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The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer
simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B2 and B3) are
evaluated as functions of the dipolar coupling constant λ, and the Langevin parameter α. The formula for B3

for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The
formulas are compared to results from Mayer-sampling calculations, and the trends with increasing λ and α

are examined. Very good agreement between theory and computation is demonstrated for the realistic values
λ � 2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion,
designed to minimize the effects of truncation. The theoretical results for the equation of state are compared
against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen
to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic
function. Its success is due to the approximate representation of high-order terms in the virial expansion, while
retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with
simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative
field-dependent critical parameters for the condensation transition are obtained and compared against existing
simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence
of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison
of the relative changes in critical parameters with increasing field strength shows excellent agreement between
theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust.
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I. INTRODUCTION

Ferrofluids are dispersions of ferromagnetic grains sus-
pended in a carrier liquid. The grain size is roughly 10 nm
to sustain ferromagnetic order, and to avoid the formation of
magnetic domains. The carrier liquid may be nonaqueous (in
which case, the grains must be sterically stabilized) or aqueous
(requiring charge stabilization). Typically, the concentration
(or packing fraction) of magnetic grains is of order 0.01–0.1
by volume. Much of the functionality of ferrofluids arises
from the responses of the structure and dynamics to applied
magnetic fields. For instance, the rheological properties (such
as viscosity) and optical properties (such as birefringence)
become anisotropic in the presence of a uniform magnetic
field [1]. This arises due to the field-induced alignment of the
particles and the enhancement of chain-like correlations in the
field direction. This effect has been studied in detail in recent
work [2]. Ferrofluids may be used in a variety of applications,
such as in devices (sealants, heat-conduction media, media for
hydraulic suspensions) and in materials processing (separation
media, gas-fluidized beds). Such materials can also be adapted
for biomedical uses such as targeted drug delivery, diagnosis,
and localized treatment by hyperthermia.

Ferrofluids also provide a realization of a model polar
liquid. If the magnetic grains are spherical and homogeneously
magnetized, then the magnetic interaction between any two
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grains i and j is given by the pure dipole-dipole interaction

ud
ij = μ0

4π

[
(μi · μj )

r3
ij

− 3(μi · r ij )(μj · r ij )

r5
ij

]
, (1)

where r ij is the center-center separation vector, rij = |r ij |,
μi is the dipole moment on particle i, and μ0 is the magnetic
permeability of the background medium. In addition, there will
be a short-range interaction arising from steric and/or charge
stabilization. In many cases, this can be approximated by a
hard-sphere potential, given by

us
ij =

{∞ rij < σ

0 rij � σ
, (2)

where σ is the particle diameter. Detailed numerical compar-
isons between the magnetic properties of real ferrofluids and
those of the (polydisperse) dipolar hard sphere (DHS) model
show that, for all practical purposes, these interactions are
sufficient [3,4].

Such simple models can be studied in detail using theory
and computer simulations. The DHS model, in particular, has
been studied intensively for almost five decades, but it still
yields surprises. One of the most long-standing problems is
the phase diagram in the absence of a magnetic field, and
specifically, whether there is a colloidal vapor-liquid phase
transition. The debate is not yet fully resolved. The Boltzmann-
weighted angle average of the interaction potential is, to
leading order, attractive and short range (∼−r−6), and hence
a conventional condensation transition is to be anticipated [5].
Computer simulations show that a transition is precluded, or
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at least interrupted, by extensive association of the particles
to form chains, rings, and branched structures [6,7]. Despite
a heavy investment of computer time, the condensation
transition in DHS fluids has not been observed directly in
simulations of systems with sufficient size, and with suitable
treatments of the long-range dipolar interactions [6–10]. Many
attempts have been made to “sneak up” on a phase transition
by simulating models that correspond to pure DHSs in some
limit, but the transition always disappears before the limit
is reached [11–17]. It has been shown theoretically, and
with several different approaches, that chain formation may
preclude fluid-fluid phase separation [18–21]. The question of
a phase transition is somewhat academic, however, because
if there is such a transition, it occurs only for very strongly
interacting particles. The interaction strength is measured with
the dipolar coupling constant, λ = μ0μ

2/4πσ 3kBT , where
μ = |μ|, kB is Boltzmann’s constant, and T is the temperature.
Extrapolations of simulation data to the DHS limit indicate that
the critical value is λ � 6; for typical ferrofluids, the dipolar
coupling constants are normally in the region of λ = 1 or 2.
The particle concentration is given by ρ = N/V , where N

is the number of particles and V is the system volume, or
alternatively the volume fraction ϕ = ρv0 where v0 = πσ 3/6
is the particle volume. The critical concentration appears to be
in the region of ϕ � 0.05 (or ρσ 3 � 0.1).

To understand and predict theoretically the properties of
real ferrofluids, such as diffusion and sedimentation, it is
necessary to be able to calculate thermodynamic properties
such as osmotic pressure and free energy as functions of
the volume fraction ϕ and the dipolar coupling constant λ.
There are many theories of dipolar liquids, but among the
most successful (for the thermodynamic properties of DHSs)
is the thermodynamic perturbation theory (TPT) of Stell and
co-workers [22,23]. In a recent study, the present authors
constructed a new theory based on the virial expansion, which
outperforms the TPT, but requires only the first few virial
coefficients as input [24]. The theory is based on a logarithmic
representation of the Helmholtz free energy, and hence it will
be referred to as the logarithmic free energy (LFE) theory; it
will be summarized briefly in Sec. II C. A critical comparison
of these theories with the equations of state from simulations
of DHSs and experimental sedimentation profiles of real
ferrofluids [25,26] shows that the LFE theory is superior over
all realistic ranges of volume fraction and dipolar coupling
constant. To understand processes such as magnetophoresis
in an applied magnetic field, however, requires knowledge of
how the virial coefficients vary with field strength. In a uniform
magnetic field H , the total interaction energy of the fluid is

U = 1

2

N∑
i=1

N∑
i �=j

(
us

ij + ud
ij

) − μ0

N∑
i=1

μi · H . (3)

The Langevin parameter α = μ0μH/kBT measures the im-
portance of the Zeeman interaction as compared to the thermal
energy. There have been many theoretical studies focused on
the structure and possible phases of dipolar particles in applied
fields, using integral equations [27–29], classical density
functional theory (DFT) [28,30], and virial expansions [2,31].
As far as the authors are aware, though, there has not been a

systematic study of the thermodynamic properties, such as the
equation of state, of DHSs in an applied field.

In this work, the dependences of the second and third virial
coefficients, B2 and B3, on λ and α are determined analytically
and numerically. The correct expressions for these coefficients
are derived quite generally for a one-component system in an
applied field: the formula for B2 is the same as in the zero-field
case; the formula for B3, however, is different in an applied
field. This is a surprising result which is not emphasized
in standard texts, but which has been noticed before in the
virial expansion for flexible molecules [32,33]. The analytical
evaluation of the virial coefficients is based on an expansion
in λ and a representation in terms of appropriate functions of
α. Numerical results are obtained using the Mayer-sampling
method introduced by Singh and Kofke [34]. Next, the analyti-
cal results are incorporated in to various virial-type expressions
for the thermodynamic functions, including the so-called
perturbed virial expansion (PVE) developed by Nezbeda and
co-workers [35–37], and the present authors’ LFE theory [24].
The theoretical results for the equation of state are compared
critically against Monte Carlo (MC) simulation results, and it
is demonstrated that the LFE theory is superior for DHSs in
an applied magnetic field. Knowing the Helmholtz free energy
as a function of the field strength, it is possible to calculate
the magnetization, and theoretical predictions for this quantity
will be compared against simulation results. Currently the best
theory for the magnetization curve of dense ferrofluids is the
second-order modified mean-field theory (MMF2) of Ivanov
and Kuznetsova [38], which has been tested thoroughly against
results from experiments and simulations [3,4]. The new LFE
theory compares favorably with the simulation results and the
MMF2 theory.

Almost all approaches based on virial expansions, perturba-
tion theory, DFT, or integral equations predict the existence of
a critical point, even for DHSs. Even though simulations in an
applied field suggest that there is no transition in DHSs [39],
the dependences of putative DHS critical parameters on α

can be explored theoretically. This is worthwhile because
other models of polar fluids undergo condensation even
in zero field. For example, in the Stockmayer fluid, the
particles interact via Lennard-Jones (LJ) and dipole-dipole
potentials, and this model’s vapor-liquid critical point has
been determined precisely for a broad range of interaction
parameters using computer simulations [40–52]. From the
theoretical point of view, the presence of the soft core in the
interaction complicates the picture considerably, but it can be
treated by using a suitable reference hard-sphere fluid with a
particle diameter that depends on the interaction parameters
and the temperature [53]. The relative variations of the critical
parameters with α from simulation [44–46] can easily be
compared with the predictions for the DHS system. The phase
diagram of the Stockmayer fluid in a field has been analyzed
theoretically using classical DFT by Groh and Dietrich [30].
Although the theory does not predict the critical parameters
accurately as compared to simulation, the relative variation
with field strength is described very well. There are, however,
some unusual features in the theoretical phase diagram which
have not been observed in simulations or experiments, namely,
the existence of a critical point associated with a transition
between isotropic and ferromagnetic liquid phases. In this
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work, a comparison of relative critical parameters will be
carried out using the LFE theory, and remarkably good agree-
ment between simulation and theory will be demonstrated. A
specific thermodynamic theory for Stockmayer fluids will be
detailed in a future publication. Note that in the related dipolar
soft sphere (DSS) fluid, the r−6 attraction in the LJ potential
is omitted: just as in the DHS fluid, a zero-field transition is
thought not to exist [54–57].

This article is arranged as follows. In Sec. II, analytical
results for the virial coefficients are derived, the LFE theory is
outlined, and the Mayer-sampling and MC calculations are de-
scribed. The results are presented in Sec. III, organized in terms
of the virial coefficients, the equation of state, the magnetiza-
tion, and the phase behavior. Section IV concludes the article.

II. THEORY AND SIMULATION

A. Virial coefficients for a system in an applied field

The derivation of the virial coefficients is summarized in
this section, with the aim of confirming the correct formulas
for B2 and B3 in the case of a one-component system subjected
to an applied field. The formula for B3 differs from that in the
textbook case of zero field; the case of a nonzero field does
not appear to have been covered in any standard reference.
It turns out that the correct expression for B3 contains an
extra term which has also been found in the third virial
coefficient for flexible molecules: the so-called “uniquely
flexible” contribution [32,33,58]. The common feature appears
to be the presence of intramolecular degrees of freedom
contributing to the potential energy, which in the present case
corresponds to the dipolar orientation coupling to the applied
field. For completeness, a full derivation is given here, the
structure of which follows closely Secs. 23 and 25 of Ref. [59].
Consider a system comprising a volume V at fixed temperature
T coupled to a particle reservoir with chemical potential μ.
Define the N -particle canonical partition function as

QN = 1

N !VN

∫
d r1d�1 · · ·

∫
d rNd�N

× exp

⎛
⎝−β

N∑
i<j

uij − β

N∑
i=1

ψi

⎞
⎠, (4)

where V is the temperature-dependent de Broglie thermal
volume resulting from integrating the Boltzmann factor for the
kinetic energy over linear and angular momenta, β = 1/kBT ,
r is the particle position, � is the particle orientation, and uij is
the interaction potential. ψ is a single-particle potential energy
arising from an external field which is assumed only to act on
the orientation; if the field acted on the particle position, then
the system would be inhomogeneous and a different approach
to the virial expansion would be required (such as DFT). The
grand-canonical partition function is


 =
∞∑

N=0

QN exp (βμN). (5)

By writing QN in the form

QN =
(

�

V

)N
ZN

N !
(6)

with

� =
∫

d�e−βψ (7)

the activity may be defined as z = (�/V) exp (βμ), and hence
the grand-canonical partition function becomes


 =
∞∑

N=0

zNZN

N !
. (8)

ZN is the configurational integral and is defined by Eq. (6). The
pressure is related to 
 by βPV = ln 
. An activity expansion
for βPV may be written

βPV = ln 
 =
∞∑

j�1

V bjz
j . (9)

Expanding 
 = exp (
∑∞

j�1 V bjz
j ) in a Maclaurin series and

matching terms of equal order in z give the following results
for bj :

b1 = Z1

V
= 1, (10)

b2 = 1

2V

(
Z2 − Z2

1

)
, (11)

b3 = 1

6V

(
Z3 − 3Z2Z1 + 2Z3

1

)
. (12)

The average concentration is obtained from

ρ = 〈N〉
V

= z

V

∂ ln 


∂z
=

∞∑
j�1

jbj z
j . (13)

To get P as a function of ρ, insert an expansion z = a1ρ +
a2ρ

2 + a3ρ
3 + · · · into Eq. (13) to obtain

ρ = b1a1ρ + (
b1a2 + 2b2a

2
1

)
ρ2

+ (
b1a3 + 4b2a1a2 + 3b3a

3
1

)
ρ3 + · · · , (14)

which implies that a1 = 1, a2 = −2b2, and a3 = −3b3 +
8b2

2. The expansion z = ρ − 2b2ρ
2 + (8b2

2 − 3b3)ρ3 is then
inserted in Eq. (9) to yield

βP = ρ − b2ρ
2 + (

4b2
2 − 2b3

)
ρ3 + · · ·

= ρ

(
1 +

∞∑
n=1

Bn+1ρ
n

)
. (15)

Now the first two virial coefficients can be identified as follows:

B2 = −b2, (16)

B3 = 4b2
2 − 2b3. (17)

To complete the calculations, Z1, Z2, and Z3 are expressed
in terms of the Mayer f functions, fij = exp (−βuij ) − 1.
Translational invariance is assumed throughout, so that the
position of any particle can be chosen as the origin of the
coordinate system, and integrations can be performed over
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r ij = rj − r i :

Z1 = 1

�

∫
d1e−βψ1 = V, (18)

Z2 = 1

�2

∫
d1

∫
d2(f12 + 1)e−β(ψ1+ψ2)

= V

∫
d r12〈f12〉 + V 2, (19)

Z3 = 1

�3

∫
d1

∫
d2

∫
d3(f12 + 1)(f13 + 1)

× (f23 + 1)e−β(ψ1+ψ2+ψ3)

= V

∫
d r12

∫
d r13〈f12f13f23〉 + 3V

∫
d r12

×
∫

d r13〈f12f13〉 + 3V 2
∫

d r12〈f12〉 + V 3. (20)

In these expressions,
∫

di = ∫
d r i

∫
d�i , and 〈· · ·〉 means a

Boltzmann-weighted average over the orientation of each of
the particles involved, e.g.,

〈f12〉 = 1

�2

∫
d�1

∫
d�2f12e

−β(ψ1+ψ2). (21)

Equations (18)–(20) can be inserted into Eqs. (11) and (12) to
give the following explicit expressions for b2 and b3:

b2 = 1

2

∫
d r12〈f12〉, (22)

b3 = b3a + b3b, (23)

b3a = 1

6

∫
d r12

∫
d r13〈f12f13f23〉, (24)

b3b = 1

2

∫
d r12

∫
d r13〈f12f13〉. (25)

The formula for B2 = −b2 is the same as in the zero-field case.
The complete formula for B3 may be written in the transparent
form

B3 = B3a + B3b, (26)

B3a = −2b3a = −1

3

∫
d r12

∫
d r13〈f12f13f23〉, (27)

B3b = 4b2
2 − 2b3b =

∫
d r12

∫
d r13[〈f12〉〈f13〉 − 〈f12f13〉].

(28)

In zero field (α = 0) or in an infinite field (α = ∞), B3b = 0
and hence B3 = B3a , the normally quoted result. In a finite

applied field, B3b �= 0 because the orientational averaging over
�2 couples f12 and f13, and hence 〈f12〉〈f13〉 �= 〈f12f13〉.

B. Virial coefficients for DHSs in an applied field

Consider N DHSs confined to a volume V and temperature
T . For particle i, the particle position is given by r i , and the
orientation of the dipole μi = μ�i is described by the unit
vector �i = (sin ωi cos ζi, sin ωi sin ζi, cos ωi). The system is
exposed to an external magnetic field denoted by H , which
will be parallel to the laboratory z direction, so that βψi =
−βμ0μi · H = −α cos ωi . In this case, � = 4π sinh (α)/α,
and averages such as Eq. (21) can be written

〈f12〉 =
(

α

4π sinh α

)2 ∫
d�1

∫
d�2f12e

α cos ω1+α cos ω2 .

(29)

The virial coefficients are evaluated as expansions in the
dipolar coupling constant λ up to third order. This is achieved
by writing the Mayer f function in the form

fij = f s
ij + (

f s
ij + 1

)
f d

ij = f s
ij + (

f s
ij + 1

) ∞∑
k=1

(−βud
ij

)k

k!
,

(30)

where f s
ij and f d

ij are the Mayer f functions for the short-range
and dipolar interactions, respectively, and each factor of βud

ij

yields an additional power of λ. Some of the terms depend
on sample geometry. Throughout this work, it is assumed that
the sample is cylindrical and of infinite elongation, in which
case the demagnetization fields vanish. These calculations
are laborious, and the details are given in the Supplemental
Material [60]. The second virial coefficient is given by

B2

BHS
2

= 1 − λL2(α) − λ2

3

[
1 + L2

3(α)

5

]

− λ3

105

[
2L(α)L3(α)

α
− 5L2

3(α)

α2
+ 4L2(α)

]
, (31)

where BHS
2 = 4v0 is the result for hard spheres, L(α) =

coth (α) − α−1 is the Langevin function, and Ln(α) = 1 −
nL(α)/α with limits Ln(0) = 1 − n/3 and Ln(∞) = 1. In
zero field, B2 depends only on even powers of λ [24]: at the
current level of approximation, B2(α = 0) = BHS

2 (1 − λ2/3).
In an applied field, odd powers of λ appear; in an infinitely
strong field, B2(α = ∞) = BHS

2 (1 − λ − 2λ2/5 − 4λ3/105).
The third virial coefficient is considerably more complex. Sep-
arate expressions for B3a and B3b are given in the Supplemental
Material [60], and the complete expression for B3 is

B3

BHS
3

= 1 − λ2

5

{(
2 ln 2 + 1

3

) [
1 + L2

3(α)

5

]
+ 2L2(α)

[
−16L2(α) − 29L(α)

α
+ 10

]}
− λ3

5

[ (
292

5
+ 12

5
ln 2

)
L3(α)

α

+ (288 ln 2 − 174)
L3(α)

α3
− 64

15
L2(α)L2

3(α) +
(

112

5
+ 48

35
ln 2

)
L2(α)L3(α) + (192 ln 2 − 146)

L2(α)L3(α)

α2

+ (48 − 96 ln 2)
L2(α)

α2
− 3686

175
L2(α) + 20L(α)L2(α)L3(α)

α
+

(
1884

7
ln 2 − 188

)
L(α)L2

3(α)

α
+ 71

525

L(α)L3(α)

α

+ (48 − 96 ln 2)L2
2(α)L3(α) +

(
232

5
− 384

5
ln 2

)
L2(α)L2

3(α) +
(

864

5
ln 2 − 3384

35

)
L3

3(α) − 71

210

L2
3(α)

α2

]
. (32)
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The hard-sphere value is BHS
3 = 10v2

0 . Note that there is no
term linear in λ, irrespective of the field strength (see the
Supplemental Material for an explanation) [60]. The zero-field
and infinite-field limits are

B3(α = 0) = BHS
3

[
1 − λ2

5

(
2 ln 2 + 1

3

)
+ 2λ3

9

]
, (33)

B3(α = ∞) = BHS
3

[
1 − 2λ2

25
(6 ln 2 − 29)

− 2λ3

175

(
24 ln 2 − 1369

15

) ]
. (34)

C. Thermodynamics

The virial expansion of the compressibility factor Z is

Z = PV

NkBT
= 1 +

∞∑
n=1

Bn+1ρ
n, (35)

where P is the (osmotic) pressure. This expansion in ρ is only
slowly convergent, if at all [53]. Several different strategies
have been proposed to avoid this problem. Nezbeda and
co-workers proposed a so-called perturbed virial expansion
(PVE) in those cases where the equation of state of a reference
system is known accurately [35]. In the present context, the
reference system is the hard-sphere (HS) fluid, and the system
of interest is the DHS fluid. In this case, the PVE is the formally
exact relation

Z = ZHS +
∞∑

n=1

�Bn+1ρ
n, (36)

where ZHS is the compressibility factor of the reference HS
fluid, and �Bn = Bn − BHS

n . ZHS is known in the accurate and
convenient Carnahan-Starling form [61]:

ZHS = 1 + ϕ + ϕ2 − ϕ3

(1 − ϕ)3
. (37)

An approximate PVE expression with terms up to �B3ρ
2 has

been shown to give good results for the critical parameters
of the square-well fluid [36]. In Ref. [24], a new theory was
developed from a logarithmic representation of the Helmholtz
free energy F . For the case of DHSs in an applied field, this
theory is based on the relation

βF

N
− βF HS

N
+ ln � =

∞∑
n=1

n−1�Bn+1ρ
n

= − ln

(
1 +

∞∑
n=1

n−1In+1ρ
n

)
, (38)

where F HS is the Helmholtz free energy for hard spheres

βF HS

N
= ln (ρV) − 1 + ϕ(4 − 3ϕ)

(1 − ϕ)2
, (39)

and the first two coefficients I2 and I3 in Eq. (38) are

I2 = −�B2, (40)

I3 = −�B3 + �B2
2 , (41)

which can be confirmed by a Maclaurin expansion. Including
these terms, the equation of state is given by

Z = ρ
∂

∂ρ

(
βF

N

)
= ZHS − I2ρ + I3ρ

2

1 + I2ρ + 1
2I3ρ2

. (42)

The potential advantages of the LFE expressions for F and
Z are that they should be less sensitive to truncation of the
sums, they always retain the exact low-order virial expansion,
and they generate higher-order terms in ρ. In Ref. [24] it was
shown that the LFE expressions containing expansions of B2,
B3, and B4 in terms of λ are superior to the traditional TPT
results [22,23] for DHS fluids with λ � 4 and ρσ 3 � 0.95.

D. Numerical methods

The second virial coefficient was calculated numerically
using the Mayer-sampling technique devised by Singh and
Kofke [34]. The idea behind Mayer sampling is to evaluate the
ratio of the cluster integrals for the potential of interest and a
reference potential (in this case, hard spheres). For example,
the ratio of the second virial coefficients for the DHS and HS
fluids is

B2

BHS
2

= 〈f12e
α(cos ω1+cos ω2)/w〉w〈

f s
12e

α(cos ω1+cos ω2)/w
〉
w

, (43)

where w is a weight with which particle configurations are
selected, and 〈· · ·〉w denotes an average over this “biased”
distribution of configurations. The efficiency of the method
relies in importance sampling of those particle positions and
orientations that make the largest contributions to the virial
coefficient for the system of interest, and this is achieved using
the standard Metropolis algorithm. The scheme detailed in
Ref. [34] is followed here, e.g., for the calculation of B2,
w = |f12e

α(cos ω1+cos ω2)|.
B2 in a field depends on sample geometry. Expanding the

Mayer function [Eq. (30)] gives

fij = f s
ij − (

f s
ij + 1

)
βud

ij + 1
2

(
f s

ij + 1
)(

βud
ij

)2 + · · ·
≡ −(

f s
ij + 1

)
βud

ij + �fij , (44)

which isolates one term of order βud
ij ∼ r−3

ij which depends
on sample geometry; each of the terms in the remainder (�fij )
is of shorter range and does not cause any problems. The
long-range contribution to B2 has already been evaluated as in
the second term of Eq. (31):

1

2

∫ 〈
βud

12

〉(
f s

12 + 1
)
d r12 = −4v0λL2(α). (45)

Mayer sampling is used to evaluate all of the remaining
contributions giving

B2 = −1

2

∫
〈�f12〉d r12 − 4v0λL2(α). (46)

Unfortunately, a straightforward application of this approach
to B3 is not possible. B3a in Eq. (27) can be computed easily
enough, as there is no term in a λ expansion of f12f13f23 that
depends on sample geometry. B3b, on the other hand, causes
problems because there are contributions at all orders in λ that
do depend on sample geometry. Inserting Eq. (44) into Eq. (28)
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and collecting equivalent terms gives

B3b =
∫

d r12

∫
d r13

{(
f s

12 + 1
)(

f s
13 + 1

)[〈
βud

12

〉〈
βud

13

〉
− 〈(

βud
12

)(
βud

13

)〉] + 2
(
f s

12 + 1
)[〈

βud
12�f13

〉
− 〈

βud
12

〉〈
�f13

〉] + [〈�f12〉〈�f13〉 − 〈�f12�f13〉
]}

.

(47)

The terms 〈βud
12〉 and 〈(βud

12)(βud
13)〉 can be evaluated and

integrated exactly. (See the calculations of A1 and A4 in
the Supplemental Material [60].) The terms involving 〈�f12〉
and 〈�f12�f13〉 can be determined by Mayer sampling. The
term 〈βud

12�f13〉 cannot be evaluated exactly: by further
expansion of �f13 in terms of βud

13, there are contributions
like 〈(βud

12)(βud
13)k〉 at all orders k � 1, and each one of

those depends on sample geometry because βud
12 ∼ r−3

12 . The
complete sum of these terms cannot be integrated analytically
or by Mayer sampling. Shaul et al. present an “alternate
root” formulation of a term equivalent to B3b, in order to
facilitate Mayer-sampling calculations for flexible molecules
[58]. This involves including a fourth particle at the origin, at
the same position as the original “root” particle. With dipolar
interactions, this formulation suffers from the same problem
as that above; essentially, it arises from integrating over the
product of two Mayer f functions. Since a simple correction
as in Eq. (46) is not available, a comparison of the analytical
and Mayer-sampling results for B3a will be presented instead.

Finally, bulk equations of state were calculated using
conventional isothermal-isobaric Monte Carlo (NPT -MC)
simulations of N = 256 particles in a cubic simulation cell
with periodic boundary conditions applied [62]. The long-
range dipolar interactions were evaluated using the Ewald
summation with conducting boundary conditions, for which
the demagnetization fields are zero, consistent with the
analytical results reported in Sec. II B and derived in the
Supplemental Material [60]. Each MC sweep consisted of
an attempted translation or rotation for each of N randomly
selected particles, and one attempted volume move. For each
state point, the system was equilibrated for 1 × 105 MC
sweeps, and a production run consisted of 4 × 105 MC sweeps.
Maximum translation, rotation, and volume displacements
were adjusted to give acceptance rates of 20%, 50%, and 20%,
respectively.

III. RESULTS

In the following, special attention is focused on DHS fluids
with dipolar coupling constants λ = 1 and 2. These values
are actually quite high for typical ferrofluids, although recent
experimental measurements of osmotic equations of state show
that values of λ � 2 are achievable [25,26].

A. Virial coefficients

Figure 1(a) shows the second virial coefficients B2 for
DHS fluids with λ = 1 and λ = 2, as functions of the
Langevin parameter α. Results are shown from analytical
theory [Eq. (31)] and Mayer sampling [Eq. (46)]. The stronger
the attractive interactions between particles, the lower the virial
coefficient. The results show that the introduction of an applied
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-2
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2

B 2
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) /
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3

(a)
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λ = 2
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α
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0.2

0.4

0.6

0.8

1.0

R 2
(α

)

(b)

λ = 1
λ = 2

FIG. 1. The second virial coefficient B2(α) as a function of the
Langevin parameter α from theory (lines) and Mayer sampling
(points): (a) absolute values; (b) relative values R2(α) = [B2(α) −
B2(∞)]/[B2(0) − B2(∞)]. Data are shown for dipolar coupling
constants λ = 1 (solid line and filled points) and λ = 2 (dashed line
and open points).

field leads to an enhancement of attractive interactions. The
field aligns the dipoles in parallel orientations, and the con-
tributions to f12 from the “nose-to-tail” parallel conformation
are dominant, leading to a decrease in B2. For λ = 1, the
agreement between theory and computation is excellent, with
there being no discernible discrepancy. For λ = 2 there is a
deviation of roughly 1σ 3 at high values of α, and smaller
deviations at lower values of α. Clearly this arises from the
truncation of the expansion in λ in Eq. (31). Higher order
terms in this expansion are not easy to calculate, even in
zero applied field [24]. Figure 1(b) shows that the relative
variation with α is captured almost perfectly by theory; the plot
of R2(α) = [B2(α) − B2(∞)]/[B2(0) − B2(∞)] shows almost
perfect agreement between theory and computation.

Results for B3a , B3b, and B3 for DHS fluids with λ = 1
and λ = 2 are shown in Fig. 2. Theory yields a complete
expression for B3, while Mayer sampling can only be used to
evaluate B3a . First, theory shows that as the field is increased,
B3 increases and the total interaction between three particles
become more repulsive. Although the field aligns the dipoles
in parallel orientations, there are more “repulsive” three-
particle configurations than “attractive” ones. An attractive
configuration might consist of three particles aligned with the
field in a chain, but there are relatively few such arrangements.
Second, B3b = 0 for α = 0 and α = ∞, as explained at the
end of Sec. II A. At intermediate values of α, the difference
is still rather small, but it is maximal at α � 2-3. Finally,
the agreement between B3a from theory and computation
is excellent for λ = 1, and qualitative for λ = 2. The α
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FIG. 2. Contributions to the third virial coefficient B3(α) as
functions of the Langevin parameter α from theory (lines) and Mayer
sampling (MS) (points) at (a) λ = 1 and (b) λ = 2. The points are
B3a calculated by Mayer sampling, the dashed lines are B3a calculated
from theory, the dotted lines are B3b calculated from theory, and the
solid lines are B3 calculated from theory.

dependence is captured extremely well by theory, even if the
truncation of the expansion in λ compromises the quantitative
accuracy. A plot of the relative change in B3a , by analogy with
Fig. 1(b), shows equally good agreement between theory and
computation. (Data not shown for brevity.)

The dependences of B2 and B3 on λ at fixed values of
α in the range 0 � α � ∞ are shown in Figs. 3 and 4,
respectively. As already stated, the theoretical expression for
B2 does very well for λ = 1 and at all values of α, with almost

0.0 0.5 1.0 1.5 2.0
λ
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-4

-2

0
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4

B 2
(λ

) /
 σ

3

α = 0
α = 1
α = 2
α = 5
α = ∞

FIG. 3. (Color online) The second virial coefficient B2(λ) as a
function of the dipolar coupling constant λ from theory (lines) and
Mayer sampling (points). Data are shown for Langevin parameters
α = 0, 1, 2, 5, and ∞.

0.0 0.5 1.0 1.5 2.0
λ

100

101

102

B 3
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)(λ
) /

 σ
6

α = ∞
α = 5
α = 2
α = 1
α = 0

FIG. 4. (Color online) Contributions to the third virial coefficient
B3(λ) as functions of the dipolar coupling constant λ from theory
(lines) and Mayer sampling (points) at α = 0 (black circles and lines),
α = 1 (red squares and lines), α = 2 (green diamonds and lines),
α = 5 (blue triangles and lines), and α = ∞ (magenta left-triangles
and lines). The points are B3a from Mayer sampling, the dashed lines
are B3a from theory, and the solid lines are B3 from theory. For α = 0
and α = ∞, B3 = B3a .

no deviation from the results from computations, as shown in
Fig. 3. Deviations increase with λ > 1, due to the truncation
of the λ expansion. Figure 4 shows both B3 and B3a from
theory, and B3a from Mayer sampling; note the logarithmic
ordinate and that B3b is omitted from the plot because it is
negative. For α = 0 and α = ∞, B3 − B3a = B3b = 0. B3b is
significant for α = 1 and α = 2, and rather small for α = 5, all
in correspondence with the results shown in Fig. 2. In relative
terms, the theoretical expression for B3a is more accurate at
high values of α than at low values; again, this is evident from
Fig. 2.

In summary, the analytical expressions for B2 and B3 given
by Eqs. (31) and (32), respectively, appear to be extremely
reliable for λ = 1, and at least qualitatively correct for λ = 2.
The limitation is the truncation of the expansion in λ at cubic
order, but higher order terms are very difficult to calculate.
The dependences of the virial coefficients on α are captured
extremely well in all cases.

B. Equation of state

The virial coefficients are now used to calculate equations
of state, presented here as the compressibility factor Z as a
function of reduced concentration ρ∗ = ρσ 3. Figure 5 shows
the equations of state for DHS fluids with λ = 1 and α = 1, 2,
5, and ∞. (Note that the case α = 0 was considered already
in Ref. [24].) Two theoretical expressions are tested against
simulation results: the PVE expression [Eq. (36)] of Nezbeda
and co-workers; and the LFE expression [Eq. (42)] obtained
by the current authors. The inputs to each theory are the same,
these being B2 and B3. With α = 1 and α = 2, the PVE and
LFE expressions give essentially the same results and are in
excellent agreement with the results from MC simulations,
over the range 0 � ρ∗ � 0.8. With α = 5 and α = ∞, the
two theories differ substantially, with the PVE expression
significantly overestimating the pressure at concentrations
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FIG. 5. Compressibility factor Z = PV/NkBT versus concen-
tration ρ∗ = ρσ 3 for a system with dipolar coupling constant λ = 1,
from the PVE [Eq. (36)] (dashed lines), the LFE theory [Eq. (42)]
(solid lines), and MC simulation (points). Data are shown for
Langevin parameters (a) α = 1, (b) α = 2, (c) α = 5, and (d) α = ∞.

ρ∗ � 0.3. The LFE expression, however, continues to track
the simulation results all the way up to ρ∗ = 0.8, with the
maximum deviation in Z being of order 10%.

The equations of state for DHS fluids with λ = 2 and α = 1,
2, 5, and ∞ are shown in Fig. 6. With α = 1, the PVE and LFE
expressions give almost identical results, and which deviate
slightly from the results from MC simulations. The deviations
are more pronounced with α = 2, 5, and ∞, but while the
PVE fails quite badly, the LFE expression continues to track
the MC results.

Overall, the LFE expression gives superior results for λ �
2. This can be traced back to the logarithmic expression for
the free energy [Eq. (38)], which contains terms at all orders
of ρ when the logarithm is expanded, albeit with coefficients
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FIG. 6. Compressibility factor Z = PV/NkBT versus concen-
tration ρ∗ = ρσ 3 for a system with dipolar coupling constant λ = 2,
from the PVE [Eq. (36)] (dashed lines), the LFE theory [Eq. (42)]
(solid lines), and MC simulation (points). Data are shown for
Langevin parameters (a) α = 1, (b) α = 2, (c) α = 5, and (d) α = ∞.
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FIG. 7. (Color online) The fractional magnetization m as a
function of concentration ρ∗ = ρσ 3 for DHS fluids with α = 1, 2, and
5 and (a) λ = 1 and (b) λ = 2. The points are from MC simulations,
the solid lines are from LFE theory, and the dashed lines are from
MMF2 theory [38].

related to the input values for B2 and B3. By construction, the
low-concentration behavior is captured exactly.

C. Magnetization

The fractional (scalar) magnetization m is given by

m = 1

Nμ

∣∣∣∣∣
〈

N∑
i=1

μi

〉∣∣∣∣∣ = − ∂

∂α

(
βF

N

)
. (48)

At very low concentrations, βF/N = ln (ρV/�) − 1
[Eq. (38)] and hence m = coth (α) − α−1, the Langevin single-
particle result. Changes in m with increasing concentration are
due to increasing interparticle correlations. Figure 7 shows
m as a function of ρ∗ for DHS fluids with λ = 1 and 2,
and α = 1, 2, and 5, from MC simulations and theory. The
magnetization is obtained from the LFE theory by inserting
the α-dependent virial coefficients in to Eqs. (38) and (48).
Also shown in Fig. 7 are the predictions of the MMF2 theory
of Ivanov and Kuznetsova [38]. All of the results show that
interparticle correlations give rise to substantial changes in
magnetization as the concentration is increased from zero
up to 0.85, particularly with low values of α. Both of the
LFE and MMF2 theories are in essentially perfect agreement
with the MC simulation results up to ρ∗ � 0.2. The LFE
theory continues to work well up to ρ∗ � 0.45 (as it did
in the equations of state). At higher concentrations, neither
theory is perfect, but the MMF2 tracks the MC simulation
results more closely. The LFE theory may be convenient
for analyzing the magnetization curves of real ferrofluids at
volume fractions up to ϕ � 0.2 (ρ∗ � 0.4), because the effects
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FIG. 8. (Color online) Relative variations of (a) the critical dipolar
coupling constant λc and (b) the critical concentration ρc with the
Langevin parameter α, compared to the zero-field values. The points
are from simulations of Stockmayer fluids with reduced dipole
moments of μ∗ = 1 [44–46], μ∗ = √

2 [45], and μ∗ = 2.5 [44],
while the curves are from the LFE theory. The simulation points
for μ∗ = 2.5 and α = ∞ from Ref. [44] are shown at α = 104.

of additional, nonmagnetic interactions can be incorporated
straightforwardly into the virial coefficients.

D. Phase behavior

As explained in the Introduction, DHSs apparently do not
undergo a condensation transition, either in zero field or in
an applied field. Nonetheless, almost all liquid-state theories
(virial expansion, thermodynamic perturbation theory, integral
equations, DFT) predict such a transition. The presence of
additional, isotropic interactions does lead to a transition,
even in zero field, and the critical parameters (ρc and Tc)
can be traced as functions of the applied field. For example,
the critical parameters of the Stockmayer fluid have been
measured as functions of the field strength in computer
simulations [44–46]. Figure 8 shows critical parameters in
the form λc(α)/λc(0) and ρc(α)/ρc(0) from simulations of
the Stockmayer fluid with different values of the reduced
dipole moment, μ∗ = √

μ0μ2/4πσ 3
LJεLJ, where σLJ and εLJ

are the Lennard-Jones potential parameters. The relative
changes in critical parameters from the LFE theory are
also shown, these being obtained from the solutions of the
simultaneous equations (∂P/∂V )T = (∂2P/∂V 2)T = 0. (For
α = 0, λc = 4.54 and ρ∗

c = 0.0978; for α = ∞, λc = 3.21
and ρ∗

c = 0.0917.) The results from simulations and theory
are in excellent agreement, particularly for μ∗ = 2.5 where
the dipolar interaction dominates over the Lennard-Jones
attraction; this shows that the LFE is describing accurately
the dipolar interactions in applied fields. The critical dipolar

coupling constant decreases with increasing α, meaning that
the critical temperature increases. This is due to the decrease
in B2 (signaling more attractive interactions) dominating over
the increase in B3 (signaling more repulsive interactions). The
increase in critical temperature between α = 0 and α = ∞ is
about 40%. The critical concentration varies only weakly with
α: the simulation results are not in agreement with each other,
while the theory predicts a slight decrease of about 6% between
α = 0 and α = ∞. It is stressed that the theory contains
dipolar interactions only, and that for a proper quantitative
comparison, the isotropic (Lennard-Jones) interactions should
be included. DFT calculations on the Stockmayer fluid by Groh
and Dietrich show equally good agreement with simulations,
at least in terms of the relative critical temperature [30].
Note, however, that DFT calculations require numerical work
to obtain the equilibrium orientational distribution function,
whereas in the current theory, thermodynamic calculations
are trivial once the virial coefficients have been determined.
Moreover, the DFT calculations predict the existence of a
critical point associated with a transition between isotropic and
ferromagnetic liquid phases; the homogeneous ferromagnetic
liquid phase in zero field has not been observed experimentally,
although it has been observed in simulated finite-size systems
[63–68]. Nonetheless, Groh and Dietrich’s DFT calculations
represent probably the best available description of the vapor-
liquid transition in Stockmayer fluids in an applied field.

In recent experiments, Socoliuc et al. found indications of a
putative field-dependent condensation transition in an aqueous
ferrofluid, containing magnetite nanoparticles with diameter
σ � 5 nm [69]. Experimental observations suggest that there
is a field-dependent critical temperature Tc(H ) below which
large concentrated droplets of magnetic particles coexist with
a dilute phase. These droplets were observed to be shaped like
prolate ellipsoids aligned with the magnetic field and to have
dimensions on the order of μm. The critical temperature was
seen to increase with increasing field strength and reach an
asymptotic value of around 313 K. There are some questions
as to the effects of polydispersity and clustering of particles
driven by nonmagnetic (van der Waals and hydrophobic)
interactions, but the experimental measurements are at least
in qualitative agreement with the results presented in Fig. 8.

IV. CONCLUSIONS

In this work the thermodynamic properties of dipolar hard
sphere fluids in applied fields have been examined using a
combination of theory and computer simulation. This model
is known to provide a reliable representation of ferrofluids.
Analytical results for the second and third virial coefficients
have been obtained in terms of an expansion in the dipolar
coupling constant λ and appropriate functions of the Langevin
parameter α. The exact formula for the third virial coefficient
has been derived, and it differs from the usual case of zero
applied field. The analytical formulas have been compared
against numerical results from Mayer-sampling calculations.
For the realistic values λ � 2, the analytical formulas capture
the α dependences of the virial coefficients essentially exactly.
For λ = 1 the agreement between the formulas and numerical
results is excellent, while for λ = 2, deviations set in due
to the truncation of the expansion in λ. With increasing
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applied field, the second virial coefficient, B2, decreases
(signaling an increase in attractive interactions) while the
third virial coefficient, B3, increases (signaling increasing
repulsive interactions). These trends have been rationalized
in terms of the increasing contribution to B2 from attractive
nose-to-tail parallel interactions between pairs of dipoles, and
the increasing contribution to B3 from repulsive side-by-side
parallel interactions between dipoles in the majority of possible
three-particle configurations.

The virial coefficients have been incorporated in to various
forms of virial expansion for the equation of state and
compared to results from Monte Carlo simulations. Two
thermodynamic theories have been tested: the “perturbed
virial expansion” of Nezbeda and co-workers [35–37], which
in the present case is based on the difference between the
virial expansions of hard spheres and dipolar hard spheres
(truncated at the third virial coefficient); and the “logarithmic
free energy” theory of the current authors, in which the
virial expansion of the Helmholtz free energy is resummed
in to a logarithmic form. For λ � 2 it was shown that
the logarithmic free energy theory is superior. This is due
to the approximate incorporation of higher order terms in
the concentration expansion. In future work, it would be
interesting to study the high-density properties of the DHS
fluid, and to accommodate any well-defined, limiting behavior
in the logarithmic free energy expression. Calculations of
this type have been performed successfully for soft-sphere
and hard-sphere fluids [70]. One potential complication is the
formation of long-range orientationally ordered phases in DHS
fluids at high density and low temperature [63–68].

The logarithmic free energy theory also yields the magneti-
zation by differentiation with respect to α. A comparison of the
theory with computer simulation results, and the second-order
modified mean-field theory of Ivanov and Kuznetsova [38],
shows excellent agreement at low-to-moderate concentrations.
At high concentrations, both theories deviate from the simu-
lation results. Nonetheless, the new theory has the merit that
nonmagnetic interactions can easily be incorporated in to the
virial coefficients.

Finally, predictions of the critical parameters for the con-
densation transition have been obtained from the logarithmic
free energy theory and compared with computer-simulation
results. Although dipolar hard spheres do not undergo such a
transition, systems with an additional, isotropic attraction do.
Computer simulations of the Stockmayer fluid have yielded
field-dependent critical parameters [44–46]. A comparison of
the relative changes in critical parameters with increasing field
strength shows very good agreement, indicating that the theory
is handling the dipolar interactions correctly. Further work to
incorporate the nondipolar interactions is in progress.
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