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Stripe, gossamer, and glassy phases in systems with strong nonpairwise interactions
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We study structure formation in systems of classical particles in two dimensions with long-range attractive
short-range repulsive two-body interactions and repulsive three-body interactions. Stripe, gossamer, and glass
phases are found as a result of nonpairwise interaction.
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I. INTRODUCTION

The problem of stripe and cluster formation is important in a
wide range of physical systems, ranging from soft matter [1–3]
to hard condensed matter [4,5] and magnets [6], to name a few.
A case of stripe formation which has been especially widely
investigated is systems of particles with competing multiscale
two-body interactions. In the context of superconductivity,
a multiscale long-range attractive short-range repulsive in-
teraction is possible between vortices in multicomponent
type-1.5 superconductors [7] (for a review see Ref. [8]). The
recent experimental claims of stripe and gossamer phases of
vortex matter in superconductors [9–11] prompted theoretical
investigations of whether or not such structure formation of
vortex matter in multiband superconductors is possible (see,
e.g., Refs. [12–15]).

Intervortex potentials with short-range repulsive long-range
attractive pairwise interaction only allow formation of simple
clusters in equilibrium situations. In Ref. [12] the question
was raised if, in principle, stripe phases can occur as a result
of nonpairwise intervortex forces. The calculated three-body
intervortex forces in type-1.5 superconductors are repulsive
[12,16] and can certainly be sufficiently strong to result in
stripe formation for kinetic and entropic reasons. However,
since accurate calculations of intervortex many-body forces in
field theory is highly computationally demanding, they have
been investigated in only a small number of cases.

Here we ask the following more general question: what
kind of unconventional ordering patterns can occur in systems
with repulsive nonpairwise interactions? Previous studies of
the structural effects of nonpairwise interactions have shown
that for a short-range attractive, long-range repulsive pairwise
interaction, an attractive or repulsive nonpairwise interaction
had little effect for the ranges studied [17]. In Ref. [18] it
was reported that repulsive pairwise and attractive nonpairwise
interactions have been found to cause clustering of particles
under certain conditions. The works [19,20] simulated driven
crystal phases in two-dimensional systems with three-body
forces. We investigate a model of point particles, with long-
range attractive short-range repulsive two-body interaction,
and repulsive three-body interaction. We will investigate the
structure formation of such a system by tuning the relative
strength of the two- and three-body interactions, as well as
temperature and particle density. We will demonstrate that the
system possesses a rich variety of pattern formation such as
stripe, gossamer, and glassy phases.

II. MODEL

Consider particles interacting with a pairwise potential
which is repulsive at short particle separation and attractive
at longer separation, such that there is a preferred separation
between two particles. In the case of three particles with such a
pairwise interaction, the ground-state configuration will occur
when the particles form an equilateral triangle, with a line
constituting an energetically excited state. In the case of many
particles, the tendency of three particles to form a triangle will
favor a hexagonal symmetry of the structure formation. In this
paper we will begin by considering how the ground state of
three particles is changed by adding a repulsive nonpairwise
interaction upon the two-body interaction and we will then
show how the nonpairwise interaction affects the structure
formation in systems of many particles. As we will see, the
ground state of three particles will for a sufficiently strong
three-body repulsion, be that of a straight line instead of a
triangular configuration, a tendency which will cause a variety
of structural phases in systems of many particles.

The total interaction potential energy U (X) of N classical
point particles with two-body and three-body interactions in
the state X = {r1,r2, . . . ,rN }, is in general given by

U (X) =
N∑

i=1

N∑

j=i+1

u2B(r i ,rj ) +
N∑

i=1

N∑

j=i+1

N∑

k=j+1

u3B(r i ,rj ,rk),

(1)

where u2B corresponds to the pairwise two-body interaction
(which we take to be long-range attractive and short-range
repulsive) and u3B corresponds to the nonpairwise three-body
interaction (taken to be purely repulsive). We model the
pairwise interaction u2B of two particles i,j as a sum of
Gaussians:

u2B(rij )

ε2B
= e−ar2

ij − be−c(rij −d)2

, (2)

where ε2B is a parameter that determines the strength of
the interaction, and rij = |r i − rj | is the distance between
particles i and j .

The three-body interaction potential of three particles i,j,k

is modeled by

u3B(r i ,rj ,rk)

ε3B
= f (r i ,rj ,rk) + f (rj ,r i ,rk) + f (rk,r i ,rj ),

(3)
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FIG. 1. (Color online) Depiction of the model studied. The
contour plot is of the three-body interaction energy experienced by
a particle with position r = (x,y) by two other particles fixed at
positions r1 = (−0.125,0), r2 = (0.125,0) (indicated by black dots),
i.e., a plot of f (r,r1,r2) with f defined in Eq. (4). The model
parameters are ε3B = 1.0, α = 2.0, w = 0.8. The inset shows the
two-body interaction potential (2) against particle separation with
ε2B = 1.0, a = 3.0, b = 0.2, c = 3.0, and d = 0.60.

where the function f is a two-dimensional Gaussian:

f (r i ,rj ,rk) = e−α[(xi−Rx )2+(yi−Ry )2]−�2/w2
, (4)

where R = (Rx,Ry) = (rj + rk)/2 is the center of mass of the
pair (j,k), � = |rj − rk| is the distance between the particles
(j,k), and α, w are model parameters which characterize the
range of the interaction. In Fig. 1 we plot the potentials for
a set of parameters that will, unless otherwise stated, be
used throughout this article. These potentials have a quite
similar form as multiband intervortex potentials in type-1.5
superconductors [12,16].

III. SIMULATION METHOD

We investigate structure formation of the system by using
the Metropolis Monte Carlo (MC) algorithm [21] with parallel
tempering [22,23]. Our system is considered to be a fixed
number of N particles inside an L × L box so that the density
ρ = N/L2. We impose periodic boundary conditions by the
minimum image convention [24]. We take a MC trial move to
be a displacement of a randomly chosen particle by a randomly
chosen distance in a random direction.

In order to quantitatively assess the tendency of the system
to form a stripe phase, we define the parameter

�S =
∣
∣
∣
∣
∣

− 1 + 1

N

N∑

i=1

∣∣∣∣∣

2∑

j=1

exp(i2φij )

∣∣∣∣∣

∣
∣
∣
∣
∣
, (5)

where the sum in j runs over the two nearest neighbors of
particle i, and φij is the angle of the line joining the particles,
with respect to an arbitrary axis. The parameter is constructed
such that it is unity if three particles form a straight line and
vanishes if the particles form an equilateral triangle. For many
particles, �S is unity if they form several straight lines, or close
to unity if they form curved and/or intersecting lines.
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FIG. 2. (Color online) The existence of a stripe phase for N = 3.
Displayed is the difference �E of an equilateral triangle of side � and
a straight equidistant line with spacing �, as a function of � and ε3B.
In the region to the left, where �E > 0, the three-body repulsion is
sufficiently strong to cause the system to energetically favor a line over
a triangle. The inset confirms this by showing the ground-state value
of �S versus ε3B obtained from MC simulations with three particles,
where the ground state is obtained by slow cooling.

IV. RESULTS

We begin by considering the simplest relevant case of
a particle triplet, N = 3, and demonstrate that, at a certain
critical strength of the three-body interaction, it becomes
energetically favorable for the particles to align in a straight
equidistant line rather than an equilateral triangle. We compare
the two cases by computing the total interaction energy of an
equilateral triangle with sides �, as well as for a straight
equidistant line with spacing �. We plot the difference �E =
(Etriangle − Eline)/(ε2B + ε2B) as a function of particle spacing
� and ε3B, shown in Fig. 2. As is seen, there is a region in which
the line configuration is energetically favorable, which is also
confirmed with the MC simulation shown in the inset of Fig. 2.
As can be checked from Eq. (5), for N = 3 the parameter �S

is exactly unity for a straight line, and exactly zero for the case
of an equilateral triangle. In the MC simulation three particles
were given random initial positions and their ground-state
configuration was determined by slowly cooling the system
to T = 0. The ground-state value of �S is then calculated
from the final T = 0 configuration. For each ε3B, the cooling
simulation was repeated several times from which the average
�S was computed.

We now proceed to consider larger systems and the effect
of the strength of the three-body interaction. MC simulation
snapshots for several values of ε3B are shown in Fig. 3 where
the same transition into a stripe phase as in the three-particle
case of Fig. 2 is seen [see Fig 3(e)]. As one increases
ε3B from zero, at first the main effect is to increase the
mean nearest-neighbor distance of the particles [see inset in
Fig. 3(a)], amounting to only a quantitative and not qualitative
difference in the structure formation, as the preferred number
of nearest neighbors of a given particle is still six. For the values
ε3B = 0.0,1.0 [Figs. 3(a) and 3(b)], the two-body interaction
dominates and enforces a hexagonal symmetry. However,
when ε3B surpasses a critical value predicted by the results
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FIG. 3. (Color online) By increasing the three-body interaction
strength ε3B, various phases are induced in systems of many particles.
Displayed in panels (a)–(d) are structure formation for increasing
ε3B at constant density ρ = 0.3 with N = 400. Panel (e) shows
how �S depends on the strength of the three-body interaction for
various densities. The inset of (a) shows normalized distributions of
nearest-neighbor distances for the cases ε3B = 0.0 and ε3B = 1.0.
For comparison, the green triangle in the lower-left corner of panels
(a)–(d) has side equal to the minimum separation of the two-body
potential.

of Fig. 2, there is a qualitative change as the system will first
form a gossamer structure for ε3B = 2.0 [Fig. 3(c)], where the
system prefers particle bonds with only three nearest neighbors
due to a competition of the two- and three-body interactions.
Further increasing the nonpairwise repulsion to ε3B = 5.0
[Fig. 3(d)], a filamentary stripe structure formation appears
as the system prefers having only two nearest neighbors due
to a domination of the three-body interaction. We also note in
Fig. 3(e) that the stripe phase can only arise at low densities
where there is room for the particles to spread into their
filamentary structures.

Consider now the effects of increasing density for the cases
ε3B = 2.0 [where there is competition between the two-body
interaction and the three-body interaction; see Fig. 3(c)], and
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FIG. 4. (Color online) By increasing density for the case of
competing two-body and three-body interactions (left column) and a
dominating three-body interaction (right column), various structural
phases are obtained. Here N = 400.

ε3B = 5.0 [where the three-body interaction dominates; see
Fig. 3(d)]. Results are given in Fig. 4. For the case ε3B = 2.0
(left column) the gossamer-like clusters will, when increasing
density, be pushed together into a hexagonal lattice. For the
case ε3B = 5.0 (right column) the filamentary stripe structures
will first be squeezed into a gossamer structure, where the
pressure forces some particles to accept having three nearest
neighbors rather than the preferred value of two. Further
increasing the density enhances this frustration and creates
a disordered state—a tendency we will investigate in the next
paragraph.

By comparing Figs. 4(e) and 4(f), it is evident that at
high densities a relatively weak three-body repulsion yields
a symmetric lattice and a strong three-body interaction a
structurally disordered state. This suggests that a strong non-
pairwise repulsion creates a glassy phase at high densities in
the sense that the system is very unlikely to find its ground state
during a fast cooling [25]. We investigate this by performing
long simulations with parallel tempering to find a structurally
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FIG. 5. (Color online) A glassy phase occurs for a strong three-
body repulsion at high density. Here ρ = 0.9 with N = 72. Panels
(a) and (b) show configurations for ε3B = 1.0 obtained by parallel
tempering and fast cooling, respectively. Panels (c) and (d) are for
ε3B = 5.0. Panel (e) shows the evolution of the total internal energy
per particle during four fast-cooling simulations for each system,
with ground-state energies obtained by parallel tempering shown with
dashed lines.
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FIG. 6. (Color online) Thermal effects of the stripe phase. Here
ε3B = 5.0, ρ = 0.1 with N = 400. Displayed in panel (a) are the
thermally averaged total internal energy U per particle N (with two-
and three-body contributions as dashed and dotted lines, respectively)
and �S against temperature T . The lower panels are three snapshots
of the system in the low-, intermediate-, and high-temperature phases.

symmetric ground state and compare with states obtained from
a T = 0 MC simulation from a random initial configuration
(which we consider to be a fast cooling). Results are given
in Fig. 5. As seen in Fig. 5(e), the system converges to the
ground state in the case of fast cooling for ε3B = 1.0, indicating
a nonglassy system. However, for ε3B = 5.0, fast cooling
simulations consistently fail to produce the ground state. Thus
a glassy phase occurs for strong nonpairwise repulsion at high
densities, as the particles experience frustration preventing
them to find their ground state, which enforces disorder in the
structure formation of the system.

Next, we consider melting properties of the stripe phase
where the system is dilute and has strong three-body inter-
actions. As seen in Fig. 6, the system undergoes a melting
transition as temperature is increased, associated with the
loss of stripe ordering quantified by �S. When increasing
temperature, individual particles can dissociate from their
stripes, causing the chains to be broken and shorter on average,
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FIG. 7. (Color online) Decreasing the two-body minimum by
decreasing the parameter b does not induce a clear stripe phase for
the parameters studied. Panels (a)–(d) show structure formation for
ρ = 0.1, N = 400, ε3B = 1.0, when decreasing b. Panel (e) shows
how �S depends on b.
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as seen in Fig. 6(c), a process which continues until the system
is melted [see Fig. 6(d)]. In the melted phase the three-body
contribution to the total interaction energy diminishes and
almost vanishes [see Fig. 6(a)].

Finally, rather than varying the strength of the three-body
interaction ε3B we consider decreasing the depth of the mini-
mum of the two-body potential characterized by the parameter
b in Eq. (2), while keeping the strength of the three-body
interaction constant. Results are given in Fig. 7. Decreasing the
minimum b amounts to a weaker long-range attraction of the
particles and can change the structure formation by creating
voids, as seen in Fig. 7(b), or stripe-like tendencies as seen
in Figs. 7(b), 7(c), and 7(d). However, no clear stripe phase
[compare with Fig. 4(b)] with a significantly high value of
�S occurs, as seen in Fig. 7(e). In the stripe phase, the
two-body interaction is what binds the particles in the chains,
which means that, as the long-range attraction of the two-body
interaction weakens, the particles in the chains become less
tightly bound, which in turn counteracts the tendency of the
three-body interaction to cause a stripe phase.

V. CONCLUSIONS

In conclusion, we have demonstrated that for a system
of classical particles in two dimensions with a two-body
short-range repulsive long-range attractive interaction favoring
clustering with hexagonal symmetry, an additional repul-
sive three-body interaction can significantly alter the structure
formation. The form of the potentials which we investigated
is inspired by the form of interaction between vortices in

type-1.5 superconductors. For weak three-body repulsions,
the difference is only quantitative as the mean nearest-
neighbor separation of the particles becomes larger, but a
sufficiently strong three-body repulsion can cause a qualitative
change as the system enters new phases. In the stripe phase,
the ground state of a triplet is a straight equidistant line
rather than an equilateral triangle; a tendency which can be
quantified by the parameter �S defined in Eq. (5). When
varying the relative strengths of the pairwise and nonpairwise
potentials, three phases are found: one where the pairwise
interaction dominates which yields hexagonal symmetry in
the structure formation, one where the nonpairwise interaction
dominates which yields a stripe phase, and one phase where
there is competition between the pairwise and nonpairwise
interactions, which yields a phase of gossamer structure
formation. At high densities, a strong nonpairwise interaction
causes glassy behavior of the system as the particles experience
frustration and will not easily find their ground state.
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[1] G. Malescio and G. Pellicane, Nat. Mater. 2, 97 (2003).
[2] M. A. Glaser, G. M. Grason, R. D. Kamien, A. Košmrlj, C. D.
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