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Universal features of the jamming phase diagram of wet granular materials
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We investigate the influence of the shape of a particle on the structure of the jamming phase diagram of wet
granular materials. We compute the jamming phase diagram of wet dimers (two fused disks) and compare it with
that of the wet disks. Amplitude of the external force at solidification, i.e., the jamming force Fs , is computed
as a function of the packing fraction φ, the capillary bridge energy ε, and the aspect ratio of dimers α. Based
on data collapse, an equation for amplitude of the external force at solidification Fs(φ,ε,α) is derived. Fs has
scaling and logarithmic relations with φ and ε, respectively, exactly the same type reported for wet disks earlier.
Interestingly, Fs does not depend on the aspect ratio of dimers α. The only difference is that wet dimers are
found to be more stiffer than wet disks. However, the similarities of the equations describing Fs(φ,ε,α) of wet
dimers and disks imply that there exists, yet unknown, universal aspects of mechanical response of wet granular
materials to the external forces, independent from the particle shape. In addition, we study local orientation of
particles and its statistical properties.
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I. INTRODUCTION

Liu and Nagel [1] have proposed that dynamic arrest of
soft materials such as foams and granular particles together
with glassy systems undergoing glass transition possess a
universal phase diagram called the jamming phase diagram.
O’Hern et al. [2] have explored the jamming phase diagram
of frictionless bidisperse disks and have shown that at zero
temperature and at zero applied stress there exists a well-
defined point, the J point, above which the system develops
yield stress. On the other hand, Olsson et al. [3] have shown
that when the J point is approached from a flowing regime,
the crossover into the jammed state is a true second-order-like
phase transition. Simulations of the jamming of frictional disks
have shown that the structure of the jamming phase diagram
can depend on interactions between particles [4]. It is also
known that in the jammed systems, force chains are responsible
for development of yield stress [5]. Furthermore, topology of
the network of the force chains in granular materials is known
to depend on the particle shape [6,7]. Other studies have
revealed the influence of the particle shape on the jamming
transition of nonspherical particles, while only little has been
understood about the influence of the particle shape. It is shown
that jamming of frictionless ellipsoids have fundamentally
different dynamic exponents from those of spherical particles
[8]. However, measurements of yield stress of dimers and
ellipsoids revealed that the yield stress is independent of
convexity or concavity of dry granular particles [9].

Properties of granular materials change dramatically when
a small portion of liquid is added [10,11]. Due to capillary
bridges between particles, wet granular matter can develop
yield stress well below the random close packing (RCP)
limit. Accordingly, the current methods which study jamming
of dry granulates do not seem to be appropriate for wet
particles, therefore different methods should be introduced.
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To this end, we have developed a method based on applying
a heterogeneous driving force into the system [12]. We have
shown that for wet disks, even well below the RCP, there exists
a well-defined threshold for the amplitude of the external force
below which the system develops yield stress and transits into
a solidified quiescent state. Based on data collapse, we have
also found that the solidification force scales with the packing
fraction φ and has a logarithmic relation with the capillary
energy ε. In this manuscript, we will provide an answer to
the question if the microstructural properties of wet granular
materials can influence their jamming phase diagram. For our
purpose, we calculate the jamming phase diagram of wet
dimers and compare it with the one obtained for wet disks.
We find that the structure of the jamming phase diagram does
not change when wet disks are replaced with wet dimers,
hence, we get exactly the same relations as we have obtained
for wet disks.

This paper is organized as follows: in Sec. II we elucidate
basic properties of wet granular materials in the capillary
bridge regime, how we model the capillary interactions, the
numerical implementation for simulations, and preparation
of the initial packings. In Sec. III we present results of
extensive MD-type simulations of wet rigid dimers driven by
a sinusoidal force whose wavelength agrees with the length
of the simulation box. This section opens with snapshots
of the solidified (jammed) and fluidized states to give an
instantaneous perception on these complex states. Next, we
present profiles of the drift velocity Vy , the shear rate γ̇ , and
components of the stress tensor σ . Furthermore, we show
how the jamming point is measured and how the jamming
phase diagram of wet dimers is computed by measuring the
solidification point Fs as function of the packing fraction φ,
the capillary energy ε, and the aspect ratio of dimers α. In
Sec. IV, we address the similarities and differences of the
jamming phase diagram of wet disks and dimers. Finally, the
paper is closed in Sec. IV where the relation of the amplitude
of the external force at solidification Fs and the system size
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L is calculated by an analytical line of argument based on the
theory given in Ref. [12].

II. MODEL

The capillary bridges between particles in wet granular ma-
terials are responsible for stiffness of the system [10,13–17].
A capillary bridge forms instantaneously when two particles
touch one another, while thin films of liquid have already
covered their surfaces before the collision. The capillary bridge
forms at the contact point of two colliding particles and the
resulting bridge entails an attractive force Fc. When distance
between two particles exceeds a critical value sc, the capillary
bridge ruptures and some energy ε dissipates

ε =
∫ sc

0
Fcds. (1)

The dissipation is due to the hysteretic nature of the capillary
interactions and there is no other source of dissipation in the
current study.

A. Interactions

We investigate the influence of two types of interactions on
the collective behavior of wet granular materials under shear.
(i) Capillary interactions: We consider a minimal capillary
model in which the capillary force Fc is constant, as the
distance between particles changes [10]. In the simulations,
the minimal capillary force, Fc, is used as a force scale and
the capillary bridge energy, ε, is the only free parameter
determining the effect of the capillary bridges. (ii) Repulsive
interactions: Mutual repulsion between the monomers is
modeled by a soft-core nonlinear spring [2] giving rise to a
repulsive force,

Fr (rij ) =
{

Cij (Ri + Rj − rij )1/2 for rij � Ri + Rj

0 otherwise,
(2a)

where rij is the Euclidean distance between the center of
monomer i and j . In the spirit of Hertz’s contact law [18]
we set

Cij = C

(
RiRj

Ri + Rj

)1/2

(2b)

in order to account for different monomer radii. The global
parameter C controls the hardness of the monomers.

Newton’s equation of motion for dimer i reads

mi

d2ri

dt2
=

∑
j∈N (i)

eij fij (rij ), (3)

where mi = (m1 + m2)i is sum of the masses of its two
monomers, ri is the position of center of mass of dimer i,
N (i) is the set of neighbors j interacting with i, the unit
vector eij points from the center of dimer i to the center of
dimer j , and fij is the force exerted by dimer i on dimer
j . The latter force comprises the soft-core repulsion 2, and
whenever applicable also the attractive force, Fc, modeling
capillary bridges. Equation (3) is solved numerically for
both translational and rotational degrees of freedom using a
fifth-order predictor-corrector Gear algorithm.

= a / bα

b

a

FIG. 1. (Color online) Sketch of a dimer. A dimer is formed by
fusion of two disks. For a and b as the length of the major and minor
axes, the aspect ratio α is defined as a divided by b. We vary the
aspect ratio in the range 1 < α < 2 in our simulations. The rotational
and translational equations of motion are solved for center of mass
of the dimers numerically.

B. Numerical implementations

We perform MD-type simulations of 2D wet bidisperse
rigid dimers. Periodic boundary conditions are applied into
both directions. As a simplest example of concave particles,
we simulate wet dimers by fusing two wet disks. A sketch
of a dimer is shown in Fig. 1. For a and b as the length
of the major and minor axes, the aspect ratio of a dimer α

is defined as α = a/b, and we vary the aspect ratio in the
range 1 < α < 2. Furthermore, the RCP limit of dimers is
a function of the aspect ratio α and is given in Fig. 1 and
Ref. [9]. Accordingly, the packing fraction at the onset of
jamming for dry dimers φj is a monotonically increasing
function of the aspect ratio in the range 1 < α < 1.4, where
φj (α = 1) � 0.84 and φj (α = 1.4) � 0.8852, whereas φj is
a monotonically decreasing function of the aspect ratio for
α > 1.4 where the largest reported aspect ratio is φj (α =
1.9) � 0.86. The reason for such increase of φj is that as the
aspect ratio α becomes larger than 1, the number of contacts
per particle increases, and thus the packing fraction at the
onset of jamming φj is increased. The decrease of φj for
α > 1.4 is a direct consequence of the enhanced exclusion-
volume of orientationally disordered packings of elongated
particles [19].

In order to prevent crystallization, we have a 2:1 mixture
of small and large dimers where the ratio of minor axes of
the large and small dimers is set to 1.4. As mentioned before,
we consider two kinds of interactions in the simulations: First,
the capillary interaction due to the capillary bridges between
particles in the system for which we engage the minimal
capillary force and, second, a repulsive force among particles
acts when they collide and deform (or numerically overlap).
The repulsive force is given by Eq. (2), which describes a
nonlinear spring force.

Particles are driven by a spatially heterogeneous force that
reproduces the effects of shearing with gravity. Following
Ref. [12], the external force Fex(x) reads

Fex(x) = eyFe cos (2πx/L) . (4)

This force is applied at the center of mass of individual dimers.
The order parameter �vy is chosen as the difference of the drift
velocity vy of particles in a narrow column along the flow
at x = 0 and x = L/2, while the control parameter is the
amplitude of the external force Fe. When the system develops
yield stress and solidifies, we obtain �vy = 0; otherwise, in a
fluidized state, �vy �= 0.
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Granular temperature TG is defined as the mean fluctuating
kinetic energy of particles,

TG = 1

N

N∑
i=1

1

2
mi

((
vi

y − Uy(x)
)2 + (

vi
x

)2)
, (5)

where vi
y − Uy(x) is the y component of the velocity of particle

i subtracted from the local drift velocity Uy(x) at the spatial
position x. Since the external force is along the y direction,
the mean drift velocity along x direction is zero.

We utilize the Lubachevsky-Stillinger algorithm [20] to
prepare initial packings for simulations. More details about the
preparation of initial packings is given at Ref. [12]. Assuming
a constant mass per area, ρ, the individual mass of dimer
i equals its area. Throughout the remainder of this paper,
we employ dimensionless rescaled quantities based on the
capillary force, Fc, the mass density of the dimers, ρ, and the
average of minor axes of large and small dimers D. Time, t ,
and mass, m, are, hence, measured in units τ ≡

√
ρD3/Fc and

μ ≡ ρD2, respectively. Using these normalized quantities, it
is straightforward to normalize all physical quantities derived
from mass, length, and time, such as the local averages of
velocities and the shear rate.

III. RESULTS

A. Solidified (jammed) and fluidized states

Snapshots of the system are shown in Fig. 2. The top
and bottom figures show the solidified and fluidized states,
respectively. In the solidified state, the system has settled
down into a homogeneous stable state. If zoomed in, the
capillary bridges between particle can be seen by the blue
cylinders. The force chains, shown by the black cylinders with
the diameter dependent on the magnitude of the interparticle
forces, form vortexlike patterns. In the fluidized state, the
system is heterogeneous, i.e., dilute at x = L/4 and 3L/4,
where random motion of particles are highest and, according
to Eq. (5), the granular temperature TG has maxima, and is
dense at x = 0 and L/2, where particles have a pluglike drift
with very little random motion inferring that TG has minima.
Two maxima of the granular temperature TG at x = L/4 and
3L/4 are accompanied by maxima of the shear stress at the
same positions which is explicitly predicted by Eq. (9).

The structure of force chains in the fluidized state has
hierarchical patterns and differs from the one in the solidified
state.

B. Temporal evolution of the order parameter �vy

The order parameter is given by

�vy = 1
2 [vy(x = 0) − vy(x = L/2)], (6)

where vy(x) shows the average drift velocity of particles at the
lateral position x, along the flow direction in a narrow column
where the amplitude of the external force can be considered
constant. Figure 3 shows the order parameter �vy vs time
for six solidified and fluidized states, from bottom to top,
respectively. One can see that for solidified states, after some
rearrangements of the particles, which takes until t = 30, the
system develops yield stress and the order parameter becomes

FIG. 2. (Color online) Sketch of the system for both solidified
(top) and fluidized (bottom) states. The color code of particles shows
total magnitude of interparticle forces exerted by neighbors to the
particles ranging from 0 (green) to 6 (red). If zoomed in, capillary
bridges between particles with blue color can be seen. The force
chains are illustrated with black cylinders, each of which has a width
proportional to magnitude of the interparticle force. Top: Amplitude
of the external force is Fe = 5 × 10−3. The system has attained a
homogeneous state where the green and red particles are uniformly
distributed. Bottom: Amplitude of the external force is Fe = 1 ×
10−2. The system is visibly heterogeneous. The packing fraction is
φ = 0.8, the aspect ratio is α = 1.6, the capillary energy is ε = 0.05,
the system size is L = 40, and the number of dimers is N = 2070
(see the Supplemental Material for two movies of our simulations for
the solidified and fluidized states [21]).

zero in average. However, when Fe > Fs , the system settles
down into a dynamic stationary state where �vy becomes
nonzero in average. This is how we find the transition point
for a given configuration.
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FIG. 3. (Color online) Temporal evolution of the order parameter
�vy for six different amplitude of the external force Fe = 1.15 ×
10−2, 1.7 × 10−2, 1.9 × 10−2, 2.33 × 10−2, 3 × 10−2, and 4 × 10−2

from bottom to top, respectively. In the first three curves, representing
the solidified states, the average value of the order parameter is �vy =
0. For the rest of the curves, where the system is fluidized, the order
parameter converges to a nonzero value. In these simulations, the
packing fraction is φ = 0.7, the capillary energy is ε = 0.05, the
aspect ratio of dimers is α = 1.5, and the system size is L = 20.

C. Jamming and fluidization transitions

Figure 4 shows the dependence of the order parameter �vy

as function of the control parameter Fe. In these simulations,
the packing fraction is φ = 0.7, the aspect ratio is α = 1.5, the
capillary energy is ε = 0.05, and the system size is L = 20.
We start from a fluidized state (red symbols) far from the
solidification point at value Fe = 6.2 × 10−2 and decrease Fe

stepwise until it solidifies at value Fs = 2.2 × 10−2. Then
we increase the driving force amplitude Fe stepwise until it
refluidizes at the value Ff = 2.85 × 10−2. Both transitions
are discontinuous with large hysteresis resembling subcritical
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FIG. 4. (Color online) The order parameter �vy as function of
the control parameter Fe. We start at value Fe = 6.2 × 10−2, where
the system settles down into a fluidized state, and we decrease Fe

stepwise until it solidifies at Fs = 2.2 × 10−2. Then we increase the
driving force amplitude Fe, until the system refluidizes at value Ff =
2.85 × 10−2. Both transitions are discontinuous with large hysteresis
resembling a subcritical bifurcation. Both paths follow similar trends.
In these simulations, the packing fraction is φ = 0.7, the aspect ratio
is α = 1.5, the capillary energy is ε = 0.05, and the system size is
L = 20.
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FIG. 5. (Color online) Profiles of the average local drift vy

(curves indicated by arrow pointing to the left scale) and average
orientation of particles θ (curves indicated by arrow pointing to the
right scale), with respect to the vertical direction. The black and
red symbols correspond to values Fe = 3.3 × 10−2 and 6 × 10−2,
respectively. Local orientation of particles is not random and depends
systematically on the lateral position of particles and amplitude of
the external force Fe. In these simulations, the packing fraction is
φ = 0.7, the aspect ratio is α = 1.8, the capillary energy is ε = 0.05,
and the system size is L = 40.

bifurcation transition with an unstable branch below the
solidification point. This is in contrast to dry granular matter
in which the jamming transition is continuous. Both Fs and Ff

are found to be larger than those obtained for wet disks with
the same φ and ε [12], implying that wet dimers are stiffer
than wet disks.

D. Velocity and orientation profiles

In the solidified state, the system is almost homogeneous,
while in the fluidized state the system becomes extremely
heterogeneous: (i) dense at x = 0 and L/2, where the granular
temperature TG and the shear rate γ̇ have minima, and
(ii) loose at x = L/4 and 3L/4, where TG and γ̇ have maxima.
Figure 5 shows profiles of the local drift velocity vy and the
average orientation of the dimers θ . In this simulation, the
area fraction is φ = 0.7, the capillary energy is ε = 0.05,
the aspect ratio of dimers is α = 1.8, and the box size is
L = 40. All the local parameters are calculated along columns
where Fe takes constant values. We start to measure physical
quantities in t = 1000, up to which the system has already been
settled down into a stationary state, and continue measuring
them up until t = 2000. Each profile is an average over 1000
equidistance profiles in time. It is observed that the velocity
profile strictly depends on the shape of the driving force and
attains a cosinelike shape. The black and red symbols in Fig. 5
correspond to the values Fe = 3.3 × 10−2 and 6 × 10−2. The
average local orientation of particles with respect to the flow
direction seems to be the highest, θ ≈ 30, at x = 10 and
30, where the shear rate becomes maximal, and almost zero
at x = 0 and 20, where the shear rate becomes zero. The
overall distribution of orientation of the dimers and the spatial
correlation of the orientation of particles are given in the next
subsection.
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FIG. 6. (Color online) PDF of orientation of dimers θ , with
respect to the vertical direction averaged over all the particles in the
system. The light-green symbols show the PDF of θ for a solidified
state in which Fe = 7.6 × 10−3. All the points scatter uniformly
between the two limits. However, for the black, red, and blue symbols
where the system is fluidized and the amplitude of the external
force is Fe = 1.1 × 10−2, 2.2 × 10−2, and 3.3 × 10−2, respectively,
the distribution has a peak at θ = 0 and it monotonically decreases
away from the peak. Inset: The correlation function g(x)/g(0) versus
the spatial position x is shown for solidified and fluidized states
(more information provided in the main text). In these simulations
the packing fraction is φ = 0.7, the aspect ratio of dimers is α = 1.8,
the capillary energy is ε = 0.05, and the system size is L = 40.

E. Statistics of local orientation of dimers

Figure 6 shows the probability distribution of orientation
of dimers in the system. In this simulation, the packing
fraction is φ = 0.7, the aspect ratio of dimers is α = 1.8,
the capillary energy is ε = 0.05, and the system size is
L = 40. The orientation of the particles is calculated with
respect to the y axis and it is averaged over all values of
x. The orientation of the particles θ varies in the range
−90◦ < θ < +90◦. The light-green symbols show the PDF
of θ for a solidified state in which Fe = 7.6 × 10−3. All
the symbols scatter randomly between the range −90◦ <

θ < +90◦, without any systematic dependence on the lateral
position x. However, for the black, red, and blue symbols,
where the system is fluidized, the distribution has a peak at
θ = 0, and it goes down monotonically away from the peak.
One can see that the distributions of the orientation θ , in
solidified and fluidized states, dramatically differ. The inset
in Fig. 6 depicts the correlation function g(x)/g(0), where
g(x) =< θ (r)θ (r + x) >, and x is the lateral distance between
two dimers. In the fluidized state, the correlation function
decreases on increasing the lateral distance between two
dimers x and develops a minimum at around x = 12.5. One
may interpret the position of the minimum as the correlation
length for θ . Accordingly, the correlation length in the fluidized
state does change on increasing the amplitude of the external
force Fe. Also, the correlation length in the solidified state is
smaller than in the fluidized state.

F. Balance of interparticle and external forces

As a result of the balance of the external force with internal
stress, in both solidified and fluidized states, when the system

reaches the stationary state, we expect to have

∇ · σ = f, (7)

where σ is the stress tensor and f is the external driving force
per unit volume (this is a simplified version of the Navier-
Stokes equation). For f = NFe/A cos(2πx/L)êy , being the
density of the external force, we get

∂Sxy

∂x
= NFe

A
cos

2πx

L
, (8)

where Sxy is the off-diagonal component of the stress tensor
σ , N is the number of dimers, and L is the system size. After
integration, we obtain

Sxy = NFe

2πL
sin

2πx

L
, (9)

where we have supposed that particles are uniformly dis-
tributed in the system, and the area of the system equals
A = L2, and N is the number of dimers in the system. Figure 7
(top) shows profiles of the stress tensor for solidified and
fluidized states where the amplitude of the external force
has values Fe = 7.6 × 10−3 and 2.2 × 10−2, respectively. The
blue and maroon symbols show the simulation data, and
the orange solid lines show the prediction by Eq. (9). One can
see that the internal stress has counterbalanced the external
force. Figure 7 (bottom) shows the corresponding Sxx and
Syy for both states. Since there is no external force applied
along the x direction, Sxx should be constant throughout the
system, which is in accord with the data obtained from the
simulations. In the fluidized state, Syy has two maxima, where
the shear stress has also two peaks.
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FIG. 7. (Color online) Profiles of components of the stress tensor
for solidified and fluidized states with blue and maroon colors where
amplitude of the external force has values Fe = 7.6 × 10−3 and 2.2 ×
10−2, respectively. Top: Profiles of the shear stress Sxy . The dashed
lines show the predicted value by the theory. Bottom: Profiles of the
diagonal components of the stress tensor Sxx and Syy . In the fluidized
state, the diagonal element of the stress tensor along the x direction
Sxx is constant for both cases, but Syy has two maxima at x = 10 and
30 where the shear stress has its maximal values. The packing fraction
is φ = 0.7, the aspect ratio of dimers is α = 1.8, the number of dimers
is N = 819, the capillary energy is ε = 0.05, and the system size is
L = 40.
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G. Density dependence of the solidification force

In Ref. [12], we have shown that, as a result of counterbal-
ance of flux of the injected-dissipated power rates, the quantity
FsL/8ε is independent of the system size (this is checked
also for wet dimers in Sec. IV). Therefore, in the rest of this
paper, we study the dependence of FsL/8ε on the packing
fraction φ, the aspect ratio of dimers α, and the capillary
energy ε. We again observe that for φ < 0.52, the particles
condense into two persistent shear bands, moving opposite to
each other. These shear bands move with a constant velocity
and sometimes collide and heat up the system. Furthermore,
for φ > 0.52, the system responds to the external force by
developing an effective internal shear strength, while for
φ < 0.52 the yield stress cannot be attained. This crossover
from a fluidized state into the persistent shear bands can be
considered as a characteristic point in the phase diagram of
wet granular matter, similar to the J point for frictionless disks
(investigation of characteristics of such point, as a threshold for
emergence of yield stress, is beyond the scope of this paper).
On the other hand, for φ > φrcp(α), the confining pressure
diverges and fluctuations of the order parameter �vy exceeds
any reasonable limit. Therefore, we restrict our measurement
to the range 0.52 < φ < φrcp(α) (the value of φrcp(α) depends
on the aspect ratio of dimers α and is given at Ref. [9]).

Figure 8 shows dependence of the normalized solidification
force FsL/εas function of the packing fraction φ. The black,
red, and blue symbols correspond to the capillary energy ε =
0.01, 0.05, and 0.1, and the aspect ratio α = 1.5, 1.2, and 1.5,
respectively, where φrcp(1.2) = 0.877 and φrcp(1.5) = 0.844.
The solidification force changes slightly at small φ and shows
stronger dependence on the packing fraction φ in the dense
region and diverges at the RCP. Based on our findings for wet
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FIG. 8. (Color online) Dependence of FsL/ε on the packing
fraction φ. The black, red, and blue symbols correspond to values
ε = 0.01, 0.05, and 0.1, and α = 1.5, 1.2, and 1.5, respectively, where
φrcp(α = 1.2) = 0.877 and φrcp(α = 1.5) = 0.884. The dashed lines
show that the forces diverge as square root of (φrcp − φ)/φ. Amplitude
of the external force at solidification shows strong dependence on the
packing fraction φ close to the RCP. Although the capillary force does
not depend on the capillary energy, Fs weakly depends on the capillary
energy ε. The reason is that before the transition, particles possess
thermal-like motions. Inset shows that FsL/ε((φrcp − φ)/φ)1/2 takes
roughly constant values. The chi-squared per degrees of freedom is
χ 2 = 9.197 45, 3.2096, and 2.339 98 for the top, middle, and bottom
curves, respectively. The system size is L = 20.
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FIG. 9. (Color online) Amplitude of the external force at solidi-
fication FsL/ε vs the capillary energy ε. The red and blue symbols
correspond to φ = 0.7, and 0.76, respectively. The aspect ratio is
α = 1.2. The green dashed lines show the best logarithmic fits
(the same dependence was found for wet disks). For both packing
fractions, amplitude of the external force at solidification Fs increases
on increasing the capillary energy ε. Inset shows that FsL/ε/ ln

√
2ε

takes roughly constant values for different ε. The reduced chi-squared
per degrees of freedom is χ 2 = 14.3528, and 13.3783 for the top and
bottom curves, respectively. The system size is L = 20.

disks, we also expect to see the following dependence for wet
dimers:

FsL/ε ∼
(

φrcp − φ

φ

)−γ

, (10)

where γ is a positive exponent. As shown in the inset, the
exponent is found to be γ � 1/2. The quantity 1/(φrcp − φ)
equals the free volume available in the system for two particles
to pass. Since φ/(φrcp − φ) refers to the minimum number
of particles that should be displaced in order to make a free
volume for two particles to pass, the square-root scaling can
be interpreted as the statement that passing of two particles
triggers a small microcrack in the region which displaces N2

φ =
φ/(φrcp − φ) particles and ruptures Nφ capillary bridges.

Equation (10) has a prefactor that should depend on the
capillary energy ε as well as the aspect ratio α. Figure 9 shows
FsL/ε as a function of the capillary energy. The red and blue
symbols correspond to φ = 0.7 and 0.76, respectively, with
the aspect ratio α = 1.2. The system size is L = 20. The green
dashed lines show the best logarithmic fit to the data and the
inset demonstrates that FsL/ε/ ln

√
2ε takes almost constant

values.

H. Aspect ratio dependence of the solidification force
and the master plot

Dependence of the prefactor of Eq. (10) on the aspect ratio
is the last quantity to be examined. Figure 10 compiles our data
for the amplitude of the external force at solidification FsL/ε,
as a function of the aspect ratio. The red and blue symbols in
Fig. 10 correspond to the packing fraction φ = 0.7 and 0.76,
and the capillary energy ε = 0.05 and 0.01, respectively. We
see no systematic dependence of FsL/ε on the aspect ratio for
both data sets. Therefore, we conclude that the prefactor in
Eq. (10) is dominated by the influence of the capillary bridges.
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FIG. 10. (Color online) Amplitude of the external force at
solidification FsL/ε vs the aspect ratio of dimers α. The red and blue
symbols correspond to the packing fraction φ = 0.7 and 0.76, with
the capillary energy ε = 0.05 and 0.01, respectively. No systematic
dependence of amplitude of the external force at solidification FsL/ε

on the aspect ratio α is found. The mean value of the top curve is
approximately 2.5 times larger than that of the bottom curve. The
reason is that the top curve corresponds to a higher packing fraction.
The reduced chi-squared per degrees of freedom is χ 2 = 1.198 07 and
18.198 07 for the top and bottom curves, respectively. The system size
is L = 20.

It is therefore relevant to express Fs as function of φ and ε in

Fs � −C
8ε

L
ln

√
2ε

(
φ

φrcp − φ

)1/2

, (11)
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FIG. 11. (Color online) Ensemble of all data shown in Figs. 3, 4,
and 5. The data collapse shows that amplitude of the external force
at solidification Fs for wet dimers can well be described by Eq. (11)
with prefactor of value C = 0.55 ± 0.05. The light dashed line shows
the previous data collapse for wet disks. This prefactor is larger than
the one we previously reported for wet disks B = 0.45 ± 0.05 (the
dashed line), which demonstrates that wet dimers are stiffer than the
wet disks. On the other hand, the dependence is exactly the same
as the one we have found for wet disks. This implies that there is a
possibility to find universalities on the mechanical response of wet
granular material to the external forces.

where C = 0.55 ± 0.05. The prefactor C is obtained from
data collapse in Fig. 11. For the wet disks, we have found the
prefactor B = 0.45 ± 0.05, from a similar data collapse. This
increase in the prefactor shows that wet dimers have a larger
shear strength than wet disks.

IV. CONCLUSION AND OUTLOOK

The so-called jamming transition refers to development of
yield stress in a granular system. Lemaitre and Caroli studied
dependence of the strain rate to the strain for frictionless
bidisperse disks in a simple shear flow, and they found a
continuous transition from the flowing regime to the arrested
state [22]. Following that, we demonstrate here that existence
of a network of capillary bridges makes such transitions
discontinuous for both wet disks and wet rigid dimers. The
reason for such a distinct behavior may be better understood
if the reverse process, i.e., the solid-to-fluid transition, is
considered. Let us consider a pile of granular materials on
an inclined plane. It is well known that when the pile is
dry, for inclination angles larger than the angle of repose,
the pile fluidizes for any arbitrary small nonzero gravitational
acceleration [23]. However, when the pile is wet, above the
angle of repose, there exists a finite gravitational acceleration
below which the system is enabled to bear the external force
and stay in an arrested regime. The reason for such effect
is originated from the existence of elementary networks of
stretched capillary bridges [23]. The refluidization point Ff in
Fig. 4 is analogous to the solid-to-fluid transition of a granular
pile on an inclined plane. We see the same difference for the
jamming transition, i.e., fluid-to-solid transition, of dry and
wet particles where, in contrast to dry granulates, wet disks
and dimers have a discontinuous solid-to-fluid transition of
the strain rate (Fs in Fig. 4). These qualitative and quantitative
differences in the solid-to-fluid and fluid-to-solid transitions in
sheared wet granular material make them drastically distinct
from that of sheared dry frictionless granular materials. In
fact, our study shows that the discontinuity nature of such
transitions in wet granular materials does not depend on
the shape of particles and both disks and dimers share that
common feature.

We have also investigated the jamming phase diagram
of wet dimers and have compared it with the one reported
previously for wet disks [12]. Although wet dimers are found
to be more stiffer than the wet disks, we have found that the
structure of the jamming phase diagram does not change as
we consider wet dimers. This implies that the scaling relation
among the amplitude of the external force at solidification
Fs , the packing fraction φ, and its logarithmic dependence on
the capillary energy ε are universal features of mechanical
response of wet granular material to the external forces,
independent of the granular shape. Interestingly, we have found
that the arrest stress of wet dimers is independent from the
aspect ratio α.

Analogously with the J point in the jamming phase
diagram of dry spheres, we have discovered that there exists
a characteristic point at around φ � 0.52, where the system
crosses over from a nonergodic shear banding regime into an
ergodic yield stress state. This point is also independent from
the particle shape, and we have observed it for both wet disks
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and dimers. More study needs to be done to reveal if this point
is universal and it is independent from the driving mechanism.
In dry frictionless disks, there exists a characteristic point at
the packing fraction equal to φp � 0.55, where the probability
to obtain a systemwide spanning cluster maximizes [24]. The
difference between our observation and the one reported in the
aforementioned reference is that in the former for φ > 0.52
the system has a finite arrest and yield shear stress; in contrast,
in the latter the system is enabled to develop yield stress only
at the J point, φrcp = 0.84, which is well above the percolation
point φp � 0.55.

The next serious question is to inquire if the mechanical
properties of wet convex particles, such as wet ellipsoids,
can be grouped within the same universality class of wet
concave particles (e.g., wet dimers). Further investigation of
this hypothesis is of great importance as we deal in reality with
particles that have nonspherical shapes. Our naive expectation
for this question is that the yield stress of wet granular materials
should be independent of the concavity or convexity of the
particles. The reason is that we have demonstrated that the
structure of the jamming phase diagram for both wet disks
(convex) and wet dimers (concave) bear the common features.
As a result, there the hope to find a universality in this respect.

Results of this line of research can have broad consequences
for many disciplines, e.g., petroleum engineering. Despite
advances in oil recovery technology, no more than two-thirds
of an oil field can be extracted. An international group of
scientists contributed to an enhanced oil recovery research
program (EOR-ExploRe) for the British Petroleum energy
company. The aim was to increase the recovery of oil by 10%.
In an oil field, the oil is distributed within a porous medium,
and our current understating about such a system is limited to
physics of a mixture of two simple fluids distributed within
spherical beads. But in the oil fields, rocks and beads with
complicated shapes are suspended in a complex fluid [25].
These two research subjects will be the active avenues for
state-of-the-art research over the next few decades. Despite
the excessive complications of studying oil fields, the universal
properties emerging from the study of complex systems are the
only hope to set up a satisfactory physical model for such a sys-
tem. In this respect, understanding the mechanical properties
of external forces on wet irregular beads is an urgent task.
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APPENDIX

1. System-size dependence of the critical force

In order to get more insight into the solidification transition
and its dependence on the system size L, we assume a creeping
flow vy(x) at the onset of solidification. The power injected by
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FIG. 12. (Color online) Amplitude of the external force at
solidification, FsL/8ε, as function of the inverse of the system size
for packing fraction φ = 0.7 (lower line) and φ = 0.8 (upper line).
For both curves, the aspect ratio of dimers is α = 1.8 and the capillary
energy is ε = 0.05. The mean value of the green line for both cases
can be interpreted as the number of capillary bridges that should be
ruptured in order to let one particle displace one unit of length.

the external force is given by

〈Pinj〉 =
∫ L

0
vy(x)Fe(x)n(x)dx, (A1)

where n(x) is the number of particles in a rectangle of L × dx

along the flow direction. We approximate the velocity profile
by its first even harmonic,

vy(x) = �vy cos

(
2πx

L

)
. (A2)

Accordingly, the estimated injection rate can be written as

〈Pinj〉 = N
�vyFe

2
. (A3)

The dissipation rate due to rupture of the capillary bridges can
be given by

〈Pdiss〉 =
∫ L

0
n(x)γ̇ (x)νεdx = N

4νε�vy

L
, (A4)

where γ̇ (x) is the local shear rate at position x and ν is the
average number of capillary bridges per particle.

In the stationary state and very close to the solidification
point, and as a consequence of the balance of injection and
dissipation rates, we obtain

Fs = 8νε

L
. (A5)

Fs can be interpreted as the minimum force that keeps the
system in a flowing regime. One may conclude from Eq. (A5)
that (i) FsL/8ε is a dimensionless quantity that is independent
of the system size and (ii) the amplitude of the external
force at the solidification Fs scales with the inverse of the
system size. This theoretical prediction has been checked for
different system sizes L = 20, 26, 30, 36, and 40 for two
packing fractions φ = 0.7 and 0.8 by the red and blue symbols,
respectively (Fig. 12). In these simulations, the aspect ratio of
dimers is 1.8, and the capillary energy is ε = 0.05. In the figure
FsL/8ε is plotted versus the inverse of the system size L. Both
predictions by Eq. (A5) have been verified by the simulations.
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