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Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial
(isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations.
The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In
this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with
appreciably less symmetry, including those in which the particles have different local structural environments.
These challenging target configurations demanded that we modify previous inverse optimization techniques. In
particular, we first find local minima of a candidate enthalpy surface and determine the enthalpy difference �H

between such inherent structures and the target structure. Then we determine the lowest positive eigenvalue
λ0 of the Hessian matrix of the enthalpy surface at the target configuration. Finally, we maximize λ0�H

so that the target structure is both locally stable and globally stable with respect to the inherent structures.
Using this modified optimization technique, we have designed short-range radial pair potentials that stabilize
the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as
the three-dimensional structure of the CaF2 crystal inhabited by a single-particle species. We verify our
results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring
that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target
structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component
systems with short-range radial pair potentials can counterintuitively self-assemble into crystal ground states
with low symmetry and different local structural environments. Finally, we present general principles that
offer guidance in determining whether certain target structures can be achieved as ground states by radial
pair potentials.
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I. INTRODUCTION

A fundamental problem of statistical mechanics is the
determination of the phase diagram of interacting many-
particle systems in the absence of an external field. For a
single-component system of N particles in a large region
of volume V in d-dimensional Euclidean space Rd , the
interaction is represented by the potential energy �(rN ), where
rN = r1,r2, . . . ,rN denotes the configurational coordinates. A
theoretically simple and computationally widely used form of
the potential energy is the following pairwise form:

�(rN ) =
∑
i<j

u2(rij ), (1)

where u2(r) is an isotropic pair potential and rij is the distance
between the ith and j th particles.

Even for this simple class of potentials, our understanding
of the phase diagram, including the T = 0 ground state, is still
far from complete. Two approaches have been used to study
phase diagrams of isotropic pair potentials. In the forward
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approach, one first specifies the isotropic pair potential u2(r)
and then probes the structures in its phase diagram. This
venerable approach has identified a variety of structures with
varying degrees of complexity and order [1–14]. In the inverse
approach, a target many-particle configuration or physical
property is first specified, and then one attempts to determine
an isotropic pair potential u2(r) under certain constraints
that achieves the targeted behavior [15]. The target behavior
can be ground-state configurations [16–23] or excited-state
properties, such as negative thermal expansion [24] and
negative Poisson ratio [25].

This paper focuses on the use of inverse statistical mechan-
ics to determine isotropic pair potentials that produce unusual
targeted crystalline structures as unique ground states, as in
multiple previous works [16–23]. Contrary to the conventional
view that low-coordinated crystal structures require directional
bonds as in chemical covalency, earlier works employing
the inverse approach have found optimized isotropic pair
potentials (under certain constraints) stabilizing a variety of
low-coordinated crystal structures as ground states. Target
structures that have successfully been stabilized include the
square lattice [17,20,21], and honeycomb crystal [16,17,20,21]
in two dimensions and the simple cubic lattice [18,23],
diamond crystal [19,22,23], and wurtzite crystal [19] in three
dimensions. These isotropic pair potentials have been designed
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using the following steps [16–23]: A functional form was
chosen for the isotropic pair potential in terms of some
parameters. One then optimized an objective function that is
related to the stability of the target structure over competitors
(for example, energy difference [17] or the target structure’s
stable pressure range [22]). Subsequently, the validity of the
optimized potential was verified by cooling liquid configura-
tions to absolute zero temperature via simulated annealing and
by establishing that the target structure contains no phonon
instabilities [17]. These results provide good counterexam-
ples to the aforementioned intuition that low-coordinated
structures require directional bonding. However, all of these
target structures are globally highly symmetric, and the local
environments around each of the particles in these structures
are identical up to spatial inversions or rotations.

Here, we further probe the limitations of isotropic pair
potentials to produce ground-state structural extremes using
inverse statistical-mechanical techniques. Doing so has re-
quired us to improve upon previous optimization algorithms
devised for inverse statistical mechanics for reasons that we
will elaborate below. Our improved optimization algorithm
not only allows each competitor structure to deform to become
more competitive during the optimization but also incorporates
the local mechanical stability of the target structure (i.e.,
enthalpy cost to deform the target structure) into our objective
function. We test our improved optimization algorithm by
targeting the standard kagome crystal, rectangular lattices,
the rectangular kagome crystal, and the three-dimensional
CaF2 crystal inhabited by a single-particle species. Compared
to previous target structures, these new targets have lower
symmetry, and particles in some cases have different local
structural environments. We restrict ourselves to short-range
potentials [i.e., u2(r) ≡ 0 for r > rc, where rc is a constant]
because they are both computationally easier to treat and
experimentally simpler to realize. For all of our targets, except
for the rectangular kagome crystal, we are able to stabilize
them with smooth short-range monotonic repulsive potentials,
which would be easier to produce experimentally. For the
rectangular kagome crystal, we found that a potential with
a shallow well is needed for the class of functions considered.

In contrast to some previous inverse statistical mechanical
approaches [16–21], in which the specific volume v = V/N

(N is the number of particles and V is the volume) is fixed and
the classical ground state is achieved by the global minimum
of the potential energy �(rN ), we fix the pressure p rather
than the specific volume. At constant pressure p and number
of particles N , the classical ground state is achieved by the
global minimum of the configurational enthalpy per particle:

h(rN ) = �(rN )/N + pv. (2)

There are two advantages to fixing the pressure rather than the
specific volume. First, at zero temperature, phase separation
(coexistence) only occurs at a unique pressure for a given
potential, while it can occur over a nontrivial range of
densities. By fixing the pressure rather than the density during
simulations, we minimize our risk of encountering phase
separation. Second, allowing the volume to change will enable
us to fully deform the simulation box, thus minimizing the
boundary effect during simulations.

The rest of the paper is organized as follows: In Sec. II,
we describe our improved algorithm. In Sec. III, we present
our designed isotropic pair potentials for the two-dimensional
(2D) kagome crystal, rectangular lattices, and the rectangular
kagome crystal and the three-dimensional (3D) structure of the
CaF2 crystal inhabited by a single-particle species. We close
with conclusions and discussion in Sec. IV.

II. EXTENDED OPTIMIZATION TECHNIQUE

A. Basic definitions

A lattice in Rd is an infinite periodic structure in which the
space Rd is divided into identical regions called fundamental
cells, each of which contains just one point specified by the
lattice vector

R = n1a1 + n2a2 + · · · + ndad , (3)

where ai are the lattice vectors and ni spans all the integers
for i = 1,2, . . . ,d. A crystal is a more general notion than a
lattice because it is obtained by placing a fixed configuration
of n points (where n � 1), located at r1,r2, . . . ,rn, within one
fundamental cell. The coordination structure of a crystal can
be represented by the theta series θ [26,27], which is the gener-
ating function of squared distances of the vector displacements
between any two particles of the crystal structure and has the
following form:

θ (q) = 1 +
∞∑

j=1

Zjq
r2
j , (4)

where rj is the distance from a particle at the origin (measured
in units of the nearest neighbor distance) and Zj is the
associated average coordination number (average number of
particles at a radial distance rj ). See Appendix A for the vectors
that specify the particle locations and lattice vectors of the
crystal as well as the first few terms of the corresponding θ

series of our target structures. For the special case of periodic
structures, Eq. (2) can be written more explicitly in terms of
coordination structure:

h(rn; A) = 1

2

∑
j

u2(rj )Zj + pv(A), (5)

where A = [a1,a2, . . . ,ad ]T is the generator matrix [27] (a
matrix whose rows consist of the lattice vectors) and v(A) is
the specific volume, which depends on A. The ground state
is achieved by the global minimum of enthalpy per particle
h(rn; A).

For each target crystal structure, we use the following steps
to attempt to find an isotropic pair potential u2(r) and a pressure
p such that the target is the ground state.

B. Search for degenerate ground states

A target configuration cannot possibly be the unique ground
state if a different structure has exactly the same coordination
structure up to the range of the potential and the same specific
volume v. In this degeneracy searching step, we start from a
random configuration and minimize the “difference” between
the coordination structure of the configuration and that of the
target structure; see Appendix C for a detailed description.
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After minimizing the difference, if there is no difference
between the two coordination structures and specific volumes,
we check if the resulting configuration is equivalent to the
target structure. Two structures are considered to be “equiv-
alent” if they are related to each other through translations,
rotations, inversions, uniform scalings, or combinations of the
above transformations [28,29]. If the resulting configuration
is different from the target structure, then we have found
a degenerate structure and thus have proven that the target
structure cannot be the unique ground state of any isotropic pair
potential. If after trying to minimize the difference multiple
times (often thousands of times) no degenerate structure
is found, we tentatively assume that the target structure is
unique and continue to the next step. In this step, we visually
inspect the configurations to determine whether two structures

are equivalent. However, in the upcoming optimization and
verification steps, since we have already assumed that the
target structure has a unique coordination structure, we can test
whether another structure is equivalent to the target structure
by comparing their coordination structures using the computer.

C. Optimization

If the target structure has a unique coordination structure,
it might be stabilized by an isotropic pair potential with finite
range. We can specify a family of potential functions and
optimize for the target structure’s stability. Since extremely
long-range potentials are both computationally inefficient and
experimentally challenging to realize, we restrict ourselves
to potential functions with compact support of the following
form:

u2(r) =
{(

b
r12 + c0 + c1r + c2r

2 + · · · ) exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,
(6)

where b, cn (n = 0,1,2, . . .), rc, and α are parameters. This
form is realistic because it contains a stiff core b/r12 and
smoothly approaches zero as r approaches rc. If this form
does not work well, we will add additional terms of different
types, for example, Gaussian wells centered at some r > 0.
Since the energy and length scale of the pair potential are
arbitrary, we fix these scales so that (1) the nearest neighbor
distance of the target structure is 1 and (2) the absolute value
of the pair potential at the nearest neighbor distance of the
target structure, |u2(1)|, is 1. We also require that α � 0 so
that the effect of the Gaussian core is to decrease u2(r) as r

increases rather than to increase u2(r). We further require that
rc � 6.4 in order to ensure that the potential is relatively short
ranged.

After the potential form is chosen, we optimize the
parameters. Although previous objective functions worked
for previous target structures with high symmetry, they must
be modified for less symmetric and more complex target
structures. The result of maximizing the energy difference
or enthalpy difference is very sensitive to structurally close
competitors (i.e., a slight deformation of the target structure)
because they are not differentiated from structurally remote
competitors (competitors that are not structurally close com-
petitors). Figure 1 illustrates the close-competitor problem
schematically.

Optimization over a pressure range solves the close-
competitor problem [22] but introduces its own problems.
First, some structures with lower symmetry do not naturally
have a stable pressure range. For example, consider the
rectangular lattice with aspect ratio b/a �= 1. (A precise
definition of rectangular lattices and their aspect ratio is
given in Appendix A.) Since the structure is anisotropic, it
is expected to have different elastic constants in different
directions; see Appendix D for examples. Thus, when the
pressure is changed by a small amount, the aspect ratio will
also change. Second, after the optimization, there will be

many competitors that are enthalpically close to the target.
However, these competitor structures can be very different
from the target, and converting from one to another may require
crossing a large enthalpy barrier. This makes it especially
hard to find the ground state in the later simulated annealing
step.

In this paper, we introduce an improved objective function
that removes these shortcomings, enabling us to target ground-
state structures with considerably greater complexity than
previous targets. The improved objective function of the
optimization is calculated by the following steps.

(1) Given a set of potential function parameters, an
isotropic pair potential u2(r) is determined. Using this potential
function, we calculate the pressure of the target structure

Target

Close Competitor

Remote Competitor

Δh

FIG. 1. A schematic plot of the enthalpy surface (equivalent
of potential energy surface at constant pressure). If we simply
define �h as the enthalpy difference between the target and the
lowest competitor and maximize it, we will encounter the “close-
competitor problem.” If the competitor list contains structurally close
competitors, �h will be controlled by a structurally close competitor,
causing an abnormal lifting of the enthalpy of structurally close
competitors.
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Δh

Target

(c)

Δh

Target

(b)

-Δh

Target

(a)

FIG. 2. A schematic plot of the enthalpy surface, illustrating our definition of �h. (a) If the target structure is not a local minimum of the
enthalpy surface, the inherent structure of the target will not be identical to the target and will have a lower enthalpy. �h becomes negative.
(b) and (c) If the target structure is a local minimum of the enthalpy surface, the inherent structure of the target will be identical to the target.
�h becomes the enthalpy difference between the target and a different inherent structure. Thus, �h might be positive. (b) However, after
maximizing �h, the curvature near the target structure might be very small, leading to an undesirable phonon spectrum. (c) By maximizing
λ0�h/(1 + rd

c ), we sacrifice some �h to increase the curvature near the target structure while favoring short-range potentials. Note that we
usually cannot find all inherent structures in the complex, multidimensional enthalpy surface. If we miss an inherent structure that has a lower
enthalpy than our target, that inherent structure will be discovered in the later verification step by simulated annealing.

(knowing that the nearest neighbor distance of the target
structure is 1). For this pressure, we find the inherent structure
of the target structure and each competitor structure. The
inherent structures are obtained by minimizing the enthalpy per
particle h(rn; A) in the isobaric ensemble, changing particle
positions rn and lattice vectors A. In the current implemen-
tation, the minimizations are performed with the MINOP
algorithm [30].

(2) Then, we compare each of the inherent structures with
the target structure to test if they are structurally equivalent.

(3) For each inherent structure that is not equivalent to
the target, we calculate its enthalpy per particle hc. After
calculating all the hc’s, we find their minimum value hc0.
The difference between hc0 and the enthalpy per particle of
the target structure is

�h = hc0 − htarget. (7)

(4) Having �h > 0 will establish the target as the ground
state. However, as illustrated in Fig. 2, �h does not reflect the
enthalpy cost to deform the target structure. Thus, optimizing
for �h can lead to undesirable phonon spectra. To overcome
this problem, we incorporate quantities that enable us to
modify the second derivative of the enthalpy around the target
structure. For a fixed n, the enthalpy per particle h(rn; A) is a
function of particle positions and lattice vectors. The Hessian
matrix of this function is calculated and its lowest nonzero
eigenvalue λ0 is calculated. [In d dimensions, the matrix
has d(d + 1)/2 zero-valued eigenvalues corresponding to the
translation of particles and the rotation of the fundamental
cell.] Maximizing λ0 will improve phonon stability. We also
want to favor the smallest possible potential cutoff distance
rc. Therefore, we choose to maximize the objective function
λ0�h/(1 + rd

c ), where rd
c is proportional to the volume of the

influence sphere of the potential. To sum up, the optimization
problem is specified by the following description:

maximize
λ0�h

1 + rd
c

, subject to �h > 0, λ0 > 0, rc > 0.

(8)

Having defined the objective function, we use an optimizer
to maximize it. We employ the optimizer to evaluate this ob-
jective function thousands of times using different parameters.

Note that each objective function evaluation requires multiple
inherent structure calculations. When optimizing for this
objective function, the success rate can be low. This is partially
due to the fact that the objective function is neither differen-
tiable nor continuous. We found that the nonlinear “Subplex”
optimization algorithm [31] is relatively robust in optimizing
this objective function. However, we usually still need to
implement the optimization hundreds of times, starting from
different, random sets of parameters to ensure that we obtain
the best solution in a computationally feasible way. To relieve
the problem, we optimize for the local stability of the target
structure before optimizing for the above mentioned objective
function. More precisely, we find a target structure’s inherent
structure (which is the target structure itself if the target
structure is locally stable), calculate the coordination structures
of the target structure and its inherent structure, and minimize
the difference between the two coordination structures.

D. Verification of the ground state

After the optimization step, we cool, via simulated an-
nealing, liquid configurations of particles interacting with
the putative optimized potential to absolute zero temperature
to verify that the target is indeed the ground state. To
increase computational efficiency, we use relatively small
systems (1 to 24 particles) in a fully deformable simulation
box under periodic boundary conditions. We also use the
thermodynamic cooling schedule, which is given by Eq. (6)
of Ref. [32].

In this step, if we discover new structures that are more
stable (i.e., have a lower enthalpy) than the target structure, we
add them to the competitor list and return to step C. If we cannot
find any competitor and can find the target structure multiple
times (ten times in the current implementation), then the target
structure is deemed to be the ground state of the optimized
potential. We finally check the result by calculating the target
structure’s phonon spectrum and ensure that all of the phonon
frequencies are real. When calculating the phonon spectrum,
we assume that each particle has a unit mass. We calculate the
phonon frequency squared ω2 along some trajectories between
points of high symmetry in the Brillouin zone and ensure
the nonnegativity condition ω2 � 0 for all wave vectors. The
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FIG. 3. (Color online) Result of a 108-particle simulated anneal-
ing for the potential given by Eq. (9). This is a perfect kagome crystal.

choice of the high-symmetry points for each target structure is
given in Appendix B.

III. RESULTS

In this section, we report optimized potentials for our target
structures. To test the validity of each potential, we have
also performed Monte Carlo or molecular-dynamics-based
simulated annealing on relatively large systems, as explained
in detail below. We have also calculated the elastic constants
of our target structures, which are presented in Appendix D.
The rectangular lattices and the rectangular kagome crystal are
elastically anisotropic structures.

A. Kagome crystal

The kagome crystal, as shown in Fig. 3, is a 2D crystal
structure obtained by removing one quarter of the particles

in the triangle lattice. The vacancies form a larger triangle
lattice. Each fundamental cell contains three particles, and each
particle has four nearest neighbors. The local environments of
all particles are equivalent up to rotations and translations. At
pressure p = 2.837 09, the kagome crystal is the ground state
of the following potential:

u2(r) =
{(

b
r12 + c0 + c1r

)
(r − rc)2, if r < rc,

0, otherwise,
(9)

where b = 5.9860 × 10−2, c0 = −1.2811, c1 = 2.1521, and
rc = 2.0364. The potential and the phonon spectrum of the
kagome crystal are shown in Fig. 4. The ending configuration
of a 108-particle simulated annealing run is shown in Fig. 3
and is seen to be the perfect kagome crystal.

B. Rectangular lattices

Rectangular lattices are 2D Bravais lattices [33] in which
the two lattice vectors are perpendicular but not equal in length.
Let the lengths of two lattice vectors be a and b; we call b/a the
aspect ratio. When b/a �= 1, the rectangular lattice generally
does not retain its aspect ratio when the pressure is perturbed.
However, as shown in Appendix E, for a specific class of
potentials, a rectangular lattice does retain its aspect ratio in a
nontrivial pressure range.

We undertook to stabilize the rectangular lattice with aspect
ratio b/a = 2 using the potential form in Eq. (6). We found that
this target structure can indeed be stabilized by the following
potential at pressure p = 1.811 98:

u2(r) =
{(

b
r12 + c0 + c1r

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,
(10)

where b = 2.1639 × 10−2, c0 = −0.261 07, c1 = 0.314 88,
α = 0.788 57, and rc = 6.4. The potential and the phonon
spectrum of the rectangular lattice with aspect ratio b/a = 2

are shown in Fig. 5. In the phonon spectrum, there is a very low
branch between the � and Y points (defined in Appendix B),
indicating that there is a way to deform the target structure with
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FIG. 4. (Color online) (left panel) The kagome potential u2(r) vs distance corresponding to Eq. (9). (right) The phonon frequency squared
ω2 vs the wave vector of the kagome crystal.
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FIG. 5. (Color online) (left) Lower-order potential u2(r) vs distance for the rectangular lattice with aspect ratio b/a = 2, corresponding to
Eq. (10). (right) The phonon frequency squared ω2 vs the wave vector of the target.

very low energy cost. The final configuration of a 108-particle
simulated annealing run is shown in Fig. 6. Although the
particles show a tendency to self-assemble to the target lattice,
the ending configuration is clearly disordered, revealing the
difficulty to crystallize particles interacting with this potential.

These results can be improved when we increase the order
of the polynomial in Eq. (6). We found that the target can
be well stabilized using the following potential at pressure
p = 1.129 01:

u2(r) =
{(

b
r12 + c0 + c1r + c2r

2 + c3r
3 + c4r

4 + c5r
5
)

exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,
(11)

where b = 3.0058 × 10−3, c0 = 0.692 93, c1 = −0.303 61, c2 = 9.3960 × 10−2, c3 = −0.361 54, c4 = 0.822 31, c5 = 4.3741 ×
10−2, α = 0.440 95, and rc = 2.2524. The potential and the phonon spectrum of the rectangular lattice with aspect ratio b/a = 2
are shown in Fig. 7. The branch between the � and Y points has been lifted, suggesting that it is harder to deform the target
structure. The final configuration of a 108-particle simulated annealing run is shown in Fig. 8. The result is a perfect rectangular
lattice with aspect ratio b/a = 2.

Using the optimization technique, we can also stabilize rectangular lattices with unusually large aspect ratios. For example, at
pressure p = 1.040 06, the rectangular lattice with aspect ratio b/a = π is the ground state of the following potential:

u2(r) =
{(

b
r12 + c0 + c1r + c2r

2 + c3r
3 + c4r

4
)

exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,
(12)

where b = 1.1416 × 10−2, c0 = −1.1117, c1 = 3.3164, c2 =
−3.1330, c3 = 1.2578, c4 = −0.163 40, α = 0.030 901 2, and
rc = 3.4103. The potential and the phonon spectrum of the
rectangular lattice with aspect ratio b/a = π are shown in

FIG. 6. (Color online) Result of a 108-particle simulated anneal-
ing for the potential given by Eq. (10). The particles show a tendency
to self-assemble into the rectangular lattice with aspect ratio b/a = 2,
but many defects exist in the resulting configuration.

Fig. 9. The branch between the � and Y points is low because
when the aspect ratio increases, it becomes increasingly
difficult to prevent the target structure from deforming.
Obtaining the target structure as a ground state using simulated
annealing is also not easy. In fact, we were only able to achieve
the ground state with a system of 24 particles. The ending
configuration of a 24-particle simulated annealing run is shown
in Fig. 10. The result is a perfect rectangular lattice with aspect
ratio b/a = π .

C. Rectangular kagome crystal

The rectangular kagome crystal is shown in Fig. 11.
This crystal is similar to a kagome crystal because they are
both triangle lattices with vacancies and each particle has
four nearest neighbors. However, unlike the kagome crystal,
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FIG. 7. (Color online) (left) Higher-order potential u2(r) vs distance for a rectangular lattice with aspect ratio b/a = 2, corresponding to
Eq. (11). (right) The phonon frequency squared ω2 vs the wave vector of the target.

where the vacancies are arranged in a triangle lattice, in
the rectangular kagome crystal the vacancies are arranged
in a rectangular lattice. Unlike all previous targets, where
symmetry guarantees that the total force on each particle is
zero, the local stability of some particles in the rectangular
kagome crystal is not guaranteed by the symmetry. For
example, the particle indicated by an arrow in Fig. 11
has three nearest neighbors on the left and one nearest

neighbor on the right, and thus, it is not necessarily in force
equilibrium. Accordingly, the rectangular kagome crystal is
a very challenging target structure. In fact, we were unable
to stabilize this structure using the previous potential form,
which produces smooth decaying functions. By exploring
different potential forms, we found that the rectangular kagome
crystal is the ground state of the following potential at pressure
p = 3.971 07:

u2(r) =

⎧⎪⎨
⎪⎩

(0.012 352r + 0.273 70) exp(−0.086 364r2)(r − 3.050 295)2 + 3.8032×10−4

r12 − 1.0430×10−2

r6

−0.092 965 exp[−( r−0.999 53
0.024 893 )2] + 1.2956 × 10−5, if r < 3.050 295,

0, otherwise.

(13)

The potential and the phonon spectrum of the rectangular
kagome crystal are shown in Fig. 12. The potential contains a
small Gaussian well, which is very helpful in stabilizing the
particles with asymmetrical environments and forcing them
to stay in the correct position. However, this narrow well in
the potential greatly increases the frequency of some phonon

FIG. 8. (Color online) Result of a 108-particle simulated anneal-
ing for the potential given by Eq. (11). This is a perfect rectangular
lattice with aspect ratio b/a = 2.

modes, whereas it is not helpful for other phonon modes. Thus,
in the phonon spectrum, some branches are negligibly low
compared to other branches. Using this potential, we were able
to get a rectangular kagome crystal with simulated annealing,
as shown in Fig. 13. The presence of a small Gaussian
well indicates that this isotropic pair potential is experimen-
tally unattainable. Consequently, it would be scientifically
useful to determine if three-body interaction would enhance
stability.

D. CaF2 crystal inhabited by a single-particle species

In the CaF2 crystal, Ca2+ ions are located in a face-centered
cubic lattice, and F− ions fill in all the tetrahedral voids. A
conventional unit cell of the CaF2 crystal is shown in Fig. 14.
Unlike previous target structures, the CaF2 crystal obviously
contains two kinds of particles: Each Ca2+ ion has eight nearest
neighbors while each F− ion has four nearest neighbors.
However, we found that this structure can counterintuitively
be the ground state of a single-component system with the
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FIG. 9. (Color online) (left panel) The potential u2(r) vs distance for a rectangular lattice with aspect ratio b/a = π , corresponding to
Eq. (12). (right) The phonon frequency squared ω2 vs the wave vector of the target.

following potential at pressure p = 6.196 10:

u2(r) =
{(

b
r12 + c0 + c1r + c2r

2 + c3r
3 + c4r

4
)

exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,
(14)

where b = 2.9340 × 10−3, c0 = 0.839 63, c1 = 0.369 76,
c2 = −0.131 50, c3 = −2.1869 × 10−3, c4 = 1.5010 × 10−3,
α = 0.186 82, and rc = 2.0564.

The potential and the phonon spectrum of the target crystal
are shown in Fig. 15. When we do simulated annealing using
this potential, we rarely get the target structure when the system
contains three or six particles. We were not able to achieve the
ground state with larger systems. However, since we have
tried simulated annealing using 1 to 18 particles and have
never found any competitor structures with lower enthalpy,
we still believe the target structure is the ground state of this
potential.

To further test the validity of this potential, we have
performed a molecular dynamics (MD) based simulated
annealing running on graphics processing unit [35,36] of
12 000 particles in a fixed cubic box. The side length of the
box is 10 times the side length of a CaF2 conventional unit

FIG. 10. (Color online) Result of a 24-particle simulated anneal-
ing for the potential given by Eq. (12). This is a perfect rectangular
lattice with aspect ratio b/a = π .

cell. Imitating the work by Rechtsman et al. [19], we fix 1200
particles into a layer of CaF2 conventional unit cells and let
the remaining 10 800 particles move starting from a random
sequential addition configuration with collision radius r = 0.7.
Upon slow cooling, we find that CaF2 epitaxially grows from
the fixed layer. The ending configuration is given in Fig. 16.

FIG. 11. (Color online) The rectangular kagome crystal structure.
The particle indicated by an arrow has three nearest neighbors on the
left and one nearest neighbor on the right; thus, it is very hard to be
stabilized.
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FIG. 12. (Color online) (left) The rectangular kagome potential u2(r) vs distance corresponding to Eq. (13). (right) The phonon frequency
squared ω2 vs the wave vector of the rectangular kagome crystal.

IV. CONCLUSIONS AND DISCUSSION

To summarize, we have improved upon previous inverse
statistical mechanical optimization techniques. By finding the
inherent structures of each competitor structure, we are able
to define an improved objective function for optimization,
thus overcoming difficulties involved in previous energy
difference optimizations or pressure range optimizations. With
this optimization technique, we have designed isotropic pair
potentials so that the kagome crystal, rectangular lattices with
aspect ratios of 2 and π , the rectangular kagome crystal, and
the structure of the CaF2 crystal inhabited by a single-particle
species become the unique ground states.

By finding potentials that can stabilize these target struc-
tures as unique ground states, we have demonstrated the
robustness of our method. Our potential which stabilizes the
kagome crystal showcases our improvement over previous
inverse work [26] by being comparably simple to a potential
found using the forward approach [11]. Moreover, by being
able to design isotropic pair potentials for the rectangular
kagome crystal and a CaF2 crystal inhabited by a single-
particle species, we have also demonstrated that this method
can handle target structures that contain particles in different
or asymmetrical local environments.

The rectangular lattices are very simple examples of a
much broader family of crystal structures with lower elastic
symmetry. Their low elastic symmetries make them spatially

FIG. 13. (Color online) Result of a 24-particle simulated anneal-
ing for the potential given by Eq. (13). This is a perfect rectangular
kagome crystal.

scale differently in different directions when the pressure
changes. To our knowledge, none of the target structures in this
family have been stabilized with pressure range optimization.
One structure in this family, the 3D simple hexagonal lattice,
has been stabilized previously [18] using energy difference
optimization. However, since the result of energy difference
optimization is sensitive to structurally close competitors (e.g.,
other rectangular lattices with slightly different aspect ratios),
one cannot precisely control the aspect ratio. In contrast, our
method allows us to precisely specify large unusual aspect
ratios (for example, π ) when targeting this family of structures.

All of our target structures are stabilized as unique ground
states. In the application of inverse statistical mechanics
to spin systems [37], the possible outcomes for a given
target configuration were organized into the following three
solution classes: unique (nondegenerate) ground state (class I),
degenerate ground states with the same two-point correlation
functions (class II), and solutions not contained in the previous
two classes (class III). All of the target structures considered
in this paper fall within class I. A simple thought experiment
yields an example of class III solutions. Since the fcc and hcp
crystals have different coordination structures, they cannot fall
within class II. If we limit the range of the pair potential to

FIG. 14. (Color online) The conventional unit cell of a CaF2

crystal. Blue (dark gray) spheres are Ca2+ ions, yellow (light gray)
spheres are F− ions. Particle radii are drawn proportionally to their
crystal ionic radii [34] r(Ca2+) = 126 pm, r(F−) = 117 pm.

042309-9



G. ZHANG, F. H. STILLINGER, AND S. TORQUATO PHYSICAL REVIEW E 88, 042309 (2013)

0 0.5 1 1.5 2r
0

0.5

1

1.5

2

u 2
(r
)

Γ X W K Γ L U W L K U X0

10

20

30

40

ω
2

FIG. 15. (Color online) (left) The CaF2 potential u2(r) vs distance corresponding to Eq. (14). (right) The phonon frequency squared ω2 vs
the wave vector of the CaF2 crystal inhabited by a single-particle species.

be between the nearest and next nearest neighbors, we will
not be able to distinguish these target pairs from one another,
and thus, they cannot belong to class I. Therefore, they will
fall within class III. It would be interesting to see if one can
stabilize any class II solutions for a many-particle system.

If a target crystal structure falls within class I, then what are
the necessary functional characteristics of the potential? For
example, can we stabilize a particular target with monotonic
pair potential? What is the minimum range (cutoff) of the
pair potential? While rigorous answers to these questions are
beyond the scope of the present paper, we can offer some

FIG. 16. (Color online) Result of a 12 000-particle MD based
simulated annealing for the potential given by Eq. (14). Yellow (light
gray) particles are fixed into the CaF2 structure during the simulation.
Green (dark gray) particles self-assemble into the same structure.

general principles that may provide guidance in determining
whether certain target structures can be achieved as ground
states by a particular class of radial pair potentials. Let us
consider the first question. Our experience is that there are
target structures where the symmetry does not guarantee
that the total force on each particle is zero (for example, a
rectangular kagome crystal). Target structures of this kind
cannot be stabilized with monotonic radial pair potentials.
Other target structures can be stabilized with either monotonic
potentials or potentials with wells. For example, the diamond
crystal has been stabilized with both a monotonic potential [22]
and a potential with wells [19].

Concerning the second question, the minimum range of
the pair potential varies for different targets but is usually
comparable to the longest diagonal length of the fundamental
cell ldia of the target crystal. It seems that in order for the
particles to self-assemble into the target crystal, the pair
potential only needs to encode coordination information within
a range comparable in size to the fundamental cell (since the
crystal is the replication of the fundamental cell under periodic
boundary conditions). For certain relatively symmetric target
structures, the fundamental cell consists of particle subsets
that differ only by translations, rotations, and inversions.
Thus, the pair potentials for these targets may only require
a cutoff distance rc that is shorter than the longest diagonal
of the fundamental cell. Examples include our kagome and
CaF2 potentials, a previously designed body-centered-cubic
potential [18], and a kagome potential found with the forward
approach [11]. For certain relatively challenging targets such
as the rectangular kagome crystal (it is challenging because of
the reasons explained in Sec. III C), the range of the potential
can be somewhat longer than the longest diagonal of the
fundamental cell. In fact, the length and symmetry of the
fundamental cell are the most important factors determining
the required range of the potential. This is demonstrated by
the CaF2 crystal inhabited by a single-particle species, which
is symmetric but challenging (because it contains particles in
different local environments). The optimized potential that we
have obtained here contains a relatively high-order polyno-
mial, but its range is surprisingly short. Table I summarizes
the minimal cutoff distance rc that we found for the targets
considered in this paper. To further support the notion that the
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TABLE I. Isotropic pair potential cutoff rc, longest diagonal
length of the fundamental cell ldia, and their ratio of targets reported
in Sec. III. The nearest neighbor distance is 1.

Target structure rc ldia rc/ ldia

Kagome 2.04 2
√

3 0.59
Rectangular lattice b/a = 2 2.25

√
5 1.00

Rectangular lattice b/a = π 3.41
√

π 2 + 1 1.03
CaF2 single species 2.06 4 0.52
Rectangular kagome 3.05

√
7 1.15

minimal potential cutoff distance rc need only be comparable
in size to the longest diagonal of the fundamental cell, we
have also generated short-range isotropic pair potentials using
our algorithm for several other simpler targets. Except for the
fcc crystal, all of them have been stabilized before, including
the 2D honeycomb crystal [16,17,20,21], 2D square lattice
[17,20,21], 3D bcc lattice [18], 3D simple cubic lattice [18],
3D diamond crystal [19,22], and 3D fcc lattice. We see in
Table II that the potential cutoff distances are indeed compa-
rable in size to the longest diagonal of the fundamental cell,
which is consistent with our results for the more complicated
targets listed in Table I.

What are the limitations of isotropic pair potentials in
achieving targeted ground states? In other words, given a
target structure, how can we tell whether an isotropic pair
potential can stabilize it or not? Since the enthalpy per particle
is determined by the coordination numbers Zj and specific
volume v in Eq. (5), a target structure cannot be stabilized
by isotropic pair potentials as a unique ground state if its
coordination numbers and specific volume are identical to
that of another structure or are a weighted average of other
structures [38]. This implies, for example, that chiral targets
with only one type of handedness cannot be uniquely stabilized
by isotropic pair interactions [15]. What are less trivial target
structures that can be nonuniquely stabilized as ground states
by isotropic pair interactions (i.e., targets that fall within class
II solutions)? Seeking a full answer to this question will be a
direction of future research.

The entire set of possible target structures extends far
beyond what has been examined. Specifically, this includes

TABLE II. Application of our current optimization scheme to
stabilize simpler targets with potentials having a minimal cutoff
distance rc for the family of potential functions indicated in Eq. (6).
Except for the fcc lattice, all of the targets have been stabilized
before [16–22]. Isotropic pair potential cutoff rc, longest diagonal
length of the fundamental cell ldia, and their ratio are listed. The
nearest neighbor distance is 1.

Target structure rc ldia rc/ ldia

Honeycomb 2.53 3 0.84
Square 1.87

√
2 1.32

bcc 1.24
√

11/3 0.65
Simple cubic 1.54

√
3 0.89

Diamond 2.46 4 0.62
fcc 1.77

√
6 0.72

challenging structures such as “tunneled” crystals [39] char-
acterized by a high concentration of chains of vacancies as
well as the graphite crystal, to mention a few examples. A
direction for future research is to either stabilize them with the
simplest possible radial potentials or to prove that they cannot
be stabilized with such interactions, which may require us to
improve the current algorithm. We are also interested in ex-
panding our method to stabilize multicomponent systems and
systems containing particles with anisotropic interactions [15].
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APPENDIX A: CRYSTAL STRUCTURE AND
θ SERIES OF TARGET STRUCTURES

In this appendix, we provide the vectors that specify the
target crystal structure as well as the corresponding partial θ

series defined generally by Eq. (4).

1. Kagome crystal

The kagomé crystal is a 2D crystal whose fundamental
lattice vectors can be specified as follows:

a1 = 2i, a2 = i +
√

3j. (A1)

Its reciprocal lattice vectors are

b1 = π i − π√
3

j, b2 = 2π√
3

j. (A2)

Each fundamental cell contains three particles, located at the
positions

r1 = 1

2
a1 = i, r2 = 1

2
a2 = 1

2
i +

√
3

2
j,

(A3)

r3 = 1

2
a1 + 1

2
a2 = 3

2
i +

√
3

2
j.

The first few terms of its θ series are

θ (q) = 1 + 4q + 4q3 + 6q4 + 8q7 + 4q9 + · · · . (A4)

2. Rectangular lattice with aspect ratio t

Rectangular lattices are 2D crystals whose fundamental
lattice vectors can be specified as follows:

a1 = i, a2 = tj. (A5)

Its reciprocal lattice vectors are

b1 = 2π i, b2 = 2π

t
j. (A6)

Each fundamental cell contains one particle, located at the
position

r1 = 0. (A7)
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The first few terms of its θ series are

θ (q) = 1 + 2q + 2q4 + 2q9 + · · · + 2qt2 + 4qt2+1

+ 4qt2+4 + · · · . (A8)

3. Rectangular kagome crystal

The rectangular kagome crystal is a 2D crystal whose
fundamental lattice vectors can be specified as follows:

a1 = 2i, a2 =
√

3j. (A9)

Its reciprocal lattice vectors are

b1 = π i, b2 = 2π√
3

j. (A10)

Each fundamental cell contains three particles, located at the
positions

r1 = 1

2
a1 = i, r2 = 1

4
a1 + 1

2
a2 = 1

2
i +

√
3

2
j,

(A11)

r3 = 3

4
a1 + 1

2
a2 = 3

2
i +

√
3

2
j.

The first few terms of its θ series are

θ (q) = 1 + 4q + 14

3
q3 + 14

3
q4 + 28

3
q7 + 4q9 + · · · .

(A12)

4. CaF2 crystal inhabited by a single-particle species

The CaF2 crystal inhabited by a single-particle species is a
3D crystal whose fundamental lattice vectors can be specified
as follows:

a1 = 2√
3

(i + j), a2 = 2√
3

(i + k),

(A13)

a3 = 2√
3

(j + k).

Its reciprocal lattice vectors are

b1 =
√

3

4
π (i + j − k), b2 =

√
3

4
π (−i + j + k),

(A14)

b3 =
√

3

4
π (i − j + k).

Each fundamental cell contains three particles, located at the
positions

r1 = 0, r2 = a1 + a2 + a3

4
= i + j + k√

3
,

(A15)

r3 = 3(a1 + a2 + a3)

4
=

√
3(i + j + k).

The first several terms of its θ series are

θ (q) = 1 + 16
3 q + 4q4/3 + 12q8/3 + 16q11/3 + 16

3 q4 + 6q16/3

+ 16q19/3 + 16q20/3 + 24q8 + 64
3 q9 + · · · . (A16)

APPENDIX B: DEFINITION OF HIGH-SYMMETRY
POINTS IN THE BRILLOUIN ZONE

When ascertaining the phonon spectrum of a crystal, we
calculate the phonon frequency squared ω2 along certain
trajectories between points of high symmetry in the Brillouin
zone. For different crystals, the points of high symmetry are
described below.

1. 2D kagome crystal

The points of high symmetry of 2D kagome crystal are

K = 1
2 b1, � = 0, M = 1

3 (b1 + b2), (B1)

where b1 and b2 are reciprocal lattice vectors.

2. 2D rectangular lattices and rectangular kagome crystal

The points of high symmetry of 2D rectangular lattices and
the rectangular kagome crystal are

� = 0, X = 1
2 b1, S = 1

2 (b1 + b2), Y = 1
2 b2, (B2)

where b1 and b2 are reciprocal lattice vectors.

3. CaF2 crystal inhabited by a single-particle species

The points of high symmetry of the CaF2 crystal inhabited
by a single-particle species are

� = 0, X = 1
2 (b1 + b3), W = 1

4 (2b1 + b2 + 3b3),

K = 3
8 (b1 + b2 + 2b3), L = 1

2 (b1 + b2 + b3), (B3)

U = 1
8 (5b1 + 4b2 + 5b3),

where b1, b2, and b3 are reciprocal lattice vectors.

APPENDIX C: DEFINITION OF THE DIFFERENCE
BETWEEN TWO COORDINATION STRUCTURES

The coordination structure of a crystal is characterized by
coordination numbers Zj for different distances rj , as defined
in Sec. II. The coordination numbers and distances of a crystal
structure can be summarized into an infinite table, which con-
sists of infinite number of “rows.” Each row contains a distance
r and the average number of neighbors Z at that distance. We
have defined a difference between two coordination structures.
To calculate it, we use the following steps.

(1) Rows of the two coordination structures, {r,Z}, are
combined into pairs by the following rules:

(a) The first unpaired rows of the two coordination
structures are paired if their coordination numbers are equal.

(b) If their coordination numbers are not equal, let the
row with the larger coordination number be {rlarge,Zlarge} and
the row with smaller coordination number be {rsmall,Zsmall}.
The row with the larger coordination number, {rlarge,Zlarge},
is split into two rows: a row {rlarge,Zsmall} and another
row {rlarge,Zlarge − Zsmall}. The former row is paired with
{rsmall,Zsmall}. The latter row will be paired later.

(c) Return to step (a) unless enough pairs are obtained.
For example, to combine the coordination structure of a

rectangular kagome crystal and that of kagome crystal into
pairs of rows, we do the following. To illustrate the process,

042309-12



PROBING THE LIMITATIONS OF ISOTROPIC PAIR . . . PHYSICAL REVIEW E 88, 042309 (2013)

let us denote a row from the rectangular kagome crystal as
{r,Z}r and a row from the kagome crystal as {r,Z}k .

(a) The first row of the coordination structure of the
rectangular kagome crystal, {1,4}r , is paired with the first row
of the coordination structure of the kagome crystal, {1,4}k .

(b) The second row of the coordination structure of the
rectangular kagome crystal, {√3,14/3}r , is split into two rows:
a row {√3,4}r will be paired with the second row from the
kagome crystal ({√3,4}k); the other row {√3,2/3}r will be
paired later.

(c) The next row from the kagome crystal, {2,6}k , is split
into two rows: a row {2,2/3}k to be paired with the remaining
row from the rectangular kagome crystal, {√3,2/3}r , and
another row {2,16/3}k to be paired later.

(d) The remaining row from the kagome crystal, {2,16/3}k ,
is split into two rows: {2,14/3}k and {2,2/3}k . The former is
paired with the third row from the rectangular kagome crystal,
{2,14/3}r . The latter remains to be paired.

(e) Continue this process until enough pairs are obtained.
The first several obtained pairs are

The first several pairs of the coordination structure (radial
distance and associated coordination number) for the kagome
and rectangular kagome crystals.

Rectangular kagome crystal Kagome crystal

{1,4}r {1,4}k

{√3,4}r {√3,4}k

{√3,2/3}r {2,2/3}k

{2,14/3}r {2,14/3}k

{√7,2/3}r {2,2/3}k

{√7,8}r {√7,8}k

{√7,2/3}r {3,2/3}k

(2) The distance between two coordination structures is
given by

D =
∑

all pairs {ra,Za} and {rb,Zb}
Za(ra − rb)2 exp(−ra). (C1)

In our implementation, the summation is truncated at r = 5.
This definition of distance D has the following properties:
(1) D � 0. D = 0 if and only if the two coordination

structures are identical.
(2) An infinitesimally distorted structure of an original

structure has a coordination structure which has an infinites-
imal distance to the coordination structure of the original
structure.

APPENDIX D: ELASTIC PROPERTIES
OF TARGET STRUCTURES

We have also calculated the elastic constants of our target
structures. To illustrate the concept of elastic constants,
consider a small, affine deformation of the target structure:

x = (I + ε)x0, (D1)

where x0 is the original location, x is the new location, I
is a unit second-order tensor, and ε is a small second-order
tensor, called the “strain tensor.” The elastic constants Cijkl

are defined as

Cijkl = ∂2H

∂εij ∂εkl

. (D2)

The elastic constants of our target structures are presented
below.

1. 2D isotropic target

The kagome crystal is a 2D isotropic crystal. Its elastic
constants are determined by two independent constants, e.g.,
its Young’s modulus E and Poisson’s ratio ν:

⎛
⎜⎝

C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎞
⎟⎠ = E

1 − ν2

⎛
⎜⎝

1 ν 0

ν 1 0

0 0 1−ν
2

⎞
⎟⎠. (D3)

With the pair potential in Eq. (9), under pressure p =
2.837 09, the kagome crystal has elastic constants E = 23.61
and ν = 0.4594.

2. 2D orthotropic targets

The rectangular lattices and the rectangular kagome crystal
are 2D orthotropic crystals. Their elastic constants are deter-
mined by four independent constants, Ex , Ey , G, and νxy :

⎛
⎜⎝

C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎞
⎟⎠

= 1

1 − νxyνyx

⎛
⎜⎝

Ex νyxEx 0

νxyEy Ey 0

0 0 G(1 − νxyνyx)

⎞
⎟⎠,

(D4)

where νyx = νxyEy/Ex .
With the pair potential in Eq. (10), under pressure p =

1.811 98, the rectangular lattice with aspect ratio 2 has
elastic constants Ex = 27.31, Ey = 7.17, G = 0.01, and
νxy = 0.4751.

With the pair potential in Eq. (11), under pressure p =
1.129 01, the rectangular lattice with aspect ratio 2 has
elastic constants Ex = 7.19, Ey = 17.60, G = 2.33, and
νxy = 0.2277.

With the pair potential in Eq. (12), under pressure p =
1.040 06, the rectangular lattice with aspect ratio π has
elastic constants Ex = 3.98, Ey = 16.91, G = 0.27, and
νxy = 0.1296.

With the pair potential in Eq. (13), under pressure p =
3.971 07, the rectangular kagome crystal has elastic constants
Ex = 177.9, Ey = 177.5, G = 65.3, and νxy = 0.3596.

3. 3D isotropic target

The CaF2 crystal inhabited by a single-particle species is a
3D cubic crystal. Its elastic constants are determined by three
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independent constants, E, ν, and A:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

(1 + ν)(1 − 2ν)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 A(1 − 2ν)/2 0 0

0 0 0 0 A(1 − 2ν)/2 0

0 0 0 0 0 A(1 − 2ν)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D5)

With the pair potential in Eq. (14), under pressure p = 6.196 10, the CaF2 crystal inhabited by a single-particle species has
elastic constants E = 2.1835, ν = 0.4753, and A = 2.51.

APPENDIX E: STABILIZING A RECTANGULAR
LATTICE OVER A PRESSURE RANGE

The rectangular lattices do not naturally have a stable
pressure range because of their anisotropic elastic property.
When the pressure changes, the two sides of the rectangular
unit cell may change disproportionally; thus, the aspect ratio
may also change, and the structure changes according to
our definition. However, we can make “corrections” to the
potential to make sure that the aspect ratio does not change
over a pressure range. Imagine a rectangular lattice with one
side length a and the other side length b = at ; thus, the aspect
ratio is t . In order for the rectangular lattice with aspect ratio
t to be stable in a pressure range, when pressure p changes in
the range, a or b can change while the aspect ratio t must not
change. The enthalpy of the target is given by

H =
∑

(i,j )�=(0,0)

u2(
√

i2 + (j t)2a) + pa2t. (E1)

When the structure is stable, the partial derivatives of enthalpy
are zero. Thus,

∂H

∂a
=

∑
(i,j )�=(0,0)

u′
2(

√
i2 + (j t)2a)

√
i2 + (j t)2 + 2pat = 0,

(E2)
and

∂H

∂t
=

∑
(i,j )�=(0,0)

u′
2(

√
i2 + (j t)2a)

j 2t√
i2 + (j t)2

+ pa = 0.

(E3)

Eliminating variable p from Eqs. (E2) and (E3), we get

∑
(i,j )�=(0,0)

u′
2(

√
i2 + (j t)2a)

i2 − (j t)2√
i2 + (j t)2

= 0. (E4)

Integrating Eq. (E4) over a will simplify it and gives

∑
(i,j )�=(0,0)

u2(
√

i2 + (j t)2a)
i2 − (j t)2

i2 + (j t)2
= C, (E5)

where C is an arbitrary constant. Equation (E5) is a necessary
condition for stability. Generally, a potential function does
not satisfy this condition over a range of a. However, for any
potential function u0

2(r), let

u1
2(r) = −1

2

∑
(i,j )�=(0,0)

u0
2(r

√
i2 + (j t)2)

i2 − (j t)2

i2 + (j t)2

+C (0.9 < r < 1.1). (E6)

Then, the potential u2(r) = u0
2(r) + u1

2(r) satisfies Eq. (E5)
over the range 0.9 < a < 1.1. Constant C in Eq. (E6) is chosen
so that u1

2(1) = 0. The correction u1
2(r) is usually much smaller

than u0
2(r).

We have applied this correction to our higher-order
potential for the rectangular lattice with aspect ratio b/a = 2
[Eq. (11)]. After that, we do simulated annealing using the
corrected potential at different pressures. We found that the
rectangular lattice with aspect ratio b/a = 2 is indeed the
ground state of the corrected potential over the pressure range
0.98 < p < 1.87.
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