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Sedimentation of granular columns in the viscous and weakly inertial regimes
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We investigate the dynamics of granular columns of point particles that interact via long-range hydrodynamic
interactions and fall under the action of gravity. We investigate the influence of inertia using the Green’s function
for the Oseen equation. The initial conditions (density and aspect ratio) are systematically varied. Our results
suggest that universal self-similar laws may be sufficient to characterize the temporal and structural evolution
of the granular columns. A characteristic time above which an instability is triggered (which may enable the
formation of clusters) is also retrieved and discussed.
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Granular materials that are assemblies of discrete macro-
scopic solid particles with sizes large enough that Brownian
motion is irrelevant have been a subject of intensive research
during the past few year [1]. They are ubiquitous in our
everyday lives and remain at the heart of several geophysical
(sand dunes, coastal geomorphology, avalanches, etc.) and
industrial processes (chemical, pharmaceutical, food, agricul-
tural, etc.) [1]. The variety of these fields makes these granular
materials subject to very different flow and stress conditions.
In particular, when the particles are suspended in a fluid, one
may expect that subtle hydrodynamic effects should play a
leading role [2]. This must be contrasted with the case of dry
granular materials for which the influence of the carrying fluid
is negligible. In that case both the inelasticity of the collisions
and/or the friction between the grains are crucial [1]. While
the falling of a single or a couple of particles in purely viscous
and weakly inertial regimes was well described by Stokes and
Oseen [3], understanding the interactions of a cloud of particles
remains a challenge, as complex collective dynamics emerge
due to the multiple long-range interactions (e.g., fluidized beds
[4,5]). Similar difficulties exist also for n-body gravitational
problems. Therefore, many investigations were done in order
to better understand the behavior of these particle-laden
flows, presenting a large panel of geometries such as jets,
streams, drops, and spherical clouds. The sedimentation of
spherical clouds of particles, in an external fluid of variable
viscosity, has been recently investigated experimentally and
numerically [6]. With the exception of the experimental work
of Nicolas [7], investigations related to jets or column of
particles focused mainly on highly viscous fluids (i.e., zero
Reynolds numbers limit) [8,9], air, and moderate vacuum
(large Reynolds numbers limit) [10–12] or other kinds of
interactions: capillary bridges, van der Waals forces [13–16],
etc.

In this paper we present an investigation that fully character-
izes, using point-particle simulations, the dynamics of freely
falling granular columns in different flow regimes, clarifying
the dependence on the Reynolds number, the aspect ratio, and
the particle density. The main characteristics of the present
system are (i) solid particles suspended in a viscous fluid and
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interacting by virtue of the fluid; (ii) particles heavier than
the fluid, thus sedimenting on account of gravity; and (iii) no
continuous supply of particles in the granular cylinder.

We will first describe the model used for the numerical sim-
ulations, defining the characteristic quantities of the problem
and its relevant parameters before presenting and discussing
our results. At the beginning of the simulation, we randomly
initialize the positions of N0 particles in a cylindrical column
of radius R0 and length H0; the dimensionless particle density
n0 = N0/πh∗ is homogeneous (h∗ = H0/R0). In addition to
their settling velocity Uη = F/6πηa in the fluid of viscosity
η under the action of the gravitational force F , the point
particles of radius a are subject to the hydrodynamic pairwise
interactions modeled by the dimensionless Green’s function
of the Oseen equation [2,3,6], which represents the additional
velocity induced on a point particle by another point-particle
distant by d = (dx,dy,dz):

u∗
k = 3

4
a∗

(
dk

d2

[
2l∗

d
(1 − E) − E

]
+ E

d
δkz

)
, k = x,y,z,

(1)

E = exp

(
−

(
1+dz

d

)
d

2l∗

)
, a∗ = a/R0, l∗ = η/Uηρf R0.
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In Eq. (1), all lengths and velocities were made dimensionless
using Uη as a reference velocity and R0 as a reference length.
A reference time τη = R0/Uη was also defined. Here ρf

is the mass density of the external fluid and l∗ represents
the importance of the viscous effects. Note that the velocity
given by Eq. (1) is the solution to the corrected Navier-Stokes
equation, which models the weakly inertial regime:

ρf (Uη · grad)u = −gradp + η�u, (3)

where p is the fluid pressure. By choosing the frame of
reference moving with the terminal settling velocity of an
isolated particle, we compute all the N0 − 1 interactions on
each particle and obtain a set of equations describing the
motion of the particles, of the form

dMki

dt
=

∑
j �=i

u∗
k, k = x,y,z; i = 1,N0; j = 1,N0. (4)

This equation is integrated using an Adams-Bashford time-
marching algorithm and at each iteration we obtain the
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Cartesian position M = (x,y,z) of each particle. The detection
of the interface of a granular column is performed by dividing
axially the domain into h∗ overlapping volumes. For each
volume, the radial position of the interface is calculated by
calculating the mean radial position of the farthest particles.
The parameters for the simulations are the aspect ratio h∗, the
particle density n0, l∗, and a∗. However, we note that Eq. (1)
is linear with respect to a∗ and therefore the dynamics of
the problem will vary linearly with it. As a consequence, we
set a∗ = 0.05 for all simulations. As our simulations neglect
particle-particle collisions, they are only applicable to dilute
regimes.

It is interesting to write the particle Reynolds number
as Rep = a∗/l∗ = aUηρf /η. Variation in this problem is
performed by varying η; however, as we are investigating
the behavior of a macroscopic object, we have to define
a macroscopic Reynolds number Re = R0Ucolρf /η, where
Ucol is the characteristic velocity of a cylindrical column,
which can be defined using the settling velocity of a vertical
cylinder of aspect ratio h∗ in a viscous fluid, hence Ucol =
P ln(h∗/2)/2πηH0, P being the macroscopic gravitational
force. Calculating the equivalent mass of the column from its
volume fraction, one can find that Ucol = 3πn0a

∗ ln(h∗/2)Uη

and therefore Re = 3πn0 ln(h∗/2)Rep.
An example of simulations performed by varying Re are

shown in Fig. 1. We observe that all the columns stretch
and thin while they fall. We also observe that a leading
mushroom-shaped plume forms at the front [8], while a particle
leakage can be observed at the rear. For the last instant, we see
that the columns lose their cohesion and eventually detach into
shorter columns and droplets, which means that a varicose
instability grows in time. Considering now the effect of the
Reynolds number in relative frames, we see that increasing
Re relatively slows down the falling of the columns and
increases their effective cohesion. We also observe that the
size of the leading mushroom is larger for the same instant.
It is important to understand that, in order to compare them,
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FIG. 1. (Color online) Falling of cylindrical granular columns for
Re = 0.04, 4, and 40 with an aspect ratio h∗ = 50 and particle density
n0 = 32. Four different instants are shown, i.e., t/τη = 0.01, 0.1, 0.2,
and 1, and time increases from left to right. The columns are shown
in the reference frame of an isolated particle falling at its settling
velocity.
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FIG. 2. (Color online) Variation of the reduced velocity of the
center of mass Vmass/Ucyl versus reduced time t/τcyl for Rep = 4 ×
10−5, 2 × 10−4, 4 × 10−3, and 10−2; h∗ = 50, 100, 150, and 300;
and n0 = 10, 32, and 160, with Ucyl = Ucol/[1 + ln(1 + Rep/a∗)]
and τcyl = H0/Ucyl. The inset shows variation of the dimensionless
initial velocity of the center of mass Vmass/Uη versus Rep for n0 = 5
and 10 and h∗ = 300 (symbols denote simulations and the lines the
analytical functions).

columns for different Re were represented in different frames.
As the viscosity of the fluid for Re = 0.05 is much larger than
the viscosity for Re = 50, columns at large Re in the absolute
frame will experience a faster dynamics. These results are
qualitatively comparable to those of Pignatel et al. [6], which
showed that increasing Re enhances effective cohesion and
slows the falling of spherical clouds of particles.

Figure 2 shows the time variation of the center of mass
Vmass reduced by a corrected characteristic velocity of the
column Ucyl. Indeed, when varying Rep at fixed h∗ and n0,
we observed a correction in Vmass that was not taken into
account in Ucol. This correction is shown in the inset of
Fig. 2, where Vmass/Uη decreases with Rep following a log-
arithmic behavior. We successfully retrieved this behavior by
the function f (Rep) = 1/[1 + ln(1 + l∗−1)] = 1/[1 + ln(1 +
Rep/a∗)] and in order to take into account the Rep dependence
of the dynamics, we defined a new characteristic velocity
Ucyl = 3πUηn0a

∗ ln(h∗/2)f (Rep) along with a macroscopic
characteristic time τcyl = H0/Ucyl. Finally, we observe in
Fig. 2 that for a large set of different parameters, the whole
temporal evolution of Vmass/Ucyl collapses into a single
universal curve. It shows that for t � τcyl, the columns fall with
a constant velocity Ucyl before decreasing with time following
a logarithmic behavior when t � τcyl. This confirms that Ucyl

and τcyl are the adequate velocity and characteristic time that
describe the falling of the columns.

The variation of the particle mean density 〈n(t)〉/n0 versus
dimensionless time t/τη is presented in Fig. 3. For different
Reynolds number and initial particle densities, we observe a
first incompressible regime where 〈n(t)〉 is almost constant
followed by a weakly compressible regime where the mean
particle density experiences a slow time decay. While in
the main figure there seems to be different dynamics, the
inset of Fig. 3 shows that using the characteristic time τcyl

provides a better collapse of the data. In addition, we see that
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FIG. 3. (Color online) Variation of the reduced particle mean
density 〈n(t)〉/n0 versus dimensionless time t/τη for Rep = 4 × 10−5

and 4 × 10−3 and n0 = 32 and 160. The inset shows the variation of
the reduced particle mean density 〈n(t)〉/n0 versus the reduced time
t/τcyl for the same parameters.

t � τcyl corresponds to an incompressible regime, while
t � τcyl corresponds to a weakly compressible flow.

The deformations of the columns are displayed in Fig. 4.
It provides an adequate description of the dynamics of both
the reduced length H (t)/H0 and of the reduced mean radius
R(t)/R0 (calculated excluding the extremities of the column).
Once again, the dynamics of the column deformation for a
large set of different parameters h∗, n0, and Rep is represented
by universal curves. When t � τcyl the columns remain
undeformed, while for τcyl < t < 10τcyl the length increases
following a universal scaling as H (t) ∼ H0(t/τcyl)2/3 and the
mean radius decreases as R(t) ∼ R0(t/τcyl)−1/3. Assuming
a weakly compressible flow for t > τcyl (in agreement with
Fig. 3), the volume of the column has to remain constant,
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FIG. 4. (Color online) Variation of the reduced length of the
column H (t)/H0 versus reduced time t/τcyl for Rep = 4 × 10−5, 2 ×
10−4, 4 × 10−3, and 10−2; h∗ = 50, 100, 150, and 300; and n0 =
10, 32, and 160. The inset shows the variation of the mean reduced
radius of the column R(t)/R0 versus reduced time t/τcyl for the same
set of parameters.
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FIG. 5. (Color online) Variation of the reduced axial velocity
gradient (dVz/dz)/(n∗Uη/H0) versus reduced time t/τcyl for Re =
0.04, . . . ,200; h∗ = 50,300; and n0 = 10,32,160 with n∗ = 2πn0.
The inset shows the shape of a column (left) axial position z/R0

versus particle axial velocity Vz (right). The black line shows the
linear behavior of Vz with z.

i.e., πR(t)2H (t) ∼ πR2
0H0, which is well recovered by the

previous scaling laws.
Now let us focus on the strain rate dVz/dz selected at

a local scale. It is an important parameter to describe the
elongational stretching applied to the columns. It is known that
stretching stabilizes liquid columns and prevent instabilities
from growing and forming satellite drops [17]. Figure 5
provides a universal curve representing the variation of the
reduced axial velocity gradient (dVz/dz)/(n∗Uη/H0) versus
reduced time t/τcyl, where a different set of parameters
presents a good collapse. The elongation rate, or axial velocity
gradient (whose extent grows with time along the column), is
deduced from the axial velocities of the particles at the rear
of the columns, as shown in the inset. We see clearly that
in the incompressible regime (t < τcyl), the elongational rate
remains constant and scales like n∗Uη/H0. This scaling comes
from the fact that a single particle is on average surrounded
by 2N0/h∗ = n∗ particles (i.e., the particles contained in a
sphere of diameter 2R0), therefore its characteristic velocity is
n∗Uη while its characteristic axial length is H0. In the weakly
compressible regime (t > τcyl), dVz/dz decays like t−1. This is
consistent with an incompressible self-similar decay of the col-
umn radius R(t) ∼ R0t

α that gives (dVz/dz) = − 2
R

dR
dt

∼ t−1

independently of the thinning exponent α. Although not
strictly comparable as they perform event-driven simulations
of streams of particles interacting via collisions and cohesive
forces and not via hydrodynamic interactions, Ulrich and
Zippelius [16] showed a similar result in the case of particles
that fall in vacuum under the action of gravity. In that case the
elongational rate is simply retrieved from the incompressibility
condition and the velocity field imposed by the free fall.
Finally, Fig. 5 also displays snapshots of columns at different
Reynolds numbers. We observe that for t � τcyl, the columns
are cohesive and destabilization has not yet occurred, while
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HAMZA CHRAÏBI AND YACINE AMAROUCHENE PHYSICAL REVIEW E 88, 042204 (2013)

0.1 1 10 100
Re

0

20

40

60

80

100

λ/
R

0

n
0
=5

n
0
=10

0 0.2 0.4 0.6 0.8
t/τ

cyl

0

0.5

1

1.5

2
σ 

n 01/
2

Re=0.08, n
0
=10, h*=300

Re=0.8, n
0
=10, h*=300

Re=8, n
0
=10, h*=300

Re=0.08, n
0
=5, h*=300

Re=0.8, n
0
=5, h*=300

Re=8, n
0
=5, h*=300

0.01 0.1 1 10 100
Re

0
2
4
6

8
10

d(
σn

01/
2
)/

 d
t*

h*=300   

FIG. 6. (Color online) Variation of the reduced most unstable
wavelength λ/R0 versus Re for n0 = 5 and 10 and h∗ = 300. The
left inset shows the variation of the standard deviation of the
radial variation σ versus reduced time t/τcyl for n0 = 5,10; Re =
0.08,0.8,8; and h∗ = 300. The right inset shows the variation of
d(σn

1/2
0 )/dt∗ (calculated at short times) versus Re for n0 = 5,10 and

h∗ = 300 with t∗ = t/τcyl.

the columns for t > τcyl show a clear destabilization due to the
development of a varicose instability.

Finally, let us focus on the description of the instability that
leads to the destabilization of the columns. The main features
of the instability are shown in Fig. 6. In the main panel of
Fig. 6, we note that the value of the most unstable wavelength
λ is almost constant and shows no clear dependence on the
Reynolds number (λ was deduced from the interface profile).
In the regime Re � 1, we found λ ∼ 15R0 for n0 = 5 and
λ ∼ 12R0 for n0 = 10, which are both consistent with the
values found in earlier investigations [8,9] dedicated to the
effect of n0. The inset of Fig. 6 shows the temporal evolution
of the standard deviation of the reduced radial variation
(excluding the front drop) σn

1/2
0 for n0 = 5 and 10 and for

Re = 0.08,0.8,8. We see that the data collapse for Re � 1,
in good agreement with the results of Crosby and Lister, who
suggested that the growth of the standard deviation of the
reduced radial variation is mainly due to fluctuations in the
average number density of particles along the axial distance
about its mean value [9]. However, σ seems to present larger
values for Re � 1. This means that increasing the Reynolds
number may have a noticeable effect on the varicose instability.
This induces a stronger effective cohesion and leads to a more
efficient destabilization. These observations provide another
route to the instability of granular jets along with the recently
observed clustering due to cohesion and liquid bridges between
grains [14,15]. Furthermore, our results suggest that the
sedimentation of particle-laden jets may eventually furnish an
interesting system to study the compressible Rayleigh-Plateau
instability as suggested recently [18].

To conclude, we have shown that universal scaling laws
fully characterize the dynamics of free-falling granular
columns in viscous fluids. The characteristic velocity Ucyl

scales linearly with the particle density, while it shows a
logarithmic increase with the aspect ratio and a decreasing
logarithmic correction with the particle Reynolds number.
A universal characteristic time τcyl based on Ucyl and the
column length H0 has also been retrieved. When t < τcyl, the
flow could be considered as incompressible and the columns
deform only slightly and are subjected to a constant strain rate
n∗Uη/H0 while falling at a constant velocity Ucyl. For t > τcyl,
we showed that the flow was weakly compressible and that the
columns were subjected to an elongational rate decaying like
t−1, while they stretched like t2/3 and thinned like t−1/3 before
the development of a varicose instability leading to a long
wavelength destabilization. Finally, we found that the most
unstable wavelength of the instability of the order of ∼10R0

is almost independent of inertia corrections, while the growth
rate of the most unstable mode shows a clear increase with the
Reynolds number.
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