the global values of

√
π2

1 + π2
2 for all times,

 0

 0.1

 0.2

 0.3

 0.4

 0  0.5  1

|
r|

| r|

B 

FIG. 4. (Color online) 25% probability contours for data set B
with C(t3,t1) ≈ 0.23. Contour B corresponds to the 25% of the
probability density shown in Fig. 2. Contour B′ corresponds to the
same times as contour B, but with a much smaller coarse graining
size. Contour label B′′ corresponds to the same coarse graining size
as B, but with much shorter times.

t1 < t2 < t3, and all systems. As discussed before, since the
fits are not perfect, the results do not fall exactly on the line
σ = 0, but the collapse and the fits are good enough to allow
us to test the hypothesis.

As mentioned in the previous section, if Eq. (1) is satisfied,
we expect the local quantities to satisfy σ�r = 0. In Fig. 2
we show the results of plotting for all systems the 2D
projection of the joint probability density of the coarse-grained
local correlations, ρ(|�σ�r |,|�π�r |), with |�σ�r | ≡ |σ�r − σ |
and |�π�r | ≡ √

(π1,�r − π1)2 + (π2,�r − π2)2. The values of the
global quantities are subtracted from the local quantities to
avoid trivial effects due to differences in the global values.
By doing this we are able to better compare the contours
independently of the choice of C(t2,t1) and C(t3,t2). We do,
however, keep the value of C(t3,t1) approximately the same
for all systems, in this case C(t3,t1) ≈ 0.23. The three contours
shown for each data set enclose respectively 25%, 50%, and
75% of the total probability. We coarse grain over moderately
large regions, containing on average 125 particles, in order to
detect collective fluctuations and, since time reparametrization
symmetry is a long time asymptotic effect, we choose the
times as late as possible. As the time reparametrization
hypothesis predicts, for data sets with T < Tc (A–D), the
purely longitudinal fluctuations �σ�r are clearly smaller than
the ��π�r fluctuations, which contain both transverse and lon-
gitudinal contributions. This behavior is more noticeable for
the 25% contour, which encloses the most likely fluctuations,
than for the 50% and 75% contours. For moderately higher
temperature, T/Tc ≈ 1.1 (data sets E and F), the anisotropy
|�σ�r | < |��π�r | is still present, but less pronounced. In the case
of the highest temperature, T/Tc ≈ 1.5 (data sets G and H),
the anisotropy is either very slight, or absent. In the case of the
systems that are equilibrated, F and H, we find that the shapes
of their contours are similar but slightly more anisotropic
then the ones obtained for the same temperature in the aging
regime, E and G, respectively. The effect of temperature in the
anisotropy of the contours can be observed in more detail in
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FIG. 5. (Color online) (a) Ratio between the variances of transverse and longitudinal fluctuations as a function of the initial time t1,
for C(t3,t1) ≈ 0.23. (b) Ratio between the correlation volumes of transverse and longitudinal fluctuations as a function of t1, for the value
C(t3,t1) ≈ 0.23.

Fig. 3(a) where the 25% contour of the probability density for
the systems of particles with WCA interactions is shown for
three temperatures (data sets D, E, G). This can be directly
connected to the fact that, as the temperature is increased, the
separation of timescales is less pronounced, the finite time
corrections to the time reparametrization symmetry become
larger, and the effects of local time variable fluctuations
become weaker. The same trends can be observed in Figs. 3(b)
and 3(c) for the same data sets as in Fig. 3(a) but for different
values of the global correlation C(t3,t1).

We can further analyze the effects of choosing different
conditions from the ones chosen in Fig. 2, for instance, by
comparing the results shown in Fig. 2 with results obtained
for smaller coarse graining regions or for shorter times in the
aging regime. Exactly this kind of comparison is shown in
Fig. 4, where the 25% probability contours for data set B are
shown for three conditions. The contour labeled B is the one

shown already in Fig. 2. The contour labeled B′ corresponds
to the same time, but with coarse graining regions containing
on average 23 particles instead of 125. This leads to less
averaging and stronger fluctuations, but also, since fluctuations
correlated over shorter distances are no longer preferentially
suppressed, the shape of the contour is no longer dominated
by collective modes, and thus contour B′ extends more in
the direction of |�σ�r | than contour B. The contour labeled
B′′ corresponds to the same coarse graining size of contour
B, but with much shorter times. This leads to stronger finite
time effects, analogous to the ones found at slightly higher
temperatures, and as expected the contour is less anisotropic,
and indeed, it resembles the contours corresponding to
T/Tc ≈ 1.1.

We now move to a more quantitative analysis of the strength
and spatial correlations of the fluctuations by making use
of the results derived in Sec. II. In Fig. 5(a) we show the
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ratio between the variances of local transverse fluctuations
and longitudinal fluctuations, 〈(δπ1,�r T )2 + (δπ2,�r T )2〉/〈(δσ�r )2〉
(“variance anisotropy ratio”) [see Eq. (27)], as a function of
the initial time t1.

Similarly, in Fig. 5(b) we plot the ratio between the cor-
relation volumes of transverse and longitudinal fluctuations,
V T /V L (“correlation volume anisotropy ratio”) [see Eqs. (29)
and (30)], also as a function of t1. We find that for aging systems
both ratios grow as t1 increases, as one could expect from
the fact that at later times the reparametrizations symmetry
breaking terms in the action should become progressively
weaker [21]. For the equilibrium data sets, the dynamics is
time translation invariant (TTI), and we observe, as expected,
that both anisotropies are independent of t1. In Fig. 6, we
show the same two ratios as functions of the strength of the
dynamical heterogeneities, measured by the dynamical suscep-

tibility χ4(t3,t1) ≡ χ4,C31 = N [〈C31
2〉 − 〈C31〉2]. We observe

that both anisotropy ratios grow when χ4,C31 increases, i.e.,
as the dynamical heterogeneity becomes more pronounced.
Although the same qualitative behavior is observed for all
data sets, the curves are different for different systems and
temperatures.

The results presented in Fig. 6 correspond to the value
C(t3,t1) ≈ 0.23, but similar results can be obtained for differ-
ent values of C(t3,t1), as one can expect from Fig. 3. Results
for three different values of C(t3,t1) are shown in Fig. 7, where
the variance anisotropy ratio for data sets B and D is plotted
as a function of χ4,C31 for the values C(t3,t1) ≈ 0.23, 0.33,

and 0.44. This figure shows that the variance anisotropy ratio
grows with the strength of the dynamical heterogeneity, for all
three fixed values of C(t3,t1).

According to the hypothesis, dynamical heterogeneity
originates in the Goldstone modes associated to fluctuations
in the time reparametrization [see Eq. (4)]. Therefore, the hy-
pothesis implies that the correlation volume of the dynamical
heterogeneity should be similar to the correlation volumes of
the transverse components of the variables π1 and π2, and
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FIG. 8. (Color online) Correlation volumes for transverse and
longitudinal fluctuations, plotted against VC31 , the correlation volume
for the fluctuations of C31,�r , calculated for the value C(t3,t1) ≈ 0.23.

the longitudinal variable σ should be less correlated in space.
Our results, shown in Fig. 8, show that this is indeed the
case. The correlation volume corresponding to the transverse
fluctuations, V T , closely tracks the one corresponding to the
dynamical heterogeneities, VC31 , and they both grow together
as the temperature is reduced or the timescale is increased. By
contrast, for the longitudinal fluctuations σ we find that their
correlation volume V L is small and essentially constant; it does
not correlate with the correlation volume of the dynamical
heterogeneity, nor with the temperature or the time scale. In
fact, despite the large error bars and the presence of some
outlier points, the figure shows a partial data collapse between
different systems, both for the case of transverse and for
the case of longitudinal correlation volumes. In the case of
longitudinal fluctuations, this may be a trivial effect due to
the correlation volumes being smaller than the volume of the
coarse graining regions used to define the variables. In the
case of the transverse fluctuations, the correlation volumes go
well beyond the volume of the coarse graining regions, and
the partial collapse in the results might be evidence of some
sort of universality, but more work will be needed in order to
decide this question one way or another.

IV. CONCLUSIONS

In this paper we tested the hypothesis that dynamical
heterogeneity arises from Goldstone modes related to a
broken continuous symmetry under time reparametrizations.
In other words, we tested whether dynamical heterogeneity is
associated with the presence of spatially correlated fluctuations
in the time variables. To verify this, we studied probability
distributions that allowed us to distinguish between time
reparametrization fluctuations (transverse fluctuations) and
other fluctuations (longitudinal fluctuations). We also tested
for possible correlations of both the strength and the correlation
volume of the fluctuations in the time variable with the
dynamical susceptibility χ4, which is normally used to probe
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dynamical heterogeneity. Altogether, we found that at the low-
est temperatures, for the longest timescales and for the largest
coarse graining lengths, the transverse fluctuations became
stronger than the longitudinal fluctuations, which is consistent
with the hypothesis. We also found that the correlation volumes
of the time reparametrization fluctuations were proportional
to the correlation volume of the dynamical heterogeneity,
while the correlation volumes of the longitudinal fluctuations
were small and independent of the correlation volumes of
the dynamical heterogeneity. These observations apply to
all the systems examined, regardless of the details of the
interaction (purely repulsive in the case of WCA vs. repulsive
and attractive in the case of LJ), the kinds of objects (binary
systems of particles vs. systems of short polymers), or the
ensembles used in the simulations (NVT vs. NPT). All of this
was despite the fact that, to simplify the analysis, we imposed
some extra conditions on the form of the correlations, which
may have made the agreement with the hypothesis appear less
good than it would have been otherwise.

With regards to universality, the evidence we found was
mixed. On the one hand, there were clear differences in the
details of the results for different systems, for example for
the anisotropy ratios. On the other hand, all the trends we
observed were the same across systems, and the results for
the correlation volumes did show some hints of universality,
although the relatively large noise in this measurement did not
allow for definite conclusions to be drawn. In any case, the

commonality in the results is strong enough to suggest that
other systems may display similar qualitative behaviors. Thus,
we expect that it would be very instructive to apply the same
kind of test to data from other slowly relaxing systems, such
as particle tracking data from glassy colloids [9–12] and from
granular systems close to jamming [14,15].

Finally, considering the success of the tests presented here,
it becomes natural to ask if it is possible to extract from the data
the actual fluctuating reparametrization φ�r (t), and to study its
properties directly. In fact, Ref. [34] shows that some progress
can be made in that direction.
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