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Dynamic equivalences in the hard-sphere dynamic universality class
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We perform systematic simulation experiments on model systems with soft-sphere repulsive interactions to test
the predicted dynamic equivalence between soft-sphere liquids with similar static structure. For this we compare
the simulated dynamics (mean squared displacement, intermediate scattering function, α-relaxation time, etc.)
of different soft-sphere systems, between them and with the hard-sphere liquid. We then show that the referred
dynamic equivalence does not depend on the (Newtonian or Brownian) nature of the microscopic laws of motion
of the constituent particles, and hence, applies independently to colloidal and to atomic simple liquids. Finally,
we verify another more recently proposed dynamic equivalence, this time between the long-time dynamics of
an atomic liquid and its corresponding Brownian fluid (i.e., the Brownian system with the same interaction
potential).
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I. INTRODUCTION

At first sight, the macroscopic dynamics of supercooled
liquids seems to be strongly material specific, with no universal
character at all. This is evidenced, for example, by the
great diversity of molecular glass formers (ionic, metallic,
organic, polymeric, etc.), giving rise to an overwhelmingly
rich phenomenology [1–5]. One can easily understand this
lack of universal behavior in terms of the wide differences in
the materials’ structure and composition, the masses of their
individual atoms, their preparation protocol, etc. Of course,
the scenario becomes even more complex when one attempts
to include colloidal systems in the discussion.

The formation of colloidal glasses and gels has been the
subject of intense study during the last two decades [6], and
it is a widespread notion that the phenomenology of both, the
glass transition in thermally driven molecular glass formers,
and the dynamic arrest transition in density-driven hard-sphere
colloidal systems, might share a common underlying universal
origin [7]. Two relevant conceptual issues, however, must
be understood in order for this expectation to have a more
fundamental basis. The first one requires us to spell out
the manner in which undercooling an atomic liquid might
be equivalent to overcompressing a colloidal liquid. The
second is to clarify under what conditions the macroscopic
dynamics of both classes of systems could be expected to
be equivalent, given the fact that the microscopic dynamics
is Newtonian in atomic liquids and Brownian in colloidal
fluids.

The answer to these two questions is highly relevant since it
will allow us to understand which aspects of the macroscopic
dynamics of a given system are universal and which ones
are system specific. These two issues have been addressed
using computer simulation methods on well-defined model
systems. For example, interesting scalings of the equilibrium
dynamics of simple models of soft-sphere glass formers have
been exposed by systematic computer simulations [8,9], which
provide an initial clue to the possible physical origin of the
equivalence between the process of cooling and the process of

compression. Similarly, also using computer simulations, it has
been partially corroborated that standard molecular dynamics
will lead to essentially the same dynamic arrest scenario as
Brownian dynamics for a given model system (i.e., same pair
potential) [10–12].

From the theoretical side it would be desirable to have
a unified description of the macroscopic dynamics of both
colloidal and atomic liquids, which explicitly predicts the
aspects of the macroscopic dynamics that are expected to be
universal. These topics might be addressed in the framework
of a theory such as the mode coupling theory of the ideal glass
transition [13]. In fact, the similarity of the long-time dynamics
of Newtonian and Brownian systems in the neighborhood of
the glass transition, for example, has been studied within this
theoretical framework [14]. A number of issues, however, still
remain open [11,15].

The present paper is part of an effort aimed at addressing
these two fundamental issues within a general theoretical
framework, namely, the generalized Langevin equation (GLE)
formalism [16–18]. This formalism was employed in the con-
struction of the self-consistent generalized Langevin equation
(SCGLE) theory of colloid dynamics [19–21], eventually
applied to the description of dynamic arrest phenomena
[22–24], and more recently, to the construction of a first-
principles theory of equilibration and aging of colloidal glass-
forming liquids [25,26].

When applied to model systems with soft repulsive inter-
actions [27], the SCGLE theory of colloid dynamics, together
with the condition of static structural equivalence between
soft- and hard-sphere systems, predicts the existence of a
hard-sphere dynamic universality class, constituted by the
soft-sphere systems whose dynamic parameters, such as the
α-relaxation time and self-diffusion coefficient, depend on
density, temperature, and softness in a universal scaling fashion
[28], through an effective hard-sphere diameter determined
by the Andersen-Weeks-Chandler [29,30] criterion. These
predictions provide a more fundamental explanation of the
scalings previously exhibited by computer simulations [8,9],
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and point to the physical basis of the dynamic equivalence
between cooling and compressing.

The main purpose of this paper is to report the results of,
and to provide detailed technical information on, a number
of simulation experiments performed with the purpose of
testing this density-temperature-softness scaling in the referred
dynamic universality class. An illustrative selection of these
results were advanced in a recent Brief Communication [28].
The second main purpose of the present paper is to perform
the pertinent simulation experiments to test a second relevant
prediction of the SCGLE theory, which addresses the second
of the two fundamental issues mentioned above, namely,
the macroscopic dynamic equivalence between atomic and
colloidal liquids. As it happens, the SCGLE theory of colloid
dynamics is being extended to describe the dynamics of simple
atomic liquids [31,32]. The scenario that emerges from these
theoretical developments include well-defined scaling rules
that exhibit the equivalence between the dynamics of colloidal
fluids and the long-time dynamics of atomic liquids. Here we
test these scalings by comparing the simulation results for
a given model system using both, molecular dynamics and
Brownian dynamics simulations.

Thus, the present paper is essentially a report of a set
of systematic computer simulations. In Sec. II we define
the model systems considered in our study and provide the
basic information on the simulation methods employed. In
Sec. III we review the concept of static structural equivalence
between soft- and hard-sphere fluids, and explain how this
concept is employed to map the static structure of any soft-
sphere liquid onto the properties of an effective hard-sphere
liquid. In Sec. IV we review the extension of this structural
equivalence to the dynamic domain and present the simulation
results that validate the accuracy of the resulting dynamic
equivalence between soft- and hard-sphere liquids. We first
verify that this dynamic equivalence is exhibited by our
Brownian dynamics simulations, and then confirm that the
same dynamic equivalence is also observed in the results of
our molecular dynamics simulations. In Sec. V we explain
the correspondence between the dynamics of colloidal fluids
and the long-time dynamics of atomic liquids, and verify that
the predicted scalings are indeed satisfied by our molecular
and Brownian dynamics simulations. At this point we have
to mention that the present study only involves Brownian
dynamics simulations that completely ignore the effects of
hydrodynamic interactions, which have an enormous practical
relevance in concentrated colloidal fluids. In the last section,
Sec. VI, besides summarizing the main results of this paper,
we explain that for the systems with interaction potential in
the hard-sphere dynamic universality class, these effects can
be taken into account through the value of the short-time
self-diffusion coefficient, thus expanding the applicability of
the scalings discussed here.

II. METHODOLOGICAL ASPECTS

In this section we describe the most relevant methodological
aspects of this work. This includes information on the
numerical simulation methods and on the theoretical concepts
and approaches employed.

A. Model potentials

Let us consider a model liquid formed by N spherical
particles in a volume V which interact through a soft repulsive
pair potential u(r) with tunable softness. We intend to study the
interplay of the effects of the number density (or concentration,
in the case of colloidal liquids) n ≡ N/V , temperature T , and
softness, represented by some parameter denoted generically
as ν. There is a variety of analytic proposals for such tunable
soft potential [8,9], but for concreteness here we shall refer
explicitly to three specific representative model systems. The
first is the truncated Lennard-Jones (TLJ) potential,

u(ν)(r) = ε

[(
σ

r

)2ν

− 2

(
σ

r

)ν

+ 1

]
�(σ − r), (2.1)

in which �(x) is the unit step function. The positive parameter
ν controls the softness of the interaction, with the limit ν → ∞
corresponding to the hard-sphere potential between particles
of diameter σ . For fixed ν, the state space of this system is
spanned by the dimensionless temperature T ∗ ≡ kBT /ε and
volume fraction φ = πnσ 3/6.

The second representative model system we shall refer to
is the inverse power-law (IPL) potential

u(r) = ε(σ/r)2ν, (2.2)

commonly used to model hard-sphere effects. The state
space of the IPL model system is spanned by a single
dimensionless parameter, namely [12,30], nσ 3(ε/4kBT )3/2ν .
Thus, the thermodynamic and structural properties of systems
with the same value of this parameter must be expected to
be identical within the corresponding scaling. In order to
compare with the other model potentials employed in this
paper, however, here we shall refer independently to the
dimensionless temperature T ∗ ≡ kBT /ε and volume fraction
φ = πnσ 3/6. The fundamental difference between the IPL
potential and the TLJ interaction is that the latter is always
short ranged.

The third interaction model that we shall refer to is defined
by the hard-sphere plus repulsive Yukawa (HSY) potential,
frequently used to model the screened electrostatic repulsions
between charged colloidal particles [33]. This is defined here as

u(r) = ε

[
exp[−z(r/σ − 1)]

(r/σ )

]
. (2.3)

For fixed screening parameter z, the state space of this
system is also spanned by the volume fraction φ = πnσ 3/6
and the dimensionless temperature T ∗ ≡ kBT /ε (sometimes,
however, we shall also refer to the repulsion intensity parame-
ter K ≡ 1/T ∗ = βε). The inverse screening length z controls
the range of the potential, and for our purpose, we may consider
that it plays the role of the softness parameter. Typical values
for these parameters representing real suspensions of highly
charged colloidal suspensions at low ionic strength in the
dilute regime are K = 554, z = 0.149, and φ of the order of
10−4 [34]. We shall use these as illustrative values, along with
K = 100 and z = 1.0. Figure 1 plots these interaction models
for some specific values of these parameters to illustrate the
variety of interactions considered.
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FIG. 1. (Color online) Illustration of the truncated Lennard-Jones
(TLJ), inverse power law (IPL), with T ∗ = 1 and hard-sphere plus
repulsive Yukawa (HSY) potentials, with K = 100 and K = 554.

B. Simulations

Molecular dynamics (MD) simulations using the velocity-
Verlet algorithm [35] were conducted for the model liquids
above, formed by N spherical particles of mass M in a
simulation box of volume V. The results are expressed in the
well known Lennard-Jones units, where M , σ and ε are taken
as the units of mass, length, and energy, respectively, and
tMD =

√
Mσ 2/kBT is the corresponding time unit.

For Brownian dynamics (BD) simulations we follow the
prescription proposed by Ermak and McCammon [35] to
evolve the positions of the particles in the simulation box.
Thus, a given particle at position �r(t) and under the force �F (t)
is displaced in the α direction according to

rα(t + 
t) = rα(t) + βD0Fα(t)
t + Rα (2.4)

where D0 is the short-time self-diffusion coefficient, 
t is
the time step, and Rα is a random displacement extracted
from a Gaussian distribution with zero mean and variance
2D0
t . Taking σ as the length unit and ε as the energy unit,
tBD ≡ σ 2/D0 becomes the natural time unit.

In both cases, the simulations were conducted with N =
1000 particles in a cubic simulation box with periodic
boundary conditions. The initial configurations were generated
using the following procedure. First, particles were placed
randomly in the simulation box at the desired density, such
that the maximum overlap between particles was in the range
0.65σ − 0.8σ . To relax this initial configuration and reduce
or eliminate the overlap between the particles we tried two
methods. In one of them we perform Monte Carlo cycles [36]
at a high temperature, and then decrease the temperature
for several steps until the original temperature was restored.
In the other method we uniformly expand the system by
increasing the length of the simulation box by a factor of
at least 1.5. Then, we run MD or MC cycles while decreasing
the simulation box until the original value was reached. We
checked that these two methods produce equivalent results.
Once the initial configuration is constructed, several thousand

cycles are performed to lead the systems to equilibrium,
followed by at least two million cycles where the data is
collected. In the case of MD simulations, temperature was kept
constant by simple rescaling of the velocities of the particles
every 100 time steps [35].

Several structural and dynamic properties are calculated
from the equilibrium configurations generated in the sim-
ulations. In particular, the radial distribution function g(r)
was calculated using the standard approach [35]. The static
structure factor S(k) can then be obtained as

S(k) = 1 + 4πn

∫
[g(r) − 1]

sin(kr)

kr
r2dr. (2.5)

Alternatively, S(k) can be calculated directly from the posi-
tions of the particles in the simulation box [30].

Time correlation functions, like the mean-squared displace-
ment (MSD)

W (t) = 〈[
�r(t)]2〉/6, (2.6)

and the self-intermediate scattering function FS(k,t),

FS(k,t) =
〈

1

N

N∑
j=1

exp[−i�k · �
rj (t)]

〉
, (2.7)

where 
�rj = �rj (t) − �rj (0), were calculated using the efficient,
low-memory algorithm proposed in Ref. [37].

Crystallinity of the systems was monitored through the
order parameters Ql , especially Q6, defined as

Ql =
[

4π

2l + 1

l∑
m=−l

|Qlm|2
]1/2

, (2.8)

where Qlm is basically the average, over all particles, of the
mean spherical harmonics Ylm(r̂ij ) established between each
particle i and its close neighbors [j = 1, . . . ,Nb(i)], where
Nb(i) is the number of neighbors of the particle [38]. Since
in this paper we are interested only in the amorphous liquid
state, when the simulations of monodisperse systems exhibited
crystalline order, thus indicating that the corresponding vol-
ume fraction was beyond the freezing point, we discarded that
monodisperse run, and performed an alternative simulation
introducing size polydispersity to frustrate crystallization.
Polydispersity is handled following previous work [39], where
the diameters of the N particles are taken to be evenly
distributed between σ̄ (1 − w/2) and σ̄ (1 + w/2), with σ̄

being the mean diameter. We consider the case w = 0.3,
corresponding to a polydispersity P = w/

√
12 = 0.0866.

Let us emphasize that this procedure was followed in both
molecular and Brownian dynamics simulations, and that in
both cases only size polydispersity was introduced, leaving
all the other parameters unchanged (such as the mass or the
short-time self-diffusion coefficient of the particles).

At this point, it is important to emphasize that when the
system remains in its metastable liquid phase, the equilibration
time increases enormously as the system approaches its
dynamic arrest transition (see the detailed discussion in
Ref. [39]). This means that as the volume fraction increases
in the metastable region, the initial equilibration period will
eventually be insufficient, and will need to be adjusted to
make sure that the system indeed equilibrated properly, as
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FIG. 2. (Color online) MSD from MD simulations TLJ systems
with ν = 15, T ∗ = 1, and the volume fraction φ = 0.1,0.4,0.5,0.6,
and 0.65. The most concentrated sample (φ = 0.65) is polydisperse.

recommended in Ref. [39]. The present study, however, is
not aimed at studying the equilibration process by itself, and
hence, we shall avoid approaching too closely the actual
glass transition, so as to focus our attention on the subject
of this work, namely, on the dynamic equivalence between
soft-sphere liquids.

To illustrate the end result of this procedure, in Fig. 2 we
show the corresponding MSD for TLJ system with ν = 15
at T ∗ = 1 for volume fractions φ = 0.1,0.4,0.5,0.6,0.65.
These results fully cover the stable fluid phase, with the
metastable liquid regime represented by the polydisperse
system with volume fraction φ ≡ V −1 ∑N

i=1 πσ 3
i /6 = 0.65

(whose monodisperse counterpart is already highly ordered).
In all samples the MSD clearly exhibits the ballistic and
diffusive time regimes typical of atomic liquids.

III. SOFT-HARD STATIC EQUIVALENCE

Although simulations are the main methodology employed
here to generate the static and the dynamic information of
the model systems above, the analysis of this information will
rely on a few theoretical notions, most notably the predicted
static and dynamic equivalence between soft-sphere and hard-
sphere liquids. In this analysis, however, we shall recurrently
need the exact structural properties of the fluid of hard-spheres
of diameter σ and volume fraction φ, embodied in its RDF
gHS(r/σ ; φ) or in its static structure factor SHS(kσ ; φ). For
these structural properties a virtually exact representation is
provided by the Percus-Yevick (PY) [40,41] approximation
with its Verlet-Weis correction, defined as [42]

gHS(r/σ ; φ) = g(PY)(r/σw; φw), (3.1)

and

SHS(kσ ; φ) = S(PY)(kσw; φw), (3.2)

with the parameters φw and σw defined as

φw ≡ φ − φ2/16, (3.3)

and

σw ≡ σ (φw/φ)1/3. (3.4)

The functions g(PY)(x; φ) and S(PY)(y; φ) are the solution
of the Ornstein-Zernike equation with PY closure for the
HS fluid provided, for example, by Wertheim [41] as easily
programmable analytic expressions. The resulting gHS(r/σ ; φ)
will be employed recurrently in the practical implementation
of the concept of static structural equivalence between soft-
and hard-sphere systems. This notion was first introduced as
an essential aspect of the equilibrium perturbation theory of
liquids [29,30,42].

The equilibrium static structure of the generic soft-sphere
system of the type discussed here is represented by the radial
distribution function (RDF) g(r; n,T ; σ,ε,ν), also written in
terms of dimensionless variables as g(r/σ ; φ,T ∗,ν), with
T ∗ ≡ kBT /ε and φ = πnσ 3/6. The physical notion behind
the principle of static equivalence is that at any state point
(φ,T ∗,ν), this soft-sphere system is structurally identical
to a hard-sphere system with a state-dependent effective
hard-sphere diameter σHS and effective number density nHS.
This means that for any state point (φ,T ∗,ν) one can find
a diameter σHS = σHS(φ,T ∗,ν) and a number density nHS =
nHS(φ,T ∗,ν) such that g(r; n,T ; σ,ε,ν) ≈ gHS(r; nHS,σHS),
where gHS(r; nHS,σHS) is the radial distribution function of
the HS system, also written as gHS(r/σHS; φHS), with φHS =
πnHSσ

3
HS/6. This condition for structural equivalence can thus

be written in terms of dimensionless variables as

g

(
r

σ
; φ,T ∗,ν

)
≈ gHS

(
r

σHS
; φHS

)
, (3.5)

with

φHS = π

6
nHSσ

3
HS = λnλ

3
σφ, (3.6)

where λσ is just the state-dependent effective hard-sphere
diameter in units of σ ,

λσ (φ,T ∗,ν) ≡ σHS(φ,T ∗,ν)/σ, (3.7)

and λn is the state-dependent HS particle number density in
units of n,

λn(φ,T ∗,ν) ≡ nHS(φ,T ∗,ν)/n. (3.8)

Thus, the condition for structural equivalence can be written
in scaled form as

g

(
r

σ
; φ,T ∗,ν

)
≈ gHS

(
λ−1

σ

r

σ
; λnλ

3
σφ

)
. (3.9)

This equivalence condition can be used in several manners.
The first one is to determine the parameters σHS and nHS

that correspond to a given soft-sphere system at a given
state, i.e., to determine the functions σHS = σHS(φ,T ∗,ν)
and nHS = nHS(φ,T ∗,ν). This might be done theoretically,
using specific assumptions. For example, one could assume
that nHS = n and that σHS is φ independent, with σHS =
σHS(T ∗,ν) determined by means of an approximate version
of the equivalence condition in Eq. (3.5). For example, the
approximation employed in the so-called blip-function method
reads in general [30]∫ ∞

0
4πr2[e−βu(r) − e−βuHS(r)]dr = 0, (3.10)
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which for the TLJ system can be written as

λ3
σ (T ∗,ν) = 1 − 3

∫ 1

0
dxx2exp

[
− 1

T ∗

(
1

x2ν
− 2

xν
+ 1

)]
.

(3.11)

Evaluating λσ (T ∗,ν) determines σHS as σHS(T ∗,ν) = σλσ

(T ∗,ν).
Naturally, this or any other approximate scheme has a

limited range of validity. For example, as we shall see
shortly, the blip-function method is reasonably accurate for
finite-range, moderately soft potentials, such as the TLJ liquid
with softness parameter ν � 6, but it fails completely for
systems with much softer and longer-ranged potentials, such
as the HSY fluid with K = 554, z = 0.149, and φ of the order
of 10−4. Thus, it is important to search for a more robust
method to determine the functions σHS = σHS(φ,T ∗,ν) and
nHS = nHS(φ,T ∗,ν).

One possible method, proposed in Ref. [43], is to determine
the diameter σHS = σHS(φ,T ∗,ν) and the number density
nHS = nHS(φ,T ∗,ν) of the HS system whose radial distribution
function provides the best overall fit of the exact RDF
g(r; n,T ; σ,ε,ν) of the soft-sphere liquid previously deter-
mined, for example, by computer simulations. This method
is illustrated here in Fig. 3, where we plot simulation data for
the RDF of three soft-sphere model potentials (TLJ, IPL, and
HSY). Figure 3(a), for example, plots the RDF g(r/σ ; φ,T ∗,ν)
of the TLJ liquid with ν = 6, T ∗ = 1, and φ = 0.70. Thus, we
first determine the effective hard sphere volume fraction φHS by
plotting the exact RDF gHS(r/σ ; φHS) of Eq. (3.1) for various
volume fractions until we identify the value of φHS such that
the height of its second maximum matches the height of the
second maximum of the soft sphere RDF (≈ 1.37, indicated
by the thin horizontal line in the figure). The solid curve is the
resulting hard sphere RDF.

This procedure assigns a unique value of φHS to that set
of values of the parameters (φ,T ∗,ν), i.e., it determines the
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FIG. 3. (Color online) Radial distribution function for (a) a TLJ
liquid with ν = 6, T ∗ = 1, and φ = 0.70; (b) an IPL liquid with
ν = 3, T ∗ = 1; and φ = 1.2, and (c) a HSY liquid with K = 554,
z = 0.149, and φ = 2.8 × 10−3. All the systems share the same φHS =
0.49. Solid lines corresponds to the Percus-Yevick approximation for
HS with the Verlet-Weis correction.

function φHS = φHS(φ,T ∗,ν). As observed in Fig. 3(a), the
height of these two second maxima of g(r) coincide, but
their positions differ. One finds, however, that a simple linear
rescaling r → λ−1

σ r of the radial coordinate of this HS RDF,
prescribed by the equivalence condition in Eq. (3.9), suffices
to match the position of both second maxima. This rescaling
determines the parameter λσ , and hence, also the effective
hard-sphere diameter σHS at the state point (φ,T ∗,ν) as
σHS = σλσ (φ,T ∗,ν). Finally, the function nHS = nHS(φ,T ∗,ν)
is determined by

nHS = n

(
φHS

φ

)(
σ

σHS

)3

. (3.12)

Following this procedure, in the illustrative example in
Fig. 3(a) we find φHS = 0.49 and λσ = σHS/σ = 0.88; and
therefore λn = nHS/n = 1.01. These numbers differ only
slightly from the results of the blip-function method, which
assumes λn = 1 and determines that λσ = 0.888 and φHS =
0.49, a comparison that illustrates the accuracy of the blip-
function method for the TLJ potential with ν = 6. This
accuracy improves for more rigid potentials and deteriorates
for softer and longer-ranged ones.

For example, Fig. 3(b) reports an identical exercise for
the IPL potential with ν = 3, T ∗ = 1, and φ = 1.2, whose
RDF is represented by the symbols in the figure. Here again
the solid line is the RDF of the equivalent HS system as a
function of r/σ and the dashed line is the same RDF, but
now plotted as a function of r/σHS = λ−1

σ r/σ , to illustrate the
overall agreement between the RDF of the soft-sphere system
and that of the equivalent HS system. This method determines
the effective HS parameters φHS = 0.49, λσ = 0.71, and λn =
0.9679. In contrast, the blip-function method, which assumes
λn = 1, determines in this case the value λσ = 1.209 and the
unphysical HS volume fraction φHS = 2.41.

Finally, Fig. 3(c) reports the same exercise but for a much
softer and longer-ranged interaction, namely, the HSY liquid
with K = 554, z = 0.149, and φ = 2.8 × 10−3. As before, the
solid line is the RDF of the equivalent HS system as a function
of r/σ . In this case, the resulting effective HS parameters
are φHS = 0.49, λσ = 5.55, and λn = 1.0036. In contrast,
the blip-function method (λn = nHS/n = 1) determines the
completely unphysical values λσ = σHS/σ = 27.6 and φHS =
63.4. Thus, the first conclusion of these three illustrative
examples is that the assumption that λn ≈ 1, employed in
the blip-function method above, may indeed be a good
approximation in the circumstances illustrated by these three
examples corresponding to the HS liquid at φHS = 0.49. It
is then the blip-function determination of the hard-sphere
diameter through Eq. (3.11) that is not an accurate prescription.

Let us mention that in each of the three cases corresponding
to Figs. 3(a)–3(c) we chose to plot the two equivalent RDFs
as a function of the radial distance r measured in the length
unit σ of the respective system. This comparison, however, can
also be done using instead the effective HS diameter σHS as the
common unit length, as it is done in Fig. 3(d). There we note, in
addition, that except for the shape of g(r) near contact (which
is highly system specific), the simulation data of the three
systems are actually coincident, and that we only have a single
HS RDF, corresponding to φHS = 0.49 and represented by the
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solid line in Fig. 3(d). This coincidence illustrates another
important feature, namely, that different soft-sphere systems
that share the same static structure also share the same effective
HS volume fraction.

This figure also illustrates the fact that the structural
equivalence condition in Eq. (3.5) can also be used in an
inverse manner, i.e., to identify the state of a given soft-sphere
system whose structure matches the structure of a prescribed
HS system. In reality, what we actually did for each of the
three soft-sphere model systems in the examples in Fig. 3 was
to search for the state whose structure matched the structure of
the HS liquid with the prescribed volume fraction φHS = 0.49.
For this we varied the soft-sphere density (or volume fraction
φ), keeping the temperature fixed, until meeting this condition.

In reality, the procedure just described to determine the
equivalent hard-sphere system of a given soft-sphere model
is not limited to circumstances in which the condition λn =
nHS/n ≈ 1 is satisfied, as in the last three examples. For
example, if we consider again the same systems discussed
in Fig. 3, but at states that correspond to effective hard-sphere
volume fractions lower than 0.49, the structural equivalence
will have the same degree of accuracy as the examples in
Fig. 3, even though the condition nHS ≈ n may definitely no
longer be satisfied. To illustrate the degree of the possible
departures of the ratio nHS/n from unity, in Fig. 4 we plot
nHS/n for the TLJ, IPL, and HSY models, not as a function of
the respective volume fractions of each model system, but
as a function of the effective HS volume fraction, which
is a common indicator of the effective degree of packing
of the three systems. There we see that the TLJ system,
whose pair interaction is always short ranged, virtually always
satisfies the condition λn = nHS/n ≈ 1, whereas the largest
departures from this condition are observed in the liquids with
longer-ranged potentials, such as the IPL and HSY systems at
low effective volume fractions.

Another important observation is that for the model interac-
tion potentials employed in the present discussion, the height
of the second maximum of the RDF is not the only simple
structural order parameter. In reality, some other properties
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FIG. 4. (Color online) Ratio nHS/n as a function of the volume
fraction of the equivalent HS systems for LJT, IPL, and HSY.
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FIG. 5. (Color online) Static structure factors for three TLJ and
one HSY soft-sphere systems.

that derive from the general equivalence condition in Eq. (3.5)
might serve as alternative structural order parameters. One of
them is the main peak of the static structure factor S(k), whose
height Smax allows us to determine φHS, and whose rescaled
position kmax determines the effective HS diameter σHS. This
is illustrated in Fig. 5, which exhibits the structure factors of
four soft-sphere systems, plotted as a function, in one case of
kσ (insets) and in the other case of kσHS (main figure).

Since our study will include densities higher than the freez-
ing density of the monodisperse fluid, we need to introduce
polydispersity in our simulations and this requires us to adapt
the previously described procedure to polydisperse systems.
Although polydispersity will not affect dramatically the most
relevant dynamic properties, it happens to have a profound
effect on the thermodynamic and structural properties, in
particular on the height of the second peak of g(r) and of
the main peak of S(k). These structural order parameters
are found to decrease with polydispersity (for fixed volume
fraction), and this requires us to adapt the method described
above, to identify in a simple manner the effective hard-sphere
system that corresponds to a given polydisperse soft-sphere
liquid. The adapted procedure is the following. Consider a
given soft-sphere system with (size) polydispersity P and
mean diameter σ , whose overall RDF g(r/σ ; φ,T ∗,ν) has been
measured or simulated. Within a discretized representation
the probability of having a diameter σi (i = 1,2, . . . ,ν) is
p(σi) = xi , with xi = ni/n being the molar fraction of species
i. Under these circumstances g(r/σ ; φ,T ∗,ν) is defined as
g(r/σ ; φ,T ∗,ν) ≡ ∑ν

α,β=1
√

xαxβgαβ(r), with gαβ(r) being
the partial radial distribution functions. As in the monocom-
ponent case, determining the equivalent polydisperse hard-
sphere system whose overall RDF gHS(r/σHS; φHS) matches
the simulated g(r/σ ; φ,T ∗,ν), leads to the determination of
the total effective HS volume fraction φHS and the mean HS
diameter σHS.

To implement this procedure we need to determine the
partial RDFs of a multicomponent hard-sphere system at
arbitrary total volume fraction φHS, but constrained to have
the same polydispersity P as the soft-sphere system. For this,
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we represent the equivalent polydisperse HS system as an
equimolar binary mixture of hard spheres of diameters σ1 =
σHS(1 − P ) and σ2 = σHS(1 + P ) with σHS being the mean HS
diameter. The overall RDF gHS(r) of this system is given by
gHS(r) ≡ [gHS

11 (r) + 2gHS
12 (r) + gHS

22 (r)]/2, with gHS
αβ (r) being

the corresponding partial RDFs, which are obtained from
the analytic solution of the multicomponent Percus-Yevick
approximation [44,45], complemented again with the VW
correction [46], i.e., φHS → φw, with φw ≡ φHS − φ2

HS/16, as
in Eqs. (3.1)–(3.4), with σ and φ reading σHS and φHS. The
resulting HS structure factors will be denoted as PY-VW. As
in the monocomponent case, the RDF gHS(r; φHS) at arbitrary
φHS is then compared with the soft-sphere simulation results
until determining the value of φHS whose gHS(r; φHS) matches
the height of the second peak of the simulated RDF of the
polydisperse soft-sphere system.

We illustrate this structural equivalence using a poly-
disperse version of the TLJ model with different softness,
ν = 6 and ν = 15, but with densities corresponding to the
same effective HS volume fraction φHS = 0.5, and the same
polydispersity P = 0.0866 (which is large enough to inhibit
the crystallization of hard spheres up to very high volume
fractions [39]). Figure 6 presents the simulation results for the
total RDF g(r/σ ; φ,T ,ν), along with the theoretical data for
gHS(r; φHS) of the corresponding HS binary mixture. As we
can observe in the inset, the scenario is quite similar to the one
for monodisperse systems. Furthermore, this inset also reveals
that using the effective HS diameter to scale the radial distance
r of the data in the main figure, collapses the radial distribution
function of the two polydisperse soft-sphere systems onto each
other. Thus, the results in Figs. 3 and 6 show that our protocol to
determine the equivalent hard-sphere system works very well
in a wide range of volume fractions for both monodisperse
and polydisperse systems. With this essential step covered, we
now investigate its implications on the dynamics of structurally
equivalent systems.
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FIG. 6. (Color online) RDFs for polydisperse systems, with ν = 6
and ν = 15 and φHS = 0.5. The line corresponds to the solution of
the PY-VW theory for the corresponding HS systems. Inset: RDFs
after scaling the radial distance.

IV. SOFT-HARD DYNAMIC EQUIVALENCE

The dynamic extension of the previous soft-hard static
structural equivalence was discussed in Refs. [27,43] in the
context of the dynamics of Brownian liquids, in which a
short-time self-diffusion coefficient D0 describes the diffusive
microscopic dynamics of the colloidal particles “between
collisions”. The following discussion also refers to Brownian
systems, but in the second part of this section we shall consider
atomic liquids, whose short-time dynamics is ballistic.

A. Brownian liquids

Although the dynamic equivalence we are about to discuss
can probably be understood from several perspectives, our
original insight and motivation derived from a straightforward
prediction of the self-consistent generalized Langevin equation
(SCGLE) theory of colloid dynamics. This theory can be
summarized by a closed system of equations for the collective
and self-intermediate scattering functions F (k,t) and FS(k,t)
[22–24], which in Laplace space read

F (k,z) = S(k)

z + k2D0S−1(k)
1+m(k)
ζ ∗(z)

, (4.1)

and

FS(k,z) = 1

z + k2D0

1+m(k)
ζ ∗(z)

, (4.2)

with D0 being the short-time self-diffusion coefficient. These
equations become a closed system of equations when com-
plemented with the following approximate expression for the
time-dependent friction function 
ζ ∗(t),


ζ ∗(t) = D0

3(2π )3n

∫
dk

[
k[S(k) − 1]

S(k)

]2

F (k,t)FS(k,t),

(4.3)

and with the following definition of the “interpolating”
function m(k) [24]

m(k) ≡ 1

1 + (
k
kc

)μ , (4.4)

with μ = 2 and with kc being the empirically chosen cutoff
wave vector kc = 1.118kmax, with kmax being the position of
the main peak of S(k).

From these equations and the condition for structural
equivalence in Eq. (3.5), g(r/σ ; φ,T ∗,ν) ≈ gHS(r/σHS; φHS),
it is not difficult to see that when λn = nHS/n ≈ 1 (an excellent
assumption in many circumstances, such as those illustrated
in Fig. 3), the dimensionless properties F (k,t), FS(k,t), and

ζ ∗(z) of a given soft-sphere system, can only depend on the
wave vector k and the time t through the dimensionless vari-
ables kσHS and D0t/σ 2

HS. Furthermore, scaled in this manner,
Eqs. (4.1)–(4.4) above become identical to those of the hard-
sphere system at volume fraction φHS. This implies the exis-
tence of the dynamic equivalence summarized by the statement
that the dynamic properties, such as the self-intermediate scat-
tering function (self-ISF) FS(k,t ; n,T ; σ,ε,ν; D0), of the fluid
with soft repulsive potential u(r), can be approximated by the
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corresponding property of the (statically) equivalent hard-
sphere Brownian liquid whose particles diffuse with the same
D0, i.e., FS(k,t ; n,T ; σ,ε,ν; D0) ≈ F

(HS)
S (k,t ; n,σHS; D0).

This relationship can be written in terms of dimensionless
variables as

FS(kσ,D0t/σ 2; φ,T ∗,ν) ≈ F
(HS)
S

(
kσHS,D

0t
/
σ 2

HS; φHS
)
.

(4.5)

Some consequences of this dynamic equivalence were illus-
trated in Refs. [27,43] in the context of the TLJ potential.
Those references, however, discussed in detail only the limit
of moderate softness (ν � 1), in which the strong similarity
with the HS potential leads to the additional simplification
that σHS(n,T ,ν) becomes n independent, and given by the
blip-function approximation [27,30]. These, however, are
actually unessential restrictions, as illustrated by the Brownian
dynamics simulations for the IPL and HSY models discussed
below.

The universality summarized by Eq. (4.5) leads to the
corresponding scaling rules for other properties. For example,
let

W (t ; T ∗,φ,ν) ≡ 〈[
r(t)]2〉/6 (4.6)

be the mean-squared displacement (MSD) of any soft-sphere
liquid at a given state (T ∗,φ,ν) that structurally maps onto
the hard-sphere liquid of diameter σHS(T ∗,φ,ν) and volume
fraction φHS(T ∗,φ,ν). Then the normalized MSD

W ∗(t∗; T ∗,φ,ν) ≡ 〈[
r(t∗)]2〉/6σ 2
HS(T ∗,φ,ν), (4.7)

with t∗ ≡ D0t/σ 2
HS, will be identical to that of the equivalent

hard-sphere fluid,

W ∗(t∗; T ∗,φ,ν) = W ∗
HS[t∗; φHS(T ∗,φ,ν)], (4.8)

and for that matter, to that of any other soft-sphere liquid that is
structurally equivalent to the HS system with the same volume
fraction φHS.

To test this prediction in Fig. 7 we present the BD results
for the mean-squared displacement of the three soft-sphere
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FIG. 7. (Color online) BD results for the MSD of the systems in
Fig. 3, in original units (main panel), and scaled with the hard-sphere
unit.

systems discussed in Fig. 3, i.e., the TLJ with ν = 6, the IPL
with ν = 3 (both at T ∗ = 1), and the HSY with K = 554 and
z = 0.149, all of them corresponding to an equivalent volume
fraction φHS = 0.49. The MSD is presented in the figure in
the natural units of the BD simulations, i.e., as [W (t)/σ 2]
vs. [D0t/σ 2]. We observe that the MSD exhibits the two
linear regimes typical of Brownian systems [47]: at short times
[W (t)/σ 2] ≈ [D0t/σ 2] whereas at long times [W (t)/σ 2] ≈
[DLt/σ 2], where DL is the long-time self-diffusion coefficient.
Thus, at short times the MSD must be the same for all systems
and states, a condition clearly fulfilled by the data plotted in
the figure.

In the long-time regime, on the other hand, the MSD reads
[W (t)/σ 2] ≈ D∗[D0t/σ 2], i.e., it is proportional to the scaled
long-time self-diffusion coefficient D∗, defined as

D∗ ≡ DL/D0. (4.9)

This property does depend on the interparticle interactions,
and hence, on the particular system and on its state, i.e., D∗ =
D∗(T ∗,φ,ν). Thus, the various W (t) in Fig. 7 should differ in
their long-time behavior. They, however, exhibit the same long-
time limit. The reason for this is that the dynamic equivalence
condition in Eq. (4.5) implies that the dimensionless parameter
D∗ depends on (T ∗,φ,ν) only through the effective HS volume
fraction φHS = φHS(T ∗,φ,ν),

D∗(T ∗,φ,ν) ≈ D∗
HS[φHS(T ∗,φ,ν)], (4.10)

and the three systems in Fig. 3 were chosen to have the same
φHS (=0.49). Thus, they share the same value of D∗(≈0.1).

In fact, for the very same reason [see the scaling in Eq. (4.8)]
these three systems must actually share the full dependence
of W ∗(t∗) on the scaled time t∗ ≡ D0t/σ 2

HS, i.e., the three
different MSDs in Fig. 7 should collapse onto the same curve
when plotted as a function of t∗. This is indeed what we find,
as illustrated in the inset of this figure. Furthermore, according
to Eq. (4.8), the resulting master curve then determines the
function W ∗

HS[t∗; φ = 0.49]. The SCGLE theory for Brownian
systems [i.e., Eqs. (4.1)–(4.4)], besides predicting this scaling
also provides an approximate prediction for this function. The
results of the SCGLE theory applied to the HS fluid follow
closely the simulations results.

The results presented in this figure are concerned with the
full MSD of three model systems that share the same effective
volume fraction φHS = 0.49. Let us next extend our study
to a wider range of effective HS volume fractions, focusing
on long-time properties such as the long-time self-diffusion
coefficient DL and the α-relaxation time τα . We start by
presenting in Fig. 8(a) the BD results for the inverse of
D∗ = DL/D0 as a function of the respective volume fraction
φ for several soft-sphere systems. The main panel of the figure
shows how the simulated D∗ of three TLJ systems depends
on volume fraction and on softness. For instance, D∗ is,
as expected, a decreasing function of φ and ν, and in the
low-φ limit all the results converge to the correct limiting
value D∗(φ → 0) = 1. For reference, in this figure we include
the approximate SCGLE prediction of the function D∗

HS(φ)
corresponding to the HS fluid (the solid line in the figure). It is
clear that as the potential becomes stiffer the function D∗(φ)
gradually approaches the function D∗

HS(φ).
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FIG. 8. (Color online) (a) D∗ = DL/D0 from DB simulations for TLJ systems with ν = 6, ν = 10 and ν = 15, at different volume fractions
φ. Inset: Results for two HSY systems (K = 554, z = 0.149, and K = 100 z = 1.0). (b) Results plotted as a function of φHS. Data for the IPL
(ν = 3) is included. The solid line represents the solution for HS systems from the colloidal SCGLE theory.

Model systems with longer-ranged interactions can depart
even further from this HS limit. Thus, in the inset of the same
figure we compare the results for D∗(φ) of two HSY systems
with the predicted HS limit (also represented by the solid line).
This comparison exhibits a much more pronounced difference
compared with the shorter-ranged systems in the main panel.
Here the values of D∗ in the liquid regime of the HSY systems
correspond to volume fractions in the range 10−5–10−1 (from
weakly to highly structured conditions), whereas the relevant
volume fractions of the TLJ systems fall in the typical range
0.1 � φ � 1. Despite these differences, however, when these
data, as well as the data for the TLJ systems in the main figure,
are plotted as suggested by the scaling in Eq. (4.10), all of
them fall on a well-defined master curve, as demonstrated in
Fig. 8(b). This master curve must then determine the exact
hard-sphere function D∗

HS[φ]. The solid line in the figure is
the corresponding approximate SCGLE prediction for this
function, whose comparison with the exact master curve
defined by the collapsed simulation data indicates the level
of quantitative accuracy of this theory.

Let us notice that, although the results in the figure illustrate
the dynamic equivalence at the very particular condition t →
∞, our simulations show that basically the same scaling holds
at all times for time-dependent properties such as the scaled
time-dependent self-diffusion coefficient D∗(t) ≡ W (t)/6D0t

(illustrated in Fig. 4 of Ref. [43]), or the scaled MSD W ∗(t∗),
illustrated here in Fig. 7 with the results of three model
systems that meet the condition λn ≈ 1 at an effective volume
fraction is φHS = 0.49. We have extended this study, however,
to the IPL and HSY potentials at low effective HS volume
fractions, the regime in which appreciable deviations from the
condition λn are exhibited (see Fig. 4). The corresponding
scaled results for D∗(φHS), presented in Fig. 8(b), demonstrate
that the predicted dynamic equivalence has a wide range
of validity, requiring only the static structural equivalence
discussed in Sec. III, but not necessarily the condition nHS ≈ n,
in spite of the fact that our original insight of the soft-hard
dynamic equivalence derived from the structure of the SCGLE
equations within the condition λn = nHS/n ≈ 1.

Let us now turn our attention to the relaxation of the in-
termediate scattering function FS(k,t). To exhibit the dynamic
equivalence predicted by Eq. (4.5), we evaluate FS(k,t) for

two TLJ and two HSY systems at states that share the same
equivalent volume fraction, φHS = 0.49. In the main frame
of Fig. 9 we plot FS(kmax,t) as a function of the scaled time
D0t/σ 2, a format in which the results for the TLJ and HSY
systems differ notoriously. In particular, the α-relaxation times
τα of these systems, defined by the condition FS(k,τα) = 1/e,
differ by more than one decade. According to Eq. (4.5),
however, the same results should collapse onto a single master
curve upon the transformation to HS units, and provided that
FS(k,t) for the various systems is evaluated at structurally
equivalent wave vectors (i.e., same value of kσHS). To meet
this isostructural requirement for the three systems in the
figure we have evaluated FS(k,t) at the position kmax of the
corresponding static structure factors. The resulting master
curve is shown in the inset of the figure, in which the data are
plotted as a function of the scaled time D0t/σ 2

HS. Such scaling
of FS(k,t), in its turn, leads to identical α-relaxation times
for isostructural systems, when expressed in the new units,
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regardless of the softness or range of the interaction between
the particles.

Another manner in which to exhibit this dynamic equiv-
alence starts with the BD simulations of the α-relaxation
time, for several soft-sphere systems in an extended range
of volume fractions, evaluated at a structurally identical wave
vector (we take k = kmax). In the main panel of Fig. 10 we
present the unscaled results for τα corresponding to the TLJ
systems with ν = 6, ν = 10 and ν = 15. There we observe
that τα exhibits the typical monotonic slowing down with
concentration, increasing faster at higher φ, at a rate that
depends strongly on the softness of the potential, following
a similar pattern as 1/D∗ in the mainframe of Fig. 8(a). Here
too, increasing ν leads to results progressively closer to the
curve predicted by the SCGLE theory for the HS system,
represented in the figure by the solid line.

In contrast, the corresponding simulation data of τα for
the longer-ranged HSY systems, presented in the inset of
Fig. 10, exhibit a notoriously different φ dependence. The
difference is mainly quantitative in the case of the HSY system
with K = 100 and z = 1.0, since the results for τα presented
in the figure also increase monotonically, although at much
smaller values of φ with respect to the hard-sphere system
(represented again by the solid line). In the case of the system
with K = 554 and z = 0.149, however, the corresponding
differences seem to be even qualitative, since the data presented
decrease monotonically with φ. Although this contrast may
appear dramatic, it actually reflects a rather trivial consequence
of the facts that at low volume fractions τα ≈ 1/k2D0 and
that for this long-ranged, strongly interacting HSY system,
kmax ≈ 2π/n−1/3; thus, at low volume fractions τα ∝ φ−2/3.
Thus, this qualitative feature would be absent if we had plotted
τ ∗ ≡ k2D0τα , rather than the unscaled α-relaxation time.

This scaling, however, will only remove the apparently
anomalous φ dependence of τα , but not the quantitative
difference in the range of volume fractions at which the
sharp increase of τα occurs. However, the dynamic scaling
in Eq. (4.5), illustrated in Fig. 9 with FS(k,t) for the case
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FIG. 11. (Color online) α-relaxation time τα , in HS units, as a
function of φHS. The solid line corresponds to the results from the
SCGLE theory applied to HS fluids.

φHS = 0.49, should now align the data for τα(φ) in Fig. 10 with
those of the HS system upon the transformation to HS units.
For this we mean to plot τα scaled as D0τα/σ 2

HS, as a function of
φHS(φ,T ∗). This is done in Fig. 11, where we corroborate that
indeed the transformed data fall in a master curve that follows
closely the solid line, i.e., the SCGLE theoretical predictions
for the HS fluid.

B. Atomic liquids

Let us now discuss this dynamic equivalence in the context
of atomic liquids. For this, let us notice that in order to
discus the dynamic equivalence between soft- and hard-sphere
Brownian fluids we first unambiguously defined an effective
hard-sphere volume fraction and diameter, φHS = φHS(φ,T ∗)
and σHS = σHS(φ,T ∗), for each state (φ,T ∗) of the soft-sphere
system. Then, the dynamic equivalence was simply exhibited
by expressing the dimensionless properties of the system not
in terms of the natural units of the soft system, namely, φ, σ ,
and t0 ≡ σ 2/D0, but in terms of the units of the equivalent
HS system, namely, φHS, σHS, and t0

HS ≡ σ 2
HS/D

0 = λ2
σ t0.

Since the definition of the effective hard-sphere diameter only
involves the comparison of the equilibrium static structure of
the soft-sphere system with the corresponding structure of the
equivalent hard-sphere system [see Eq. (3.5)], it is natural to
expect that the dynamic equivalence discussed above in the
context of Brownian systems also holds independently of the
underlying microscopic dynamics, i.e., also for atomic liquids.

Thus, let us now discuss the dynamic equivalence between
atomic soft-sphere systems and their effective atomic hard-
sphere counterpart. For this, let us follow the same principle
as in the Brownian case, i.e., let us express the dynamic
properties of Newtonian liquids not in terms of their natural
units φ, σ , and t0 = σ/v0 =

√
Mσ 2/kBT , but in terms of

the units of the equivalent HS system, namely, φHS, σHS,
and t0

HS ≡
√

Mσ 2
HS/kBT = λσ t0. To see the accuracy of this

predicted scaling of atomic fluids, in Fig. 12 we present the
MD simulation results for the MSD of some of the illustrative
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FIG. 12. (Color online) MSD from MD simulations for isostruc-
tural soft systems with equivalent φHS = 0.49. The filled circles cor-
respond to the MD simulations of a HS fluid. The results are presented
in units of σ and t0. Inset: MSDs after transforming to HS units.

model systems employed before, namely, the TLJ system with
ν = 6 and 15, HSY systems with K = 100 (with z = 1.0)
and K = 554 (with z = 0.149), all of them at the effective
volume fraction φHS = 0.49. At the same time, we include the
corresponding data for the hard-spheres fluid, obtained from
event-driven MD simulations as described in Ref. [39]. In the
main frame of Fig. 12 the MSD is scaled in the usual MD
units, i.e., as W (t)/σ 2, plotted vs. the time scaled as t/t0.

As observed in the figure, the results for the various
systems clearly display the ballistic [W (t) ∼ v2

0 t
2] and dif-

fusive [W (t) ∼ DLt] regimes characteristic of the underlying
Newtonian dynamics. They also exhibit their departure from
the exact HS results, particularly noticeable in the HSY
systems. In HS units, on the other hand, the different curves
in the main panel of the figure should fall on top of the HS
data, and this is verified in the inset of the figure, which shows
the MSD scaled as W (t)/σ 2

HS [=λ−2
σ W (t)/σ 2], plotted vs. the

time scaled as t/t0 = [λ−1
σ t/t0]. By scaling in this manner

we appreciate that all the soft, isostructural systems follow
basically the same time evolution, sharing, in particular, a
common scaled long-time self-diffusion coefficient.

From the long-time limit of the results in the mainframe of
Fig. 12, one can read the value of the long-time self-diffusion
coefficient DL in units of σ 2/t0 = σ

√
kBT /M . We have

collected these values of DL for each of the systems considered
here as a function of the volume fraction φ of the systems, and
the results are summarized in the two insets of Fig. 13. Inset (a)
in Fig. 13 contains the results for the TLJ systems, whereas
inset (b) in Fig. 13 illustrates the noticeable contrast between
the HS and the strongly repulsive HSY system. At intermediate
and high volume fractions these data exhibit similar trends
to those observed in the corresponding BD simulations [in
Fig. 8(a)]. The main qualitative difference between atomic and
Brownian systems can be observed at low volume fractions,
where, in contrast to Brownian systems, the atomic DL behaves
as DL ∼ 1/φ, as expected from the kinetic theory of dilute
gases [48].
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FIG. 13. (Color online) Inset (a): DL(φ) scaled with σ 2/t0 =
σ
√

kBT /M for TLJ systems. Inset (b): Results for HSY systems.
Main panel: Results in the insets after transform to HS units. The
results for strictly HS system are represented by the filled circles
correspond to HS systems.

If, on the other hand, the soft-hard dynamic equivalence
were to apply to these atomic systems, all of the data of
DL displayed in these two insets should collapse on a master
curve when DL is expressed not in its ordinary atomic units,
but in the corresponding HS units, σHS/t0

HS = σHS
√

kBT /M ,
and plotted not as a function of φ, but of the effective HS
volume fraction φHS(T ∗,φ). The mainframe of Fig. 13 plots
the data in the insets in precisely this manner. From these
results we see clearly that the soft systems follow very well
the corresponding data for truly hard spheres in all the range of
volume fractions considered in the figure, thus corroborating
the expected validity of the dynamic equivalence between soft-
and hard-sphere atomic liquids.

To close this section let us focus on the scaling properties
of the atomic self-ISF and its characteristic α-relaxation time.
Thus, in Fig. 14 we present FS(kmax,t) for the TLJ (ν = 6),
IPL (ν = 3), HSY (K = 554), and HS systems, all of them
with equivalent HS volume fraction φHS = 0.49. In the main
panel, where the time is expressed in its natural atomic units,
one can see the contrast between the various soft and the
HS systems, with a scenario rather similar to that found for
Brownian fluids. In the inset, on the other hand, we replot
the same data but now as a function of the time expressed
in the HS time units

√
Mσ 2

HS/kBT . There one can appreciate
the substantial agreement between the different isostructural
systems, which closely follow the same time evolution in this
scaled form, with virtually the same scaled α-relaxation time
(kBT /Mσ 2

HS)1/2τα .
In Fig. 15 we present data of τα obtained from similar

simulations of FS(kmax,t) for the various systems carried out
varying the density. These data are plotted as a function of
the respective volume fraction φ in the ordinary atomic units
(insets), and normalized with the HS units (main panel). In
general, again, the trends here resemble closely those of the
Brownian systems previously discussed, in the sense that the
completely dispersed unscaled data in the insets collapse nicely
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FIG. 14. (Color online) FS(k = kmax,t) from MD simulations
for TLJ (ν = 6), IPL (ν = 3), and HSY (K = 554) systems
with equivalent volume fraction φHS = 0.49. Time is in units of
t0 = (σ 2M/kBT )1/2. Inset: Results after transforming to HS time
units.

onto a master curve in the main panel that coincides, of course,
with the MD data of strictly hard spheres (black symbols).
This concludes the present discussion of the soft-hard dynamic
equivalence in both atomic and Brownian liquids. In what fol-
lows we discuss a related but fundamentally different scaling.

V. BROWNIAN-ATOMIC DYNAMIC EQUIVALENCE

As mentioned in the introduction, the second fundamental
challenge in understanding the relationship between dynamic
arrest phenomena in colloidal systems and the glass transition
in atomic liquids is to determine the role played by the
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FIG. 15. (Color online) τα(φ), for selected TLJ, IPL, and HSY
systems. In the three panels, the filled circles correspond to the results
for HS systems. Inset (a): τα(φ), in MD units, for TLJ systems with
ν = 6,10,15. Inset (b): τα(φ), in MD units, for HSY systems with
K = 554 and z = 0.149. Main panel: Collection of results for τα(φ)
in HS units.

underlying (Brownian vs. Newtonian) microscopic dynamics.
The results presented in the previous section provide one
step forward in this direction, since they demonstrate that the
criterion to unify a rather diverse set of soft-sphere systems in
a so-called dynamic universality class is actually independent
of the Brownian or Newtonian nature of their microscopic
dynamics. As a result, for example, the data for the long-time
self-diffusion coefficient DL of various Brownian systems,
displayed in Fig. 8(a), collapse onto the master curve of
Fig. 8(b). In its turn, the data for DL of the atomic version
of the same systems, shown in the insets of Fig. 13, collapse
onto their own master curve, displayed in the main frame of
the same figure.

An important question, however, is left open by these
results. It refers to the possibility that a fundamental rela-
tionship can be established now between those two master
curves [in Figs. 8(b) and 13 respectively], which would
unify the dynamics of an atomic liquid with the dynamics
of its Brownian counterpart in an unambiguous and precise
manner. This question was largely answered theoretically in
recent attempts of our group to extend the SCGLE theory
of colloid dynamics to atomic systems [31,32]. There it
was established that such a relationship is provided by the
recognition that the (density- and temperature-dependent)
self-diffusion coefficient of an atomic liquid, determined by
kinetic theoretical arguments as

D0 = 3

8
√

π

(
kBT

M

)1/2( 1

nσ 2
HS

)
, (5.1)

plays the role of the short-time self-diffusion coefficient D0 in
Brownian systems.

As a result, in Refs. [31,32] it was predicted, for example,
that the ratio D∗ ≡ DL/D0 of the long-time to the short-
time self-diffusion coefficients of a Brownian system must
be identical to the long-time self-diffusion coefficient of
the corresponding atomic liquid, scaled with this kinetic
theoretical value of D0. Testing this particular prediction is, of
course, very straightforward, and can be done by normalizing
the data of DL for the atomic systems in the insets of Fig. 13,
with the value of D0 given by Eq. (5.1). The resulting scaled
data should then coincide with the corresponding results
for D∗ of the Brownian version of the same systems in
Fig. 8(a).

The same comparison, however, can be done more directly
if we take the same data, but after they have been collapsed
onto their respective master curve in Figs. 8(b) and 13. Thus,
in the inset of Fig. 16 we reproduce these two master curves
to highlight the different behavior of atomic and Brownian
liquids regarding the density dependence of the data for DL

expressed in the effective HS units. The next step is then to
scale the atomic data for DL as D∗ ≡ DL/D0 with D0 given by
Eq. (5.1). The result of this scaling is that the original atomic
master curve now coincides with the original Brownian master
curve, as demonstrated in the main frame of Fig. 16. Since
the Brownian data for DL were already expressed as D∗ ≡
DL/D0, this collapse between both master curves illustrates
the accuracy of the predicted dynamic equivalence between
atomic and Brownian liquids.
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FIG. 16. (Color online) Scaled results for the long-time diffu-
sion coefficient for colloid and atomic liquids. In the main panel
D∗(φHS) = DL/D0 is plotted using the corresponding definition of
D0. Inset: DL(φHS) in HS units as reported in the previous Figs. 8(b)
and 13.

As originally proposed, however, the atomic-Brownian
scaling extends to the time-dependent dynamic proper-
ties, such as the mean-squared displacement and the self-
intermediate scattering functions. Thus, in Refs. [31,32] it was
predicted that these properties of a given atomic liquid, at times
t much longer than the mean-free time, and with t scaled
with D0 in Eq. (5.1), will be indistinguishable from those
of its Brownian counterpart. To illustrate such condition, the
atomic and Brownian MSD of the TLJ potential with ν = 6 and
effective HS volume fractions φHS = 0.1 and 0.5, are presented
in Fig. 17 in the format W (t)/σ 2

HS vs. D0t/σ
2
HS (i.e., in HS

units). The results clearly show that despite the differences at
short times (ballistic vs. diffusive), the MSDs of isostructural
systems do collapse onto each other in the long-time regime.

10
-4

10
-2

10
0

10
2

D
0
 t/σ

HS

2

10
-4

10
-2

10
0

10
2

w
(t

)/
σ H

S

2

MD
BD φ=0.1

φ=0.5

FIG. 17. (Color online) Mean-squared displacement, from
molecular dynamics (solid symbols) and Brownian dynamics (empty
symbols) simulation, for equivalent hard-sphere systems, for states
corresponding to φHS = 0.1 and 0.5.
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symbols) simulation results for the FS(k,t) of equivalent HS liquids
at volume fractions φHS = 0.10,0.50,0.548, and 0.571, evaluated at
the main peak of the static structure factor and plotted as a function
of the dimensionless time D0t/σ 2

HS.

This long-time atomic-Brownian scaling can also be
observed in FS(k,t). However, in contrast with the MSD, in
which this scaling holds at all effective volume fractions, in the
case of FS(k,t) this scaling only holds above certain threshold
effective volume fractions, corresponding essentially to the
metastable liquid regime. This is illustrated in Fig. 18, where
we present molecular and Brownian dynamics results for this
property at three volume fractions of the effective hard-sphere
liquid, φHS = 0.50,0.548, and 0.571 (generated, in reality,
with the dynamically equivalent TLJ potential with ν = 6). In
this figure FS(k,t) is plotted as a function of the dimensionless
time D0t/σ 2

HS, with the corresponding D0 for each dynamics
[i.e., given by Eq. (5.1) in the atomic version of the system].

As indicated above, this long-time dynamic equivalence
between atomic and Brownian liquids is not observed in
FS(k,t) at low volume fractions corresponding to the stable
fluid regime (i.e., for φHS � 0.5). This is illustrated in
Fig. 18 with the atomic and Brownian results for FS(k,t)
corresponding to φHS = 0.1, which totally fail to collapse on
top of each other, especially at long times. The reason for
this deviation from the long-time dynamic equivalence at low
volume fractions is that in this regime, the decay of the atomic
FS(k,t) to a value ≈e−1 occurs within times comparable to
the mean free time τ0 and is, hence, intrinsically ballistic. It
is only at higher volume fractions that this long-time dynamic
equivalence is fully exhibited by the diffusive decay of FS(k,t),
as illustrated by the three largest volume fractions in the figure.

The observations above can also be summarized by com-
paring the volume fraction dependence of the relaxation time
τα of the molecular and Brownian versions of the various
soft-sphere systems discussed in the previous section. Such
results were summarized in the Brownian and atomic master
curves presented, respectively, in Figs. 11 and 15, which we
now put together in the inset of Fig. 19. To exhibit the long-time
dynamic equivalence between atomic and Brownian fluids,
the same results are presented again in the main panel of the
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FIG. 19. (Color online) Inset: α-relaxation time τα(φHS) for
Brownian and molecular liquids in HS units as reported in the previous
Figs. 11 and 15. Main panel: Data presented as τ ∗ ≡ k2D0τα . The
solid curve is the prediction for τ ∗ for the colloidal SCGLE.

figure, but now scaled as τ ∗ ≡ k2D0τα with k = kmax in HS
units. From the corresponding comparison one can see that this
long-time dynamic equivalence, which manifests itself in the
collapse of the molecular and Brownian dynamics data for τ ∗,
holds only above a threshold volume fraction, roughly located
near the freezing transition of the HS liquid (φHS ≈ 0.5). The
qualitative difference between atomic and Brownian systems
observed in the results for τ ∗ for volume fractions below
this threshold are explained in the different low-density limit
of τ ∗ in each case. For a Brownian liquid τα → 1/k2D0 as
φ → 0, with a φ-independent short-time diffusion coefficient
D0, so that τ ∗ → 1 as φ → 0. For atomic liquids, however,
τ ∗ → √

2πkσ/16φ in the same limit, where we have taken
into account the fact that in this case the short-time diffusion
coefficient D0 is given by the kinetic-theoretical result in
Eq. (5.1).

VI. SUMMARY AND DISCUSSION

In this work we have presented an extended simulation
study on the static and dynamic equivalence between model
fluids with soft repulsive potentials of varying range and
strength, governed by either Brownian or atomic microscopic
dynamics. The dynamic equivalence investigated here relies
heavily on the concept of static structural equivalence proposed
by Weeks, Chandler, and Andersen, i.e., on the notion that the
thermodynamic and structural properties of fluids formed by
moderately soft particles can be expressed in terms of the
properties of the hard-sphere liquid.

Thus, the present work started by reviewing such concept
of structural mapping, explaining how this idea is extended
to map the static structure of, in principle, any soft-sphere
liquid onto the properties of an effective hard-sphere liquid. We
provided details of the method adopted to identify structurally
equivalent systems, which works better than other traditional
approaches, such as the blip-function method, especially for
long-ranged potentials. We also explained how to extend

this mapping procedure to the case of polydisperse systems,
which allowed us to study highly concentrated systems beyond
freezing, i.e., in the metastable liquid phase.

This structural equivalence was then employed in the study
of the dynamic equivalence between isostructural colloidal
fluids. For this, simple rules are provided to map the units of
length and time for soft systems to those of the equivalent
HS systems. Our extensive Brownian dynamics simulations
verified, for example, that the mean-squared displacement and
the self-intermediate scattering functions of isostructural sys-
tems follow the same time evolution when they are expressed
in the units of the equivalent HS system. In particular, data
were provided as a function of the volume fraction, covering
from dilute to highly concentrated conditions, to show that
long-time properties such as the long-time self-diffusion
coefficient and the α-relaxation time of soft colloidal systems
collapse onto a master curve when plotted as a function
of the (density- and temperature-dependent) effective HS
volume fraction. Furthermore, we showed that this dynamic
equivalence extends over to the domain of atomic fluids. Thus,
in Sec. IV we demonstrated that the criterion that unifies the
soft-sphere systems in the hard-sphere dynamic universality
class is actually independent of the Brownian or Newtonian
nature of their microscopic dynamics, in the sense that the
properties of Brownian systems collapse onto a given master
curve, as in Fig. 8(b), and the same applies to the atomic
version of the same systems, whose properties collapse onto
their own master curve, as in Fig. 13.

The findings just described then reveal that the dynamics
of soft systems can be mapped onto those of HS systems,
regardless of the underlying Brownian or Newtonian [49]
dynamics, i.e., both type of systems satisfy a soft-hard
dynamics equivalence. Going further, however, the inspection
of the long-time behavior of atomic liquids revealed another
connection, this time between colloidal and atomic fluids.
This connection was established once the atomic-liquid analog
of the Brownian short-time self-diffusion coefficient D0 is
identified with the value predicted by the kinetic theory of
gases, i.e., by D0 given in Eq. (5.1). The simulation evidence
that we provide here corroborates that at least for model
liquids whose structure is dominated by (soft- or hard-sphere)
repulsive interactions, the long-time dynamics of an atomic
liquid is indistinguishable from the dynamics of the colloidal
system with the same interparticle interactions. As a conse-
quence, some dimensionless long-time dynamic properties,
such as D∗ = DL/D0 (with the proper identification of D0)
and τ ∗(k) = k2D0τα (only in the supercooled liquid regime)
will exhibit, just like the equilibrium thermodynamic and
structural properties, the same independence from the short-
time microscopic dynamics, which otherwise distinguishes
atomic from colloidal systems.

Let us clarify that for the present study we chose to focus
on a well-defined set of model systems, namely, systems
with purely repulsive soft-sphere interactions of arbitrary
range. This excludes from this study the consideration, for
example, of the possibility of full overlap between particles,
characteristic of ultrasoft interactions [50]. Hence, a pending
question is the degree at which the scalings discussed in this
work will apply to these systems. Similarly, the absence of
attractive forces in our working examples leaves open the
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issue of the possible extension of these scalings to systems
that involve attractive interparticle forces. Another important
aspect that requires further discussion is the relationship of the
dynamic scalings discussed in this work and other scalings
discussed in the literature. We have mostly in mind the
interesting concept of strongly correlated liquids, developed
by Dyre and collaborators [15,51–53], and the excess-entropy
scaling method of Rosenfeld [54], whose generalization by
Truskett and collaborators [55,56] has proved to have an
amazing range of applicability.

In this regard, let us mention that we have performed
preliminary calculations involving the monodisperse Lennard-
Jones (LJ) potential, u(r) = 4ε[(σ/r)12 − (σ/r)6], with the
aim of establishing a relationship between the concept of
hard-sphere dynamic universality class [28] and the concept of
isomorphs in strongly correlating liquids, introduced by Dyre
and collaborators [15,51–53]. In the process we checked, for
example, that the isomorphic states of the Lennard-Jones fluid
whose radial distribution functions are plotted in Fig. 2(a)
of Bøhling et al. [15], also turn out to be iso-φHS in the
sense [28] that their static and dynamic properties, when scaled
as indicated in the present paper, superimpose on those of the
hard-sphere (HS) liquid (with φHS = 0.47 for these illustrative
examples). In fact, these and other similar calculations strongly
suggest that in its stable liquid regime, the monodisperse
Lennard-Jones system seems to belong to the hard-sphere
dynamic universality class.

Although out of the scope of the present paper, an obvious
and intriguing question is if the Lennard-Jones system will
cease to satisfy this HS dynamic scaling in other regions of
its state space, such as in the undercooled metastable liquid
regime. One possible scenario is, of course, that our soft-hard
scaling, and its extension to attractive potentials, breaks down
under extreme conditions, e.g., near the glass transition. This
scenario is suggested by the simulation results of Berthier
and Tarjus [57] and not discarded by the results of Pedersen
et al. [58], although both works deal with binary mixtures with
interactions that are asymmetric in both, the strength parameter
εij and the size σij of the particles. It will then be interesting
to attempt to locate the crossover from the HS-like dynamics
that we observe in the stable LJ liquid regime to the regime

studied by these authors. This issue, however, deserves to be
addressed in detail separately.

Similarly, it is desirable to establish the relationship
between the effective HS volume fraction φHS(φ,T ∗,ν) defined
by our method, and the excess entropy function sex(φ,T ∗,ν),
since the latter can also be used as a scaling parameter [55,56].
One possible manner to proceed would be to simulate sex

and to plot the results as a function of the HS volume
fraction φHS(φ,T ∗,ν) determined here for the systems and
states considered. If the resulting plot is a single-valued
universal curve, and if this curve coincides with the HS
excess entropy sex

HS(φHS), then this would provide an alternative
practical manner to recognize that these potentials belong to
the hard-sphere dynamic universality class. Such calculations,
which will also provide a quantitative measure of the quality
of each of these two scaling principles, also remains as another
issue to be addressed separately.

On the other hand, and as a final remark, let us mention that
here we referred to Brownian liquids as colloidal suspensions,
with the intention to connect with real physical systems. In
reality, however, we meant colloidal systems for which hydro-
dynamic interactions can be neglected, since these important
effects were completely ignored in our Brownian dynamics
simulations. We expect, however, that most of our conclusions
will apply to real colloidal systems in which hydrodynamic
interactions are important, as long as we identify the parameter
D0 not with the value of the long-time self-diffusion coefficient
DL at infinite dilution (φ = 0), but with the φ-dependent short-
time self-diffusion coefficient DS(φ) [59], which under some
circumstances can be independently determined by either
theoretical or experimental methods. Figure 3 of Ref. [39]
illustrates the effectiveness of this hydrodynamic scaling,
which is expected to expand the range of application of the
soft-to-hard and Brownian-to-atomic dynamic equivalences
discussed in this work.
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González, L. Yeomans-Reyna, and M. Medina-Noyola, Phys.
Rev. E 76, 062502 (2007).
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[31] P. Mendoza-Méndez, L. López-Flores, A. Vizcarra-Rendón,
L. E. Sánchez-Dı́az, and M. Medina-Noyola [Physica A (to be
published)] (2013), arXiv:1203.3893v3 [cond-mat.soft].
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[39] G. Pérez-Ángel, L. E. Sánchez-Dı́az, P. E. Ramı́rez-González,
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