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Coarse graining for the phase-field model of fast phase transitions
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Fast phase transitions under lack of local thermalization between successive elementary steps of the physical
process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not
have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly
nonequilibrium system. These master equations provide a further physical basis for evolution and transport
equations of the phase-field model used previously in the analyses of fast phase transitions.
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I. INTRODUCTION

The phase-field model presents a useful and elegant tool
for analysis of various free-boundary problems. A main idea
of the model is to describe the dynamics of a system by
conserved or nonconserved field variables, which change
steeply but continuously differentiable in an interfacial region
of finite width (diffuse interface) between transforming and
final phases. The evolution of this field is obtained from
the formalism of irreversible thermodynamics that makes the
model flexible for the analysis and numerical modeling of
various problems in materials physics, from solidification
phenomena up to pattern formation in colloidal solutions [1].

To have a robust base for equations of motion a coarse-
graining procedure is used in free-boundary problems. This
procedure consists of dividing a system into mesoscopic cells
and writing kinetic equations for the evolution of the atomic
configurations in a cell. Normally, a special assumption is
applied about a local equilibrium or full energetic thermal-
ization in every cell at the characteristic time scale of the
microstructure evolution. As an example, this procedure leads
to a mesoscopic master equation where the driving force is
derived from a coarse-grained free-energy functional of the
Ginzburg-Landau type [2–5].

Several useful advances of the coarse-graining procedure
were made for the phase-field equations, which describe
the dynamics of local equilibrium systems. For instance,
application of coarse-graining in time to the microscopic
density field of molecular-dynamics simulations leads to the
phase-field crystal model [6]. Moreover, a complete coarse-
grained derivation of a phase-field model for precipitation and
phase separation was presented by Bronchart et al. [7]. Their
derivation leads to a mesoscopic nonlinear Fokker-Planck
equation finally equivalent to a Cahn-Hilliard equation with
noise and with definite expressions for the mobilities and the
moments of the noise. Using the coarse-graining procedure in
the phase-field theory allows for the obtention of a mesoscopic
free energy to model properties of materials [8] or even
nonequilibrium effects, such as solute trapping by a rapidly
moving interface [9].
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For a high driving force of phase transformation, fast phase
transitions can be initiated, in which the phase boundaries
move with velocities comparable with the atomic diffusion
speed or with the speed of local structural relaxation [10].
Examples of such motion or transitions are known in trans-
port of non-Newtonian fluids, viscoelastic bodies, rapidly
solidifying alloys and systems, materials deeply quenched
into the spinodal region, and, more generally, systems with
memory [11,12]. Considering microscopic accessible states of
particles (atoms or molecules), one should accept the absence
of local equilibrium in fast phase transitions because the
particles do not have enough time to sample all the phase
space. The number of microstates accessible to each of them
will be lower than in equilibrium; therefore, a local equilibrium
hypothesis fails. Phenomenologically, fast phase transitions
are described using memory kernels, which, in a simplest case
of their exponential relaxation, provide a system of hyperbolic
partial differential equations for dynamics of interface motion
and transport of matter [13,14].

In this paper we generalize the analysis of Bronchart
et al. [7] to fast phase transitions described by the phase-field
model. One of the remarkable features of fast transitions is
that the system lacks sufficient time for local thermalization
between consecutive elementary steps of the process. We
shall consider two different situations, namely, a lack of
thermalization in the local energy distribution and in the
local momentum distribution. Both these situations lead to
non-Markovian processes, which in some conditions may be
described at the mesoscopic level by means of a hyperbolic
differential equation for a conserved parameter, the particle
concentration. These derivations provide an explicit physical
basis to the previous analysis of fast phase transitions using
such hyperbolic equations that give satisfactory information
for the short-time dynamics of processes such as the initial
stages of spinodal decomposition, rapid solidification, etc., as
well as for long-time dynamics [14].

The paper is organized as follows. Section II describes
the system being considered. In Sec. III, a non-Markovian
master equation is derived for fast phase transitions, which do
not have enough time to thermalize the energy distribution.
Atomic transport in phase transitions for systems with inertia,
lacking time for momentum thermalization, is described in
Sec. IV. The corresponding non-Markovian master equation
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is derived for analysis of very short periods of transitions (at the
absence of momentum thermalization) as well as transitions
under local thermodynamic equilibrium (upon momentum
thermalization). Finally, Sec. V presents a discussion of the
obtained results together with outcomes of the present work.

II. MARKOVIAN MASTER EQUATION
AND DESCRIPTION OF THE SYSTEM

The system being considered is an alloy composed of A

and B atoms in a line or a regular lattice. An instantaneous
configuration of the alloy at a microscopic level is given
by C ≡ (p1 . . . pi . . . pj . . . pN ), pi being the probability of
occupancy of an atom B to the site i, and 1 − pi the probability
of occupancy of an atom A to the site i. A configuration of the
alloy evolves by the following master equation [5,7]:

∂P (C,t)

∂t
=

∗∑
i,j

W (Cij ,C)P (Cij ,t)

−
∗∑
i,j

W (C,Cij )P (C,t). (1)

Here, P (C,t) is the probability distribution of finding con-
figuration C at time t , W (C,Cij ) is the transition rate from
configurations C to Cij , where Cij is a configuration identical
to C, except that atoms at sites i and j have been mutually
exchanged. The stars in the sums mean that Eq. (1) is restricted
to first-neighbor exchanges.

The authors of Ref. [7] assumed that the time scale between
successive atom exchanges, let us say the time t0, is long
enough for thermalization of the system after the exchange.
Namely, assume that in the jump at time t , a particle A

previously at site j arrives to site i and a particle B previously
at site i arrives at site j . Before the next jump, the system
has time enough to thermalize in such a way that the energy
probability distribution feq at sites i and j is the canonical one,
namely,

feq ∝ f A
eq,if

B
eq,j ∝ exp

{
β
[
hA

i (C) + hB
j (C)

]}
, (2)

where β = (kBT )−1 is the Boltzmann factor with the tem-
perature T and the Boltzmann constant kB , hA

i (C) is the
interaction energy between site i and the rest of the system
in configuration C when site i is occupied by an atom A.
An analogous definition is true for hB

j (C). The hypothesis
about full thermalization has been used in Ref. [7] to set the
expression for the transition rates as

W (C,Cij ) ∝ θ ′δ(pi)δ(pj − 1)feq

= θ ′δ(pi)δ(pj − 1) exp
{
β
[
hA

i (C) + hB
j (C)

]}
, (3)

with θ ′ = θ exp [−2βEs], θ being a characteristic attempt
frequency, and Es the energy of the barrier that particles must
surpass for the jump exchange of atoms between sites i and
j to take place, and δ(pi) are the Kronecker deltas related
to the presence of A in i and B in j . Equation (3) has been
used to describe precipitation in a binary mixture, where the
process from a well-mixed initial state to a two-phase final
state with components A and B forming two different regions
takes place [7].

III. MASTER EQUATION IN THE LACK
OF ENERGY THERMALIZATION

Our aim is to generalize the idea about coarse-grained
derivation presented in Ref. [7] to fast phase transitions
[14]. The main feature characterizing a fast transition in the
present content is that the time t0 elapsed between successive
elementary steps of the physical process is not long enough
to allow for a true thermalization of the system. Therefore,
first, we consider the lack of energy thermalization for the
elementary steps characterizing particle exchanges between
sites i and j .

To describe the degree of thermalization we need an
evolution equation for the local probability distribution (f )
of energy. Here, for the sake of simplicity, we will consider
the simplest relaxation time approximation:

∂f

∂t
= − 1

τ
(f − feq), (4)

with τ the relaxation time characterizing the local thermal-
ization of the energy, and feq the corresponding equilibrium
distribution function. In Eq. (4) we refer to feq in general terms,
namely, not directly referring to our system but rather to the
generic expression of the usual relaxation-time approximation
for the distribution function. In our system, for instance, Eq. (4)
would apply to fi , the energy distribution function at each ith
site.

Thus, one has two microscopic characteristic times: the
time t0 between successive particle jumps and the local
thermalization time τ . A slow transition occurs for t0 � τ and
fast transitions correspond to t0 ≈ τ or t0 < τ . For the diffusion
process, this situation is considered in details in Ref. [15].

A. Evolution of the alloy’s configuration

In the situation analyzed by Bronchart et al. [7], the energy
distribution (f ) of the system after a time t0 following a jump
of a particle A from j to i and of a particle B from i to j will
be, according to Eq. (4),

f ∝ f A
i f B

j ∝ {
exp

[
βhA

i (C)
][

1 − exp
(−t0

/
τAi

)]
+ exp

[
βhA

j (C)
]

exp(−t0
/
τAj

)
}

× {
exp

[
βhB

j (C)
][

1 − exp
(−t0

/
τBj

)]
+ exp

[
βhB

i (C)
]

exp
(−t0

/
τBi

)}
, (5)

where τAi,j
and τBi,j

are the respective thermalization times
of the system after the particle A (or B) arrives at site i (or
j ), respectively. The times τA and τB play the role of τ from
Eq. (4), but refer to the distribution functions of particles A and
B, respectively. For notational simplicity, we assume that this
relaxation time is independent of the site i or j , but in general
it could also depend on the site. Obviously, when t0 � τA and
t0 � τB , Eq. (5) simply reduces to Eq. (2).

The distribution function Eq. (5) leads to a new type of the
master equation which, in fact, will be non-Markovian. This
could be seen from the following argumentation.

Equation (5) takes explicitly into account that the energy
distribution function of particle A (respectively, particle of
B-sort) for times t not much longer than t0 is not yet the
Boltzmann equilibrium distribution function for A at its final
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site i. The distribution function Eq. (5) tends to the equilibrium
distribution exponentially [see the first term in the right-hand
side of the first line of Eq. (5)], while it is “forgetting”
exponentially the initial distribution function it had at site
j [see the second term in the right-hand side of Eq. (5)].
Analogously, this is true for particle B [see the third and
fourth lines of Eq. (5)]. In the following step, at t = 2t0, the
distribution function for A at the initial site of the second step
will no longer be the Boltzmann distribution function at that
site, but the expression given by the first and second lines of the
right-hand side of Eq. (5), and so on (and analogously for B,
of course). Thus, the actual distribution function f at any time
t will be a complicated expression of the history of the system
between the initial time (say, 0 or t ′) and the actual considered
time t . In steady-state systems, the history will depend only
on t − t ′, but not on the particular initial time t ′.

Nonequilibrium distribution Eq. (5) assumes that the initial
state before the first jump exchange was a state of full
equilibrium. This will not be the case after successive jumps.
As this takes place, the transition rates Eq. (3) should use,
instead of feq given by Eq. (2), the actual distribution function
f as given by Eq. (5). Since f in Eq. (5) depends not only on t

but it is in general a complicated function of t − t ′ (t ′ being the
initial time of the whole process), Eq. (1) with instantaneous
transition rates depending only on the considered instant t , will
become a generalized master equation with memory kernels
dependent on t − t ′. Hence, Eq. (1) takes the following generic
form:

∂P (C,t)

∂t
=

∗∑
i,j

∫ t

0
W (Cij ,C,t − t ′)P (Cij ,t ′)dt ′

−
∗∑
i,j

∫ t

0
W (C,Cij ,t − t ′)P (C,t ′)dt ′. (6)

In Eq. (6) we have taken the integration limits from 0 to
t , because we assume that the process begins at t = 0. An
alternative extreme possibility that is also often adopted would
have been to assume that the process began at t = −∞. Since,
in fact, the relaxation times are relatively short compared to
macroscopic observation times, these different expressions are
essentially equivalent.

The generalized master Eq. (6) is analogous to well-known
equations with memory as, for instance, the Mori functional
equation (see Ref. [16] and Chapter 7 in Ref. [12]). The
memory kernels W (Cij ,C,t − t ′) and W (C,Cij ,t − t ′) govern
the current evolution of the alloy’s configuration through its
past relaxation of local states. For instance, in the case when the

time t0 between successive steps is smaller than the relaxation
times τA and τB , Eq. (5) for t − t ′ = n0t0 (n0 being the number
of time steps of the system) would have the form

f (t − t ′) ∝ exp
[
βhA

j (C)
]

exp(−n0t0/τA)

× exp
[
βhB

i (C)
]

exp(−n0t0/τB).

In doing so, the corresponding transition kernels W (C,Cij ,

t − t ′) and W (Cij ,C,t − t ′) would also have an exponential
form in t − t ′:

W (Cij ,C,t − t ′) = τ−1W0(Cij ,C) exp[−(t − t ′)/τ ].

In this exponential case, the master Eq. (6) becomes

τ
∂2P (C,t)

∂t2
+ ∂P (C,t)

∂t

=
∗∑
i,j

W0(Cij ,C)P (Cij ,t) −
∗∑
i,j

W0(C,Cij )P (C,t). (7)

Equation (7) describes the evolution of probability for the
whole configuration of the alloy. This equation represents
the simplest non-Markovian generalization of Eq. (1). One
should especially note that the alloy’s configuration may
strongly depend on the memory kernels W (Cij ,C,t − t ′) and
W (C,Cij ,t − t ′) in Eq. (6). This is shown in consideration of
the concentration evolution described in the next section (see
Table I). As such, to describe realistic systems undergoing fast
transition, the choice of the memory kernels for the concrete
dynamics of conserved and nonconserved phase-field variables
should be microscopically motivated.

B. Coarse-grained concentration

Using the arguments and coarse-graining procedure of
Bronchart et al. [7], we now derive one of variants of the
phase-field models for the system described by Eq. (6). In
particular, we derive the phase-field for the phase separation
with the diffusive interface, i.e., the Model B by classification
of Hohenberg and Halperin [17].

Let us divide the system into cells of linear size d and
assume that Nd = (d/a)3 is the number of sites in each cell,
where a is the characteristic distance between sites. Further,
we define mesoscopic configuration C̃ = (c1 . . . cn . . .) with
cn = N−1

d

∑
i∈n pi the average concentration of B atoms in

cell n. The diffusion transport equation for c̃, which has been
analyzed in the literature [5,7], may be generalized by taking
into account the evolution prehistory and memory effects as

TABLE I. Memory kernels for different types of relaxation to local states with thermalization.

Type of the local relaxation dynamics Memory kernel �nm(C̃,t − t ′)

Dissipative propagation �(1)
nm(C̃,t)δ(t − t ′)

Wave propagation �nm(C̃,0) ≡ const

Exponential relaxation τ−1�(0)
nm(C̃,t) exp (− t−t ′

τ
)

Dissipation with relaxation �(1)
nm(C̃,t)δ(t − t ′) + τ−1�(0)

nm(C̃,t) exp (− t−t ′
τ

)

Exponential relaxation with oscillations τ−1�(0)
nm(C̃,t) exp (− t−t ′

τ
) cos[�(t − t ′)]
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follows:

∂cn(t)

∂t
= βa2

d2

(n)∑
m

∫ t

0
dt ′{�nm(C̃,t − t ′)

× [μm(C̃,t ′) − μn(C̃,t ′)]} + ξn(t), (8)

where n and m are adjacent cells. Here the average chemical
potentials μn within cell n are given by

μn(C̃) = gB
n (C̃) − gA

n (C̃), (9)

with the functions

gA
n (C̃) = (βNd )−1

∑
i∈n

ln
〈
δ[pi(C)] exp

[
βhA

i (C)
]〉
C/C̃,

(10)
gB

n (C̃) = (βNd )−1
∑
i∈n

ln
〈
δ[pi(C) − 1] exp

[
βhB

j (C
)]〉

C/C̃,

having the following transition kernels �nm

�nm(C̃,t − t ′) = θ ′ exp(0.5βgn,m),

gn,m = gA
n (C̃,t) + gB

n (C̃,t) + gA
m(C̃,t ′) + gB

m(C̃,t ′).
(11)

The noise ξn(t) in Eq. (8) is characterized by

〈ξn(t)ξn(t ′)〉 = 2

Nd

· a2

d2

(n)∑
p

�np(C̃,t − t ′),

(12)

〈ξn(t)ξm(t ′)〉 = − 2

Nd

· a2

d2
�nm(C̃,t − t ′).

Without memory effects, the function �nm(C̃,t − t ′) from
Eq. (12) is a δ-correlated function in time, i.e., �nm(C̃,t − t ′) =
�nm(C̃,t)δ(t − t ′) [7]. In the presence of memory effects,
the chemical potential Eqs. (9) and (10) should correspond
to a nonequilibrated system in such a way that gA

n (C̃) is
related to the expression exp [βhA

i (C)][1 − exp (−t0/τA)] +
exp [βhA

j (C)] exp (−t0/τA), which is commented on in Eq. (5).
Further details of noise modifications arising from the fast
character of transitions is given through the example of phase
separation by the spinodal mechanism in Ref. [18].

The memory kernels �nm(C̃,t − t ′) in Eq. (8) characterize
the type and intensity of relaxation to local thermalization.
Table I shows various types of relaxation by the memory
kernels. First, by choosing the memory kernel of the form
of δ function (see the first line in Table I) pure diffusive
dynamics takes place [as is given by Eq. (1)]. Second, if
the memory kernel is given by the constant value (see the
second kernel in Table I), undamped waves will propagate in
the alloy’s concentration. Third, for the exponential relaxation
to local thermalization (see the third kernel in Table I, which
is given by the so-called Maxwell’s relaxation function),
the concentration evolves through the diffusive and wave
mechanisms. This evolution is given by the “telegrapher”
equation, which predicts damped wave propagation by the
hyperbolic differential equations. Fourth, when the memory
is set by a more complicated kernel, namely, by the sum
of δ-like and exponential functions (see the fourth line in
Table I, which is given by the so-called Jeffreys relaxation
function), the relaxation proceeds by damped waves together
with gradient’s temporal relaxation of the chemical potential

(see Ref. [19] for the concrete equation of fast transitions).
Finally, fifth, by setting the memory kernel as the exponential
relaxation with oscillations having the frequency � (see
the fifth kernel in Table I), one can analyze the alloy’s
configuration by the equation with the third time derivative
as well as including all the above mentioned processes (i.e.,
with damped waves and with the gradient’s temporal relaxation
of the chemical potential). It should be noted that the inclusion
of memory effects (excluding, of course, the δ-like function
from Table I) can essentially delay the concentration evolution
and, therefore, the time for the system to thermalize might not
suffice prior to the start of the fast phase transition.

In the particular case of the exponential memory kernel,
�nm(C̃,t − t ′) = τ−1�(0)

nm(C̃,t) exp [−(t − t ′)/τ ] (see the third
kernel in Table I), we may rewrite Eq. (8) as

τ
∂2cn(t)

∂t2
+ ∂cn(t)

∂t

= βa2

d2

(n)∑
m

�(0)
nm(C̃,t)[μm(C̃,t) − μn(C̃,t)] + ξ ∗

n (t), (13)

where the noise term ξ ∗
n (t) is characterized by

〈ξ ∗
n (t)ξ ∗

n (t ′)〉 = 2

Nd

· a2

τd2

(n)∑
p

�(0)
np (C̃,t) exp

(
− t − t ′

τ

)
,

(14)

〈ξ ∗
n (t)ξ ∗

m(t ′)〉 = − 2

Nd

· a2

τd2
�(0)

nm(C̃,t) exp

(
− t − t ′

τ

)
.

Equation (13) describes the evolution of the coarse-grained
concentration of the second component of the binary mixture.
Introducing the memory effects and obtaining the hyperbolic
Eq. (13) leads to the exponential temporal correlation of the
noise as predicted by Eq. (14). Therefore, internal stochastic
process influence the fast phase transitions in the form of
colored noise but not in the form of δ-correlated or “white
thermodynamic” noise (see also analysis in Ref. [18]).

An explicit form of the chemical potential from Eq. (13)
can be written with the definition of the free energy. In
fact, Bronchart et al. [7] find that the shape of the chemical
potentials μn appearing in Eq. (13) depend significantly on the
size of the coarse-graining cell d in such a way that there is not
a well-defined univocal continuum limit to the coarse graining
procedure. Here, following previous studies [5,7], we consider
the free energy in the form of the discrete Ginzburg-Landau
functional

F (T ,pi ; d) =
∑

i

f (T ,pi ; d)

+ ε(T ,cn; d)

2

∑
b

(pi+b − pi)
2, (15)

where the free-energy density f and stiffness ε are written
explicitly in such a way that these mesoscopic quantities
depend on the cell size d and summation over b means a
sum over all nearest-neighbor sites. For example, the present
coarse-graining procedure introduces the stiffness,

ε = εAA(T ,cn; d) + εBB(T ,cn; d)

2
− εAB(T ,cn; d),
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as the d-dependent energetic parameter of the free-energy
Eq. (15) with εAA, εBB , and εAB being the interaction
energies between pairs A − A, B − B, and A − B (or B − A),
respectively. In fact, we assume here that the interaction
between A atoms (or B atoms) exists also for different cells,
making some average on their separations, which change with
the cell size d.

It was additionally observed by Bronchart et al. [7] that in
spite of the fact that free energies, mobilities, and intensity of
noise depend on the coarse-graining size d, three simulations
carried out by them on the problem of precipitation in binary
mixture (with values d/a = 6, 8, 10) yield approximately the
same qualitative results for the volume fraction of precipitate
as a function of time. Thus, the overall method proposed in
Ref. [7] leads from the practical point of view to a consistent
macroscopic formalism roughly independent on d.

The expression for the effective macroscopic (d-
independent) free energy will depend on the system and
the situation at hand. In particular, in our previous analyses
[12,18,22], we have used an effective free-energy density of
the form

f (T ,pi) = −zεAA

2
(1 − pi)

2 − zεAB(1 − pi)pi − zεBB

2
p2

i

+β−1 [(1 − pi) ln(1 − pi) + pi ln pi] , (16)

where z is the coordination number of the lattice. Equation (16)
is suitable in the limit d → a, i.e., when d has the minimum
possible value, which is not strictly zero but is equal to the
distance a between atomic sites, and it is well defined, as a
given value of d is specified. Thus, one can state that (a) the
coarse-graining formalism leads to the d-dependence of the
mesoscopic functions and parameters (free energy, stiffness,
etc.); (b) the d-independent effective mesoscopic approach is
qualitatively consistent with the coarse-graining description,
and may be quantitatively satisfactory for a macroscopic de-
scription with the suitably chosen thermodynamic potentials,
mobilities, and relaxation time.

The explicit expression for the chemical potential is
obtained from the derivative of the free energy Eqs. (15)
and (16) with respect to the local occupation probability as

μi(C̃,t) ≡ ∂F

∂pi

∣∣∣∣
T

= μ
(hom)
i − ε(T ,cn)�bpi, (17)

where

μ
(hom)
i = (1 − pi)μA + piμB + β−1 ln

pi

1 − pi

(18)

is the contribution into the chemical potential from the
particles (components A and B) and their mixing, �bpi =∑

b(pi+b − pi) is the discrete Laplacian for the concrete
lattice, and μA = z(εAA − εAB) and μB = z(εAB − εBB) are
the chemical potentials of the atoms A and B, respectively.

The continuum limit would correspond to both d and a

going to zero. In this case, the several differences between
values of chemical potentials at different neighboring cells may
be written in the form of gradients, as we will mention. The
physical problem, however, may be found in the d-dependence
of the free energy and the chemical potential, as mentioned
above. Therefore, we consider the continuous limit d → 0 and
take the local (near-neighbor) approximation, (μm − μn)/d

tends to (μn+1 − μn)/d → ∇μ, into account, where μ is
now a continuous function of spatial coordinates (instead
of a function with values at discontinuous positions md, for
m integer numbers). Analogously, (βa2/d)lnm[(μm − μn)/d]
tends to (βa2/d)ln n+1(μn+1 − μn)/d → ∇ · [Mc(T ,c)∇μ],
with Mc(T ,c) the mobility given by βa2ln n+1 with c the
average local concentration. In fact, in the continuous limit
one gets a → 0 but the product a2ln n+1 should tend to a
finite constant value. As a result, Eqs. (13)–(18) present the
hyperbolic equation for the phase segregation by the spinodal
mechanism:

τ
∂2c

∂t2
+ ∂c

∂t
= �∇ · [Mc(T ,c) �∇μ] + ξ ∗

n (t), (19)

with the chemical potential

μ ≡ ∂F

∂c
= μ(hom)(T ,c; d) − ε(T ,c; d)∇2c. (20)

As for Eq. (15), we have written explicitly the d-dependencies
of μhom and ε to remind that the mesoscopic quantities depend
on the cell size d, although suitable phenomenological expres-
sions independent on d are eventually useful from the practical
view and consistent with the features of the results of micro-
scopic simulations. Obviously, different forms of the free en-
ergy and of the chemical potential from Eqs. (13) and (19) may
lead to different phase field models (see comments in Sec. V).

Hence, by application of the coarse graining procedure,
Eq. (19) represents the hyperbolic equation for spinodal de-
composition [13], which has been investigated mathematically
with regard to existence and uniqueness of its solutions [20].
Physically reasonable solutions of this equation and their
outcomes have been tested against experimental data [21].
In these tests, one of the important parameters of the first fast
stages of spinodal decomposition is the relaxation time τ as
introduced by Eq. (19). Its numerical values will define the
duration of the transition stage to a purely dissipative regime
of spinodal decomposition. To date, τ has been obtained only
by fitting theoretical comparison to experimental data. For
example, the relaxation time can be estimated in a wide range,
10−11(s) < τ < 10−7(s), as for a Co-Cu melt deeply quenched
into the spinodal region or for the amorphous SiO2-Na2O
system under spinodal decomposition [21]. Using these values
of τ , one may explain nonlinear behavior of characteristic
functions of spinodal decomposition, namely, in the ampli-
fication rate and structure factor [18,22]. In addition to the
present description using hyperbolic equation, an alternative
analysis leading to qualitative explanation of experimentally
observed nonlinearities in spinodal decomposition can also be
given using mean-field kinetic equations [23].

IV. TRANSITIONS WITH INERTIA: LACK OF
MOMENTUM EQUILIBRATION

Another situation in which a hyperbolic phase-field model
is needed is the case of correlated jumps, analogous to
correlated random walks [12,24]. In this case, it is assumed that
if a particle has jumped in one direction, the probability that
the next jump is in the same direction of the previous jump is
higher than the probability of jumping in the opposite direction.
This may also be seen as arising from a lack of complete
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thermalization in the momentum space, because in that case the
different directions of motion would be equivalent. To model
this situation, one assumes that the transition rate W (C,Cij )
depends not only on the situation at time t but also on the
previous jump exchange at time t − t0. For instance, let us
assume that Cij means exchanging particle B at i and particle
A at j . If i < j , this means that site i was more at left than site
j as in a simple one-dimensional situation. Finally, this would
mean that if particle B arrived to i from a previous jump from
left to right, and particle A arrived to j from a previous jump
from right to left, the rate W (C,Cij ) will be higher than in all
the other possibilities.

Following the analogy with the correlated random walk
[24], we split pi(t) as

pi(t) = p
(+)
i (t) + p

(−)
i (t) + p

(o)
i (t),

where p
(+)
i , p(−)

i , and p
(o)
i are the probabilities to find particles

of the sort B at site i, having arrived from the right (+)
or from the left (−), or which were already at ith site
(o). Here, for simplicity, we shall consider p

(o)
i as a small

quantity, i.e., most particles move at each step (one can
also avoid this hypothesis at the price of more cumbersome
expressions).

The transition rates, Wij (α) and Wij (γ ) [with Wij (α) >

Wij (γ )], are correlated (respectively, autocorrelated) with the
former exchange, which is denoted by the indices α or γ . α

means that the particle arrived at site i from the left (i.e.,
from some site i ′ with i ′ < i). γ means that the particle
arrived at site i from the right (i.e., from some site i ′ > i).
Furthermore, the transition rates Wij are used namely for
W (C,Cij ) to have shorter expressions for the probabilities,
such that

p
(+)
i (t + t0) − p

(+)
i (t)

t0

= Wi,i−1(α)p(+)
i−1(t) − Wi+1,i(α)p(+)

i (t)

+Wi,i−1(γ )p(−)
i−1(t) − Wi−1,i(γ )p(+)

i (t),

p
(−)
i (t + t0) − p

(−)
i (t)

t0

= Wi,i+1(α)p(−)
i+1(t) − Wi−1,i(α)p(−)

i (t)

+Wi,i+1(γ )p(+)
i+1(t) − Wi+1,i(γ )p(−)

i (t). (21)

Note that the transitions from the site i − 1 to the site i for
particles in i having arrived from the right in the former
exchange have a higher transition rate Wi,i−1(α) than the
transitions from the site i − 1 to the site i for the particles in
site i that arrived from the left in the former exchange, which
have the transition rate Wi,i−1(γ ). Analogously, one gets for
the transitions from the site i + 1 to the site i for particles
previously arriving from the right, Wi,i+1(α), or from the left,
Wi,i+1(γ ).

Equations (21) may be rewritten as

p
(+)
i (t + t0) − p

(+)
i (t)

t0

= Wi,i−1(α)pi−1(t) − vdp
(−)
i (t) − vsp

(+)
i (t),

p
(−)
i (t + t0) − p

(−)
i (t)

t0

= Wi,i+1(α)pi+1(t) − vdp
(+)
i+1(t) − vsp

(−)
i (t), (22)

with vd ≡ Wi,i−1(γ ) − Wi,i−1(α) = Wi,i+1(γ ) − Wi,i+1(α)
and vs ≡ Wi−1,i(γ ) + Wi+1,i(α) = Wi−1,i(α) + Wi+1,i(γ ). In
fact, the rate coefficients Wij (α) and Wij (γ ) could have
general sets of values, though not necessarily satisfying
these equations. A simple illustration can be provided as
follows.

Summation of Eqs. (22) yields (neglecting the role of po
i as

it has been already noted)

pi(t + t0) − pi(t)

t0
= Wi,i−1(α)pi−1(t) + Wi,i+1(α)pi+1(t)

− vd [p(−)
i (t) + p

(+)
i+1(t)] − vspi(t).

(23)

Taking into account the equality

pi(t − t0) = p
(+)
i+1(t) + p

(−)
i−1(t),

Eq. (23) can be rewritten as

pi(t + t0) − pi(t)

t0
= Wi,i−1(α)pi−1(t) + Wi,i+1(α)pi+1(t)

− vspi(t) − vdpi(t − t0). (24)

Thus, the values of pi(t + t0) depend on the values of pi at the
moments t and t − t0 in such a way that the non-Markovian
character is clearly seen. It is straightforward to show that
Eq. (24) is approximated as

vdt
2
0
d2pi

dt2
+ (1 − vdt0)

dpi

dt

= Wi,i−1(α)pi−1(t) + Wi,i+1(α)pi+1(t) − (vd + vs)pi(t).

(25)

Equation (25) is a hyperbolic master equation for de-
scription of the local probability of occupation of the i site
by the B atom. Obviously, this equation also predicts the
probability (1 − pi) of occupation of the i site by the A

atom. Coming from consideration of the correlated jumps of
particles, Eq. (25) seems to be important for the analysis of
atomic transport and diffusion of defects (vacancies, micro-
scopic imperfections, etc.) in phenomena of disorder trapping,
solute trapping, and degeneration of solute drag appearing
around a rapidly moving interface [10]. For vanishing correla-
tions, vd = 0 [i.e., for Wi,i−1(α) = Wi,i−1(γ ) and Wi,i+1(α) =
Wi,i+1(γ )], Eq. (25) reduces to the known Markovian master
equation.

V. FINAL COMMENTS AND CONCLUSIONS

Two physical situations concerning the fast phase tran-
sitions were studied. In the system of binary mixture we
assumed lack of energy thermalization and a lack of complete
thermalization in the momentum space of jumping particles
(atoms, molecules). It is shown that the mesoscopic description
of such processes requires going beyond the usual parabolic
differential equations for the evolution of the concentration.
This description requires hyperbolic transport equations in
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phase transformations, which have indeed been known to
provide a richer and more faithful description of several fast
transitions, such as fast solidification fronts [25] or initial
stages of spinodal decomposition [22].

Fast phase transitions are recognized as transitions having
different temporal scales with changing slow thermodynamic
variables (such as internal energy, chemical potential, con-
centration, etc.) and fast thermodynamical variables (such
as fluxes of heat and substances, rate of phase-field change,
etc.). For example, the atomic concentration and the diffusion
flux of atoms are physically motivated to be slow and fast
independent variables, respectively, in rapid solidification [25].
Also, reasonable incorporation of fast elastic relaxation and
slower mass diffusion leads to the hyperbolic (modified)
phase-field crystal equation [26]. Within this context, the
evolution equations for the diffusion flux have been considered
previously [14,15,22], which result in the hyperbolic evolution
equation for the concentration directly. Even though the use
of such formalism is efficient on quantitative and practical
grounds [10], from the conceptual viewpoint it provides only
a particular situation leading to hyperbolic equations. In the
present paper, we have given two other different physical
bases for hyperbolic equations of the phase-field model.
They are not directly related to relaxation effects in diffusion
transport but rather to nonequilibration of internal energy and
of linear momentum inbetween successive elementary steps
of the corresponding physical process. A specific feature of
the present particular derivation of hyperbolic differential
equations is that the noise is not δ-correlated in time (so-
called “white noise”) but it instead depends on prehistory of
thermalization (known as “colored noise”) [18].

Following the treatments for the coarse-grained concen-
tration, which lead to the hyperbolic transport Eq. (13) and
its continuum limit Eq. (19), one can analyze the discrete
distribution of atomic density—conserved variable used in the
phase-field crystal model [27]. Indeed, considering now the
probability pi to find the atomic density of B atoms at site i,
the free energy might be taken as

F (pi,T ) =
∑

i

f (pi,T ) − r1

∑
b

(pi+b − pi)
2

+ r2

2

[∑
b

(pi+b − pi)

]2

, (26)

where the free-energy density f (pi,T ) has the form of Eq. (16)
and r1 and r2 are the parameters of the crystal model [28].
Equation (26) represents the discrete analog of the concrete
free energy (see Ref. [29] and references therein) for the
description of locally periodic states, which, in general, is
given by the Brazovskii-Swift-Hohenberg functional [30].
Furthermore, just as Eq. (26), the free-energy with high-order
nonlocal terms has also been analyzed by Rosenau [4] within
the extension of the Ginzburg-Landau theory to high-gradient
domains. Obviously, with r2 = 0 and r1 = −ε/2, Eq. (26)
transforms into the discrete Ginzburg-Landau functional
Eq. (15). The explicit expression for the chemical potential
is obtained from the derivative of the free-energy Eq. (26)

with respect to the local probability as

μn(C̃,t) ≡ ∂F

∂pi

= μ
(hom)
i + 2r1�bpi + r2�

2
bpi, (27)

where �bpi = ∑
a(pi+b − pi) is the discrete Laplacian for

the chosen concrete lattice, �2
bpi = ∑

b(pi+b − pi)2 is the
discrete analog for the squared Laplacian, and μ

(hom)
i has

the same form as Eq. (18). Applying the same analysis and
analytical treatments, as is given for Eqs. (8)–(14), to the
nonuniform periodic atomic density, the hyperbolic Eq. (19)
with the continuum limit of chemical potential Eq. (27),

μ ≡ ∂F

∂c
= μ(hom) + 2r1∇2c + r2∇4c, (28)

is obtained. Equations (19) and (28) describe the hyperbolic
phase-field-crystal model as is previously introduced from
various physically motivated situations [19,26,31]. Therefore,
the use of coarse-graining procedures and various types of free
energy have led to overcoming different phase-field models.

A few comments on the obtained non-Markovian master
Eqs. (7) and (25), as well as the equation for coarse-grained
concentration, Eq. (13), can also be outlined. Avoiding
the restriction on the energy thermalization or momentum
equilibration, these equations describe atomic transport in fast
transitions under local nonequilibrium and slow transitions
evolving under local equilibrium conditions. Such general-
ization leads to the appearance of memory effects in the
equations describing non-Markovian kinetic processes, which
can, however, be obtained from the other physically reasonable
situations [32]. For instance, one can refer to a time-dependent
diffusion coefficient, which is considered as an alternative way
to introduce memory effects. Moreover, following the other
alternative description, one can even eliminate the memory
effects in the equations if a greater number of variables are
taken into consideration. Indeed, one can get a typically
Markovian equation for density by introducing density and its
flux as thermodynamically independent variables. Similarly,
the fast phase transition can be described by the Markovian
equations if high-order diffusion fluxes are included [12].

With regard to coupled processes, such as atomic diffusion
and phase-field dynamics (by classification of Hohenberg
and Halperin [17] it could be “Model C”), one can state
that, in the present work, we have considered just a single
relaxation time for the internal equilibration. In addition to
this, study of solute trapping by rapid solid-liquid front shows
that the diffusion coupled with the phase-field dynamics
in isothermal system requires introducing two characteristic
times for the local equilibration [33]. These two times are
related to a pair of characteristic speeds for disturbances
propagation as is described by the hyperbolic model tested
in atomistic simulations [34]. The values of τ depend on the
concrete system. As an example of the relaxation time of
the solute diffusion flux, one can estimate τ ∼ 10−10(s) for
semiconductors [33] and one can get 10−11(s) < τ < 10−7(s)
for binary alloy systems or inorganic solutions [14]. In
general, a given spectrum of relaxation times for the internal
equilibration of the different variables of the system should be
taken into account. This would lead to more complicated but
more faithful evolution equations.
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