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Dynamics and separation of circularly moving particles in asymmetrically patterned arrays
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There are many examples of driven and active matter systems containing particles that exhibit circular motion
with different chiralities, such as swimming bacteria near surfaces or certain types of self-driven colloidal
particles. Circular motion of passive particles can also be induced with an external rotating drive. Here we
examine particles that move in circles and interact with a periodic array of asymmetric L-shaped obstacles.
We find a series of dynamical phases as a function of swimming radius, including regimes where the particle
motion is rectified, producing a net dc motion. The direction of the rectification varies with the swimming radius,
permitting the separation of particles with different swimming radii. Particles with the same swimming radius
but different chirality can also move in different directions over the substrate and be separated. The rectification
occurs for specific windows of swimming radii corresponding to periodic orbits in which the particles interact
one or more times with the barriers per rotation cycle. The rectification effects are robust against the addition of
thermal or diffusive effects, and are in some cases even enhanced by these effects.
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I. INTRODUCTION

Ratchet effects can occur for particles interacting with
asymmetric substrates if the substrate is flashed on and off
periodically or if an external ac drive is applied, and result
in a net dc motion of the particles that is typically aligned
with the direction of the substrate asymmetry [1]. When the
particles interact with each other as well as the substrate, the
ratchet effect can exhibit reversals where the particles move
with the substrate asymmetry in some regimes, and against
it in others [1]. It is also possible to create ratchet effects
for particles moving over two dimensional (2D) symmetric
substrates by driving the particles with two different ac drives
that sum together to create an asymmetric pattern of particle
motion [2–6]. Directed motion on periodic substrates has been
demonstrated experimentally for colloidal particles driven over
magnetic substrates [7,8].

More recently, ratchet effects have been observed in the
absence of an external drive for systems of self-driven
particles, termed active matter. Examples of active matter
include swimming bacteria and crawling cells [9–11]. Numer-
ous realizations of artificial active matter have been created
experimentally for self-driven colloidal systems [12–18].
Active matter ratchet effects have been obtained for swimming
bacteria in an asymmetric funnel array in experiments [10],
theory, and simulations [19,20], as well as for other types
of swimming organisms [21–23] and eukaryotic cells [11].
There has also been a recent proposal to rectify active particles
interacting with symmetric substrates [24]. Variants on the
active matter ratchet have been used to create active matter-
powered gears [25].

The dynamics of active matter particles are often described
by run and tumble motion where the particles move for a
persistence length or periodic time before reorienting, or the
particles may move in a persistent random walk [26,27]. In
other active matter systems, the particles undergo circular mo-
tion such as found in swimming bacteria near surfaces [28–30]
and other types of swimming cells [31,32]. A variety of circle
swimmers has been studied theoretically and in simulations
[33–36], and in recent experiments, it was demonstrated how

to create artificial chiral colloidal moving particles that swim
in circles with a fixed chirality depending on the asymmetric
nature of the particle itself [37]. There are also proposals for
creating molecular-sized chiral microswimmers by combining
chiral molecules with chiral propellers [38]. An understanding
of the types of dynamics that arise for circularly swimming
particles interacting with patterned substrates could lead to the
ability to control the motion of such systems, which could be
used for separation techniques or to extract work from active
matter. Recently, it was shown that artificial swimmers in a
periodic substrate array prefer to swim along certain symmetry
directions of the array [16], while Mijalkov and Volpe recently
proposed a method for sorting circle swimmers moving with
opposite chirality by using a substrate of chiral flower patterns
or by having the particles move in channels of asymmetric
arrays [38].

In this work we examine circularly swimming particles
interacting with an array of L-shaped barriers that create an
asymmetric landscape. The particles experience only contact
interactions with the barriers, as in previous studies of run
and tumble swimmers in asymmetric arrays [19]. After
contacting a barrier, the particle motion normal to the barrier is
suppressed, and the particle swims along the barrier according
to its swimming force component that is parallel to the barrier,
moving at reduced speed until reaching the end of the barrier
or tumbling away from it. In the absence of a substrate, the
particles show no dc drift; however, when a barrier array is
present, we observe a series of regimes in which the particles
form periodic orbits that produce net dc motion. We find that
the directed motion remains locked over specific ranges of
the swimming radii. In two dimensions, the particle motion
is generally locked along particular symmetry directions of
the array, but the direction of the motion may switch as
the swimming radius varies. We also find that for certain
values of the swimming radius, there is no dc motion and the
particle orbits are localized. The fact that the magnitude and
the direction of the dc motion can be controlled by varying the
swimming radius indicates that this type of substrate could be
used to separate particles with different swimming radii. When
the chirality of the swimmers is reversed, a different set of
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directed motion regimes appears, permitting particles with the
same swimming radius but different chirality to be separated.
We find that the directed motion is generally reduced when
the thermal fluctuations increase; however, there are regimes
in which the directed motion is enhanced by the additional
fluctuations. We demonstrate these effects for oblique and
square arrays of even L-shaped barriers as well as for a square
array of simple one-dimensional (1D) barriers.

Experimentally, such systems could be realized in micro-
fabricated environments with barriers made out of silicon.
For example, experiments on bacteria swimming through
funnel barrier arrays employed silicon barriers that were
30-μm long and about 4-μm thick [10]. Specific active matter
systems in which the effects we describe could be realized
include artificial circle swimmers, colloidal particles subjected
to external circular drives, and biological systems such as
circularly swimming bacteria. We note that circularly moving
particles interacting with symmetric two-dimensional (2D)
substrates have also been shown to exhibit ratchet effects [3];
however, this system required an additional dc drive and/or
asymmetry in the circular driving in order to produce ratchet
motion. In the present work, no dc drive or alterations of the
circular drive are needed since the asymmetry necessary to
create the ratchet effect is provided by the barrier array. As a
result, the system we describe here should be straightforward
to study since it only requires placing some type of circularly
moving particles into a barrier array.

II. SIMULATION AND SYSTEM

We consider a 2D system with periodic boundary conditions
in the x and y directions containing a periodic array of even
L-shaped barriers, as illustrated in Figs. 1(a) and 1(b). In the
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FIG. 1. Sample geometries. (a) Oblique array of even L-shaped
barriers. (b) Square array of even L-shaped barriers. (c) Square array
of line barriers.

even L shape, both arms of the L are identical in length. We
refer to these barriers as “L shaped” in the remainder of the
paper. The particles are initialized at random positions in the
free regions between barriers; in this work, we do not consider
the effects of particle-particle interactions. The dynamics of
particle i is governed by the following overdamped equation
of motion:

η
dRi

dt
= Fm

i + Fb
i + Fdc + ξT

i . (1)

Here η = 1 is the damping constant, Fm is the motor force,
Fb is the force from interactions with the barriers, Fdc is an
external drift force, and ξT is the thermal force. The motor
force drives each particle in a circular manner with Fm

i =
si[Ax cos(ωt)x̂ + Ay sin(ωt)ŷ], where A � 0 and si = ±1 is
the sign of the rotation. In the absence of a substrate, for Ax =
Ay = A and si = 1 the particle moves in a counterclockwise
orbit forming a circle with radius A/ηω; for si = −1, the
motion is clockwise. The barriers are composed of elongated
repulsive walls terminating in repulsive truncated parabolas.
Each barrier wall produces a short-range steric repulsion of
the particles given by Fb

i = ∑Nb

k=1[(fbr
⊥
ik/rb)�(rb − r⊥

ik)p̂k
⊥ +

(fbr
±
ik/rb)�(rb − r±

ik)r̂ik], where Nb is the number of barrier
walls (each L shape is composed of two barrier walls), fb = 30
is the strength of the barrier repulsion, rb = 0.3 is the barrier
radius or width, r⊥

ik is the perpendicular distance from the parti-
cle to the line parallel to the barrier wall (set to zero if the
intersection point of this perpendicular line does not fall on
the barrier wall), r±

ik = |ri − rp

k ± (l/2)p̂k
|||, rp

k is the location
of the center of the barrier wall, l is the length of the barrier
wall, p̂k

⊥(||) is a unit vector perpendicular (parallel) to the axis of
barrier k, and r̂ik = (ri − r±

ik)/|ri − r±
ik|. A particle in contact

with a barrier moves along the barrier with the component of
Fm that is parallel to the barrier until it reaches the end of the
barrier or the orientation of Fm changes enough to move the
particle away from the barrier. This is the same type of barrier
interaction used in Ref. [19], and the sliding of particles along
the barriers is also consistent with experimental observations
of swimming bacteria. The thermal kicks come from the
Langevin noise term ξT with the properties 〈ξT (t)〉 = 0 and
〈ξT

i (t)ξT
j (t ′)〉 = 2ηkBT δij δ(t − t ′), where kB is the Boltzmann

constant. We report the thermal forces in terms of FT =√
2ηkBT .
We focus on systems of size L × L with L = 99 in

dimensionless units, and with barrier lattice constants of
around a = 20. The side length of the barriers is l = 5 for
most of the results presented here. A length scale can also
be associated with the circular motion, so that for A = 1.0,
a single particle in the absence of any barriers moves in
a circle of radius 16. We have run larger system sizes and
find that all our results are robust. We have studied different
lattice constants for fixed system size and find the same
results; however, there is a systematic shift of the rectification
regime to lower ac amplitudes as the barrier lattice constant is
reduced. We consider three substrate types: an oblique array
of L-shaped barriers [Fig. 1(a)], a square array of L-shaped
barriers [Fig. 1(b)], and a square array of simple 1D barriers
[Fig. 1(c)]. For the L-shaped barriers, the lack of rotational
symmetry in the system produces different motion for particles
with different chiralities, which is important for separation.
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The system with simple 1D barriers has a rotational symmetry
and is used to clarify the effect of breaking rotational symmetry
by comparison with the L-shaped barrier systems. We place
N = 980 noninteracting particles in the sample and measure
the average particle velocities 〈Vx〉 = (1/N)

∑N
i=1 vi · x̂ and

〈Vy〉 = (1/N )
∑N

i=1 vi · ŷ. At finite temperature, the use of
this number of particles allows for sufficient averaging that a
clear signature of a dc response can be obtained. If there is no
net dc drift, then 〈Vy〉 = 0 and 〈Vx〉 = 0. In the absence of a
substrate, the average velocities are always zero.

III. RECTIFICATION EFFECTS

We first focus on the oblique geometry shown in Fig. 1(a)
with si = 1 so that the particles move in a counterclockwise
direction. In Fig. 2(a) we plot 〈Vy〉 vs A for this system
in the absence of thermal forces, FT = 0. As A increases,
the radius of the circular path that the particle would follow
in the absence of a substrate also increases. Figure 2(b) shows
the corresponding 〈Vx〉 vs A. We also plot 〈Vx〉 and 〈Vy〉 vs A

for particles with Ax = 0 and Ay = A that only move up and
down but do not rotate. For the 1D driving, there is no directed
motion, as indicated by the curves centered at 〈Vx〉 = 0.0 and
〈Vy〉 = 0.0 in Figs. 2(a) and 2(b). For the circular swimmers,
there are numerous intervals of A where there is a net dc flow
of particles. For 0 < A < 0.52, there is no dc response since
the particle orbits are small enough that the particles can move
between the barriers without contacting them, as illustrated
in Fig. 3(a) at A = 0.49. For 0.52 < A < 0.86, Figs. 2(a)
and 2(b) indicate that there is net dc motion in both the
positive y and positive x directions, with a larger dc response
in the y direction, 〈Vy〉 > 〈Vx〉. This interval also includes a
plateau region in 〈Vy〉 over which the velocity remains nearly
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FIG. 2. (Color online) (a) 〈Vy〉 vs A and (b) 〈Vx〉 vs A for the
system with the oblique L-shaped barrier array shown in Fig. 1(a)
for counterclockwise swimming particles with si = 1. The light (red)
curves centered at 〈Vy〉 = 0 and 〈Vx〉 = 0 are for the case where there
is only an ac drive in the y direction, Ay = A and Ax = 0. The dark
(black) curves are for circular swimmers with Ax = Ay = A. For the
circular swimmers, there are a series of intervals of A where there
is a net dc motion, and in several of these regions the velocities are
constant or locked. The letters a–f indicate the values of A at which
the particle trajectories in Fig. 4 were obtained.
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FIG. 3. (Color online) The trajectories of a single particle in the
localized regimes for the system in Fig. 2 with counterclockwise
swimming particles. L shapes, barriers; dot, individual particle; line,
particle trajectory. (a) A = 0.49. (b) A = 0.9. (c) A = 1.2.

constant, similar to the mode locking phenomenon found
for particles driven with asymmetric drives over symmetric
periodic substrates [3]. In this regime, as illustrated in Fig. 4(a)
at A = 0.57, individual particles fall into a periodic orbit that
contacts the barrier once per drive cycle. When the particle
is in contact with the barrier, it moves along the bottom of
the L shape and is temporarily trapped in the corner of the L
until its motion reverses and it moves up by one barrier in the y

direction. During successive orbits, the particle channels along
the symmetry direction of the lattice so that it moves over by
one column in the positive x direction after six drive cycles.
At A = 0.75, Fig. 4(b) shows that the particles are guided
along the barriers near the corner of the L. We observe the
ratio 〈Vy〉/〈Vx〉 = 4.0 at A = 0.75 since the particles move
six lattice constants in the y direction for every 1.5 lattice
constants in the x direction in this locked motion regime.

At A = 0.9, 〈Vy〉 and 〈Vx〉 are zero again in Fig. 2, and
in Fig. 3(b) we show the corresponding localized particle
orbit in which the particle encircles two barriers without
touching them. At A = 1.2 there is still no net dc signal, and
the localized particle orbit now encircles three barriers in a
single cycle as shown in Fig. 3(c). For 1.3 < A < 1.8, a dc
rectification occurs where the particles translate in both the
positive x and y directions. For the velocity plateau region
centered at A = 1.6, 〈Vy〉/〈Vx〉 = 5.0, and Fig. 4(c) shows
that in this region the particle interacts with a single barrier
per cycle and also moves past multiple barriers on each cycle.
For 1.8 < A < 2.0 we observe a rectification region where the
particles move in the positive y and the negative x directions
with 〈Vy〉/|〈Vx〉| = 2.0. In this region, as illustrated in Fig. 4(d)
for A = 1.9, the particles interact with three barriers per cycle.
The first interaction is with the front of one L-shaped barrier,
the second is with the back of another barrier, and the third is
with the back corner of yet another barrier.

There are also intervals of A where the particles move
strictly in the negative x direction, such as for 2.035 < A <

2.1. Figure 4(e) shows that in this regime at A = 2.05, the
particle interacts with the back of one L-shaped barrier per
cycle and translates in the negative x direction. For higher
values of A, more complex motions occur. For example, at A =
2.25, illustrated in Fig. 4(f), the particles move in the positive
x and y directions with 〈Vy〉/〈Vx〉 = 4.0, and interact with
four barriers per cycle. For increasing A, additional rectifying
orbits appear that become increasingly complex as the particles
interact with larger numbers of barriers per cycle. For most
applications, the first few rectifying orbits will likely be the
best regimes to consider.
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FIG. 4. (Color online) The trajectories of a single particle in
selected rectification phases for the system in Fig. 2 with counter-
clockwise swimming particles. The letters a–f in Fig. 2 correspond to
the orbits shown in panels (a)–(f). L shapes, barriers; dot, individual
particle; line, particle trajectory. At (a) A = 0.57, (b) A = 0.75, and
(c) A = 1.6, the particle translates in the positive y and x directions
and interacts with the barriers once per cycle. (d) At A = 1.9, the
particle moves in the positive y and negative x directions and interacts
with the barriers twice per cycle. (e) At A = 2.05 the particle moves
in the negative x direction while interacting with the barriers once
per cycle. (f) At A = 2.5 the particle moves in the positive y and x

directions and interacts with the barriers three times per cycle.

In addition to integer ratios of 〈Vy〉/〈Vx〉, we also observe
simple noninteger ratios such as 〈Vy〉/〈Vx〉 = 1.5. In gen-
eral, for the oblique lattice geometry and counterclockwise
swimming particles, 〈Vy〉 is larger than 〈Vx〉. We have only
observed very small windows over which the particles move
in the negative y direction, and we found no regimes where
the particle motion is strictly along the y direction, due to the
fact that the easy channel direction along the symmetry axis
of the oblique lattice is not aligned with the y direction. The
fact that the particles move in different directions for different
values of A or orbit radii indicates that particles with different
swimming radii but the same chirality could be sorted using
the oblique substrate.
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FIG. 5. (Color online) (a) 〈Vy〉 vs A and (b) 〈Vx〉 vs A for the
system from Fig. 1(a) with an oblique lattice of L-shaped barriers
for clockwise swimming particles with si = −1. The 〈Vy〉 = 0
and 〈Vx〉 = 0 lines are drawn as a guide to the eye. Here, we
generally find 〈Vx〉 > 〈Vy〉, the reverse of what is shown in Fig. 2
for counterclockwise swimming particles. The letters a–f indicate the
values of A where the particle trajectories in Fig. 6 were obtained.

There are several differences between this system and the
dc rectification induced by driving ac particles over symmetric
periodic substrates [2,3]. In the previous work, the substrates
were modeled as smooth egg-carton-type potentials induced
by pinned particles that repelled the remaining particles via
a Yukawa interaction potential. In that egg-carton system,
the mobile particles are always interacting with the potential
substrate, as appropriate for modeling colloidal particles on
periodic optical trap arrays [39]. In the present work, the
substrate is flat except for the L-shaped barriers, and the
particles experience only contact interactions with the barriers.
In the egg-carton system under a circular ac drive, a transverse
dc motion occurs only if an additional longitudinal dc drift
is applied to the particles [2]; if a noncircular ac drive is
applied that produces a particle orbit with broken spatial
symmetry, then dc rectification can occur even without a dc
drift drive [3,5,6]. In the present work, the ac driving orbits
are symmetric, and the barrier lattice introduces the asymmetry
required for rectification to occur. The system we propose here
should be very straightforward to implement due to the simple
barrier shapes and particle interactions.

A. Opposite chirality

We next consider the same oblique array of L-shaped
barriers but reverse the sign of the drive by setting si = −1 so
that the particles move clockwise. In Figs. 5(a) and 5(b) we
plot 〈Vy〉 and 〈Vx〉 versus A, where we generally find 〈Vy〉 <

〈Vx〉, the opposite of what occurred for the counterclockwise
swimming particles. There is also no dc rectification for A <

1.2 for si = −1, whereas for the counterclockwise rotation,
rectification occurred down to A = 0.52. Figure 5 shows that
for 1.2 < A < 1.588, the particles rectify in the positive x

and y directions. The trajectory of a particle in this regime is
shown in Fig. 6(a) for A = 1.25, where the particle interacts
with almost the entire length of the front side of the barrier,
producing a net translation in the positive x and positive y
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FIG. 6. (Color online) The trajectories of a single particle in
selected rectification phases for the system in Fig. 5 for clockwise
swimming particles with si = −1. The letters a–f in Fig. 5 correspond
to the orbits shown in panels (a)–(f). L shapes, barriers; dot, individual
particle; line, particle trajectory. (a) At A = 1.25, the particle
translates in the positive x and y directions. (b) At A = 1.4, the
particle translates only in the positive x direction. (c) At A = 1.77, the
particle translates only in the negative x direction. (d) At A = 2.08,
the particle translates in the positive x direction and negative y

direction. (e) At A = 2.15, the particle translates in the positive x

and y directions. (f) At A = 2.28, the particle translates only in the
positive x direction.

directions. At A = 1.4, 〈Vy〉 = 0 and the velocity in the x

direction is positive. Here, Fig. 6(b) shows that the particle
interacts with two barriers per cycle, once with the front part
of the barrier and once with the back part of the barrier. There is
an interval of A centered around A = 1.77 where the particles
move only in the negative x direction, and Fig. 6(c) indicates
that here the particle encounters only one barrier per cycle and
interacts with the back side of the L shape. Near A = 2.08
there is a regime where the particle moves in the positive x

direction and the negative y direction, as shown by the particle
orbits in Fig. 6(d). Around A = 2.15 the particle moves in
both the positive x and y directions again, as highlighted in
Fig. 6(e) where the particle interacts with three barriers per
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FIG. 7. (Color online) The trajectories of a single particle in the
localized regimes for the system in Fig. 5 with clockwise swimming
particles. L shapes, barriers; dot, individual particle; line, particle
trajectory. (a) A = 1.15. (b) A = 1.65. (c) A = 2.68.

cycle. In the region near A = 2.28, Fig. 6(f) shows that the
particle translates only in the positive x direction and interacts
with just one barrier per cycle in a manner similar to that found
for A = 1.4 [Fig. 6(b)], but in this case the orbits form a much
wider arc. For higher values of A similar sets of rectifying
motions occur, with the particles typically translating a further
distance per cycle, as indicated by the increase in |〈Vx〉| and
|〈Vy〉| at higher A in Fig. 5.

In the intervals of A where there is no net motion in
Fig. 5, the particles adopt localized orbits; however, unlike
the counterclockwise case shown in Fig. 3 where the particles
undergo circular orbits that do not interact with the barriers, for
the clockwise orbits the particles can interact with the barriers
but still produce no net translation. For A < 0.5 the particle
orbits are small enough to fit between the barriers without
contacting them, while for A � 0.5 the orbits can touch the
barriers, as shown in Fig. 7(a) for A = 1.15 where the particle
interacts with the back of one L and then hits the front of
another L while encircling a third barrier. At A = 1.65 the
motion is localized and Fig. 7(b) shows that each particle
forms an elliptical orbit similar to the one at A = 1.15 where
the particle interacts with two barriers during each cycle; in this
case, however, the orbit encircles two barriers. For A = 2.68,
illustrated in Fig. 7(c), the same type of orbit occurs but the
particle encircles 10 barriers per cycle.

Since the different chiralities produce different modes of
motion, the oblique lattice of L-shaped barriers can be used to
separate particles moving with different chiralities. In Fig. 8
we plot the velocity differences �y = 〈Vy〉si=1 − 〈Vy〉si=−1

and �x = 〈Vx〉si=1 − 〈Vx〉si=−1, where the velocity of the
clockwise swimmers is subtracted from the velocity of the
counterclockwise swimmers. Whenever �y and/or �x have a
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FIG. 8. (Color online) (a) �y , the difference between 〈Vy〉 for the
counterclockwise and clockwise rotating particles vs A in samples
with an oblique lattice of L-shaped barriers. (a) �x vs A. In the
regions with nonzero mean values of �x or �y , particles with different
swimming chiralities move at different speeds and/or in different
directions.

finite value, particles with different chiralities move at different
speeds and/or in different directions, and separation of the
particles can be achieved.

IV. THERMAL EFFECTS

In Fig. 9(a) we plot 〈Vy〉 vs A for the system from Fig. 2 with
an oblique lattice of L-shaped barriers and counterclockwise
swimmers for different thermal forces FT = 0 to 6.0. In
general we find that over ranges of A where plateaus occur
at FT = 0, 〈Vy〉 decreases in magnitude and the plateau
features smear out as FT increases. For ranges of A in
which 〈Vy〉 = 0 in the absence of thermal fluctuations, the
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FIG. 9. (Color online) (a) 〈Vy〉 vs A for the system in Fig. 2
with an oblique lattice of L-shaped barriers and counterclockwise
moving particles (si = 1) at different thermal force values F T = 0.0,
1.0, 2.0, 4.0, and 6.0, from bottom to top. The curves have been
successively shifted up for clarity. The dashed line highlights the
appearance of a new peak near A = 1.05 for finite temperature. (b)
〈Vy〉 vs F T for A = 0.75 (circles), which monotonically decreases;
A = 1.05 (squares), which starts at 〈Vy〉 = 0, reaches a maximum and
then decreases; and A = 2.12 (triangles), which starts with 〈Vy〉 < 0,
reverses to a positive value, and then decreases at higher F T .
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FIG. 10. (Color online) The trajectories of a single particle for the
system in Fig. 9 with counterclockwise swimming particles and finite
temperature. L shapes, barriers; dot, individual particle; line, particle
trajectory. (a) A = 0.9 and F T = 4.0. (b) A = 0.9 and F T = 8.0. (c)
A = 1.05 and F T = 0. (d) A = 1.05 and F T = 2.0.

value of 〈Vy〉 becomes finite when FT is raised above zero.
Here, the localized particle orbits become smeared by thermal
fluctuations and the particles occasionally interact with extra
barriers, producing a nonzero amount of rectification. The
magnitude of the peaks in 〈Vy〉 is suppressed by temperature
since the thermal kicks can temporarily cause the particles to
deviate from their rectifying orbits. For increasing FT , we
find some rectification for most values of A, as shown in
Fig. 9(a). For example, at A = 0.9 there is no rectification
in the absence of thermal fluctuations; however, for FT = 4.0
there is some rectification. Thermally induced rectification is
illustrated in Fig. 10(a) for A = 0.9 and FT = 4.0, where the
particle is localized during some time intervals and undergoing
net transport in the positive y direction during other time
intervals. For high FT , we observe a general decrease in the
magnitude of the rectification when the particle trajectories
become increasingly random, as shown in Fig. 10(b) for
A = 0.9 and FT = 8.0. Over certain ranges of A, the addition
of thermal effects create new locking effects that were not
present in the zero temperature system. An example of this
is highlighted in Fig. 9(a) with a dashed line near A = 1.05.
Here, at FT = 0, 〈Vy〉 = 0, but at finite temperature a peak in
〈Vy〉 emerges. This peak persists as the temperature increases
before gradually smearing out at high temperatures. In this
case, at FT = 0 and A = 1.05, Fig. 10(c) indicates that the
particle moves in a circle that just misses interacting with the
barriers during each cycle, while when FT = 2.0 for the same
value of A, Fig. 10(d) shows that the particles now have a much
higher probability of interacting with the barriers. As a result,
a finite translation in the positive y direction occurs only for
finite temperature.
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FIG. 11. (Color online) Samples with an oblique lattice of L-
shaped barriers at F T = 6.0. (Upper curve) 〈Vy〉si=−1 (clockwise
particles) vs A. (Center curve) 〈Vy〉si=1 (counterclockwise particles)
vs A. (Lower curve) The corresponding �y vs A.

In Fig. 9(b) we plot 〈Vy〉 vs FT at specific values of A

for the system in Fig. 9(a) to highlight the different thermal
behaviors. At A = 0.75, which is on the first finite rectification
plateau, 〈Vy〉 decreases monotonically with increasing FT .
At A = 1.05, initially 〈Vy〉 = 0, and 〈Vy〉 gradually increases
with increasing FT to a maximum value before decreasing at
higher thermal force. At A = 2.12, 〈Vy〉 is negative for FT =
0, and as the thermal force increases, there is a rectification
reversal from negative to positive values of 〈Vy〉, which reaches
a maximum and then slowly decreases for larger thermal force.

In Fig. 11 we plot 〈Vy〉s=−1 and 〈Vy〉s=1 vs A for the clock-
wise and counterclockwise swimming particles, respectively,
as well as the difference �y , which indicates that even at
higher temperatures, particles of different chiralities can move
in different directions so that separation is still possible.

V. OTHER GEOMETRIES

We next consider the case of square lattices of L-shaped
barriers, as illustrated in Fig. 1(b). In Figs. 12(a) and 12(b) we
plot 〈Vy〉 and 〈Vx〉 vs A for this system with counterclockwise
moving particles. We find a set of rectification regimes as a
function of A that are similar to those in the system with
the oblique array of L-shaped barriers, although one notable
difference is that for the square lattice it is possible to have dc
motion oriented strictly in the y direction, such as at A = 1.35.
As was the case for the oblique array, the square array produces
some intervals of A where the motion is in the negative x

direction, such as near A = 2.5. When the chirality of the
swimmers is reversed in the square array, Fig. 12(c) shows
that 〈Vy〉 vs A for the clockwise swimmers has the exact
same form as 〈Vx〉 vs A shown in Fig. 12(b) for the
counterclockwise swimmers. Similarly, 〈Vx〉 vs A in Fig. 12(d)
for the clockwise swimmers has the same form as 〈Vy〉 vs
A in Fig. 12(a) for the counterclockwise swimmers. This
symmetry in the velocity response is a result of the higher
symmetry of the square lattice, which causes the combination
of a reversal of the chirality of the swimmer and a 90◦ rotation
of the substrate to appear the same as the unrotated and
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FIG. 12. (Color online) (a) 〈Vy〉 vs A and (b) 〈Vx〉 vs A for the
system with the square L-shaped barrier array shown in Fig. 1(b) for
counterclockwise swimming particles with si = 1. (c) 〈Vy〉 vs A and
(d) 〈Vx〉 vs A for the same system for clockwise swimming particles
with si = −1. The 〈Vy〉 = 0 and 〈Vx〉 = 0 lines are drawn as a guide
to the eye. The curves for (a) and (d) are indistinguishable from each
other, as are the curves in (b) and (c), indicating that the velocity
response is interchanged when the chirality is reversed. The letters
a–f correspond to the values of A at which the orbits in Fig. 13 were
obtained.

unreversed system, swapping the x and y velocity responses.
A similar symmetry is not present in the oblique lattice. The
exchange of the velocity response from 〈Vy〉 to 〈Vx〉 with
the change in chirality makes the square barrier lattice more
convenient than the oblique lattice for particle separation
techniques since a measurement of the motion of one chi-
rality of swimmer immediately determines how a swimmer
of the opposite chirality will move. For example, if one
chirality of swimmer moves strictly in the y direction at a
specific value of A, then the opposite chirality of swimmers
must move strictly in the x direction for the same value of A.
This is illustrated for A = 1.25 in Fig. 13(a), which shows the
counterclockwise swimmers translating in the y direction, and
Fig. 13(b), which shows the clockwise swimmers undergoing
the same motion rotated by 90◦, with a resulting translation in
the x direction. Similarly, at A = 1.95, Fig. 13(e) shows that
the counterclockwise swimmers translate in the y direction
while, in Fig. 13(f), the clockwise swimmers translate in the x

direction with an orbit of the same shape but rotated by 90◦. At
A = 1.75, Figs. 12(a) and 12(b) show that counterclockwise
swimmers have positive velocities in both the x and y

directions with 〈Vy〉 > 〈Vx〉. In the corresponding particle
trajectory in Fig. 13(c), the particle moves further in y than in x

after several cycles. For the clockwise swimmers at A = 1.75,
the motion is similar with positive velocities in both the x

and y directions, but now 〈Vy〉 < 〈Vx〉, and the corresponding
trajectory in Fig. 13(d) is a rotated version of the trajectory in
Fig. 13(c).

For both the square and oblique lattices of L-shaped
barriers, we also find that for intervals of A where there is
no rectification, the application of a dc drift force in one of
the directions can induce locking of the motion in the driven
direction as well as a transverse rectification. There are also
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FIG. 13. (Color online) The trajectories of a single particle in
selected rectification phases for the system in Fig. 12 with a square
lattice of L-shaped barriers. (a) Counterclockwise swimmers at A =
1.25 translate in the y direction. (b) Clockwise swimmers at A = 1.25
translate in the x direction. (c) Counterclockwise swimmers at A =
1.75. (d) Clockwise swimmers at A = 1.75. (e) Counterclockwise
swimmers at A = 1.95 translate in the y direction. (f) Clockwise
swimmers at A = 1.95 translate in the x direction.

smaller regimes of the external drive where the transverse
rectification occurs at different values of the external drive
for particles of different chirality, indicating that this could
provide another method for particle separation.

We have also considered particles moving in a square array
of 1D barriers as illustrated in Fig. 1(c). This system has an
even higher degree of symmetry than the square lattice of
L-shaped barriers, since the barrier lattice now has a rotational
symmetry. In Figs. 14(a) and 14(b) we plot 〈Vx〉 and 〈Vy〉 vs A

for the array of 1D barriers for counterclockwise and clockwise
swimmers, respectively. In both cases we observe rectification
in the x direction while 〈Vy〉 ≈ 0. The rectification regimes
appear at regularly spaced intervals in A, and the rectification is
in the negative x direction for the counterclockwise swimmers
and in the positive x direction for the clockwise swimmers.
Figures 15(a) and 15(b) illustrate this rectification for the
counterclockwise and clockwise swimmers, respectively, at
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FIG. 14. (Color online) Sample with a square array of line barriers
illustrated in Fig. 1(c). (a) 〈Vx〉 (lower dark curve) and 〈Vy〉 (upper
light curve) vs A for counterclockwise swimmers. (b) 〈Vx〉 (upper
dark curve) and 〈Vy〉 (lower light curve) vs A for clockwise swimmers.
For both types of swimmers, 〈Vy〉 ≈ 0 over the entire range of A.

A = 1.85 where the particles interact with two barriers per
cycle. Both chiralities of swimmers execute orbits with the
same shapes, but reversing the chirality flips the orbit by 180◦.
Although the regime where rectification occurs for the 1D
barriers is smaller than that for the L-shaped barriers, the fact
that particles of different chirality move in opposite directions
through the 1D barriers could make the 1D barrier array the
most practical choice for a separation technique.

A. Barrier lengths

The value of A determines the radius of the circle in which
a particle would move in the absence of any barriers, so as
A increases this radius grows linearly. Another length scale
in the system is l, the length of an individual barrier wall.
For the previous results we fixed l = 5. Here we examine
the effect of changing l in the system with a square array
of L-shaped barriers. For a fixed barrier lattice constant a,
adjacent barriers form a continuous wall for l � a and in this
regime no rectification is possible since the particles become
completely trapped. In Fig. 16 we plot 〈Vy〉 and 〈Vx〉 vs A for

x(a)

y

x(b)

y

FIG. 15. (Color online) The trajectories of a single particle in
selected rectification phases for the system in Fig. 15 with a square
lattice of 1D barriers at A = 1.85. (a) Counterclockwise swimmers
translate in the negative x direction. (b) Clockwise swimmers translate
in the positive x direction.
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FIG. 16. (Color online) 〈Vy〉 (solid line) and 〈Vx〉 (dashed line)
for a square array of L-shaped barriers with a fixed barrier lattice
constant of a = 20 and varied barrier wall length l. (a) l = 18.6. (b)
l = 3.0. (c) l = 1.0.

l = 18.6, 3.0, and 1. In general, we find that as l decreases, the
width of the rectification regimes decreases, but within each
rectification regime, the magnitude of |〈Vy,x〉| is unchanged
due to the quantization of the particle orbits. For smaller l, the
onset of rectification shifts to higher values of A, as shown in
Fig. 16(c), and the windows in which rectification occurs are
greatly reduced in extent. In Fig. 17 we plot 〈Vx〉 vs l/a for the
same system with fixed a = 20 at A = 1.25, 1.75, and 2.65.
Here, the rectification can change sign as a function of l/a, and
for smaller values of A, the onset of the rectification occurs at
larger values of l/a. These results show that the rectification
effects for this system are robust for a range of barrier lengths.

VI. SUMMARY

We have examined circularly swimming particles interact-
ing with periodic arrays of L-shaped or rod-shaped barriers.
The particles experience only contact interactions with the
barriers, and when in contact with the barrier, a particle
moves according to its driving force component that is parallel
to the barrier wall. In the absence of barriers, there is no
net dc motion. For oblique and square arrays of L-shaped
barriers, we observe a rich variety of distinct rectifying phases
where dc motion can arise in numerous different directions.
These dynamic phases appear as the swimming radius of the
particles is varied, and the rectifying phases are associated
with periodic orbits in which the particles interact with one
or move barriers during each swimming cycle. At certain
radii values, the particles become localized and exhibit no
net dc rectification. Since the rectification direction varies
with swimming radius, such barrier arrays could be used
to separate particles with different swimming radii but the
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FIG. 17. 〈Vx〉 vs l/a for a square array of L-shaped barriers with a
fixed barrier lattice constant of a = 20 and varied barrier wall length
l. (a) A = 1.25. (b) A = 1.75. (c) A = 2.65.

same chirality of swimming direction. When the chirality is
reversed, the particles rectify in a different set of directions
as the swimming radius varies, implying that particles with
different chirality can also be separated with the barrier arrays.
Our results are robust at finite temperature, and we find that
thermal fluctuations can in some cases enhance the rectification
by increasing the frequency with which the particles interact
with the barriers. For square arrays of L-shaped barriers, the
velocity response of counterclockwise swimming particles is
rotated with respect to that of clockwise swimming particles,
with the y (x) response of the counterclockwise swimmers
becoming the x (y) response of the clockwise swimmers.
This indicates that in a regime where the counterclockwise
swimmers translate strictly in the positive x direction, the
clockwise swimmers move strictly in the positive y direction.
The symmetry of the velocity response could be used to
more readily separate particles of different chiralities. For a
square array of 1D barriers, we find that rectification effects
still occur over reduced ranges of the swimming radius. For
the 1D barrier arrays, the rectification occurs only in one
direction for a given chirality, and particles of the opposite
chirality move in the opposite direction. Our results could be
realized experimentally using the recently studied artificial
circle swimmers, swimming bacteria, or other active matter
particles that move in circles. Beyond self-driven particles, it
should also be possible to create systems of particles that move
in circles due to some type of rotating external field.
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[32] B. M. Friedrich and F. Jülicher, New J. Phys. 10, 123025 (2008).
[33] S. van Teeffelen, U. Zimmermann, and H. Löwen, Soft Matter
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