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We describe a mean field interacting particle system in any number of dimensions and in a generic external
potential as an ideal gas with fractional exclusion statistics (FES). We define the FES quasiparticle energies, we
calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations.
The FES gas is “ideal,” in the sense that the quasiparticle energies do not depend on the other quasiparticle levels’
populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that
the FES formalism is equivalent to the semiclassical or Thomas Fermi limit of the self-consistent mean-field
theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by
making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural
semiclassical ideal gas description of the interacting particle gas.
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I. INTRODUCTION

Quantum (Bose or Fermi) statistics is a very basic concept in
physics, directly arising from the indiscernability principle of
the microscopic world. However effective models employing
different statistics have proved to be very useful to describe
some selected aspects of complex interacting microscopic
systems. As an example, an ideal Fermi gas with Fermi-Dirac
statistics can be described in certain approximations by a
Boltzmann distribution with repulsive interaction, while a
bosonic ideal gas, by an attractive potential [1]. On more
general grounds, the statistical mechanics of fractional exclu-
sion statistics (FES) quasiparticle systems was formulated by
several authors [2–5], based on the FES concept introduced
by Haldane in Ref. [6]. This has been a prolific concept
and was applied to both quantum and classical systems
(see e.g., [3,4,6–25]).

A stochastic method for the simulation of the time evolution
of FES systems was introduced in Ref. [26] as a generalization
of a similar method used for Bose and Fermi systems [27],
whereas the relatively recent experimental realization of the
Fermi degeneracy in cold atomic gases has renewed the interest
in the theoretical investigation of nonideal Fermi systems at
low temperatures and their interpretation as ideal FES systems
[23,28–31].

The general FES formalism was amended to include the
change of the FES parameters at the change of the particle
species [15,32–34]. This amendment allows the general imple-
mentation of FES as a method for the description of interacting
particle systems as ideal (quasi)particle gases [16,17,35,36].
However, the level of approximation of such a description and
the connections with other many-particle methods are not yet
clear.

A rigorous connection between the FES and the Bethe
ansatz equations for an exactly solvable model was worked
out in Refs. [7,13,37] in the one-dimensional case. In higher
dimensions, one can expect that the statistics and interaction

would not be transmutable in general because interaction and
exchange positions between two particles can occur separately.
However indications exist that a mapping might exist between
ideal FES and interacting particles with regular quantum
statistics in the quasiparticle semiclassical approximation
given by the self-consistent mean-field theory. Indeed, in
Refs. [20,21] the FES was applied to describe Bose gases
with local (δ function) interaction in two-dimensional traps in
the Thomas Fermi (TF) limit. In this paper we generalize this
result to apply FES to Bose and Fermi systems of particles with
generic two-body interactions in arbitrary external potentials
in the Landau or TF semiclassical limit in any number of
dimensions. We define quasiparticle energies which determine
our FES parameters and using these we calculate the FES
equilibrium particle distribution. Moreover, we calculate the
particle distribution also starting from the mean-field descrip-
tion by defining the Landau type of quasiparticles, and we show
that the two descriptions are equivalent, i.e. the populations are
identical, provided that we make the mapping between the FES
and Landau’s quasiparticle energies. This equivalence proves
that our FES description of the interacting particle system
corresponds to a self-consistent mean-field approximation.
Such an approximation, though certainly not adequate to fully
describe strongly interacting quantum systems, is the basis of a
number of highly predictive theoretical methods in many-body
physics, from Landau Fermi liquid theory to density functional
methods in correlated electron or nucleon systems.

The structure of the paper is as follows. In Sec. II we
introduce our model and calculate Landau’s equilibrium parti-
cle population in the TF approach. In Sec. III we implement the
FES description by using alternative quasiparticle energies and
a definition of species. These species are related by the FES
parameters, which we calculate. Using the FES parameters
and quasiparticle energies we write the equations for the equi-
librium particle populations. By making the correspondence
between Landau’s and the FES quasiparticle energies, we show
that the FES equations are satisfied by Landau’s populations.
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This proves that the FES formalism is consistent and suitable
for the description of such interacting particle systems and
that the FES quasiparticle populations may be calculated by
Landau’s approach, using the correspondence between the
quasiparticle energies. In Secs. IV and V we show some
numerical and analytical examples, respectively, whereas in
Sec. VI we give the conclusions.

II. THE MODEL IN LANDAU’S APPROACH

Let us consider a system of N interacting particles described
by the generic Hamiltonian:

Ĥ =
∑
ij

(tij + Vij )â†
i âj + 1

2

∑
ijkl

vijkl â
†
i â

†
j âl âk, (1)

where the indexes i,j,k,l denote the single particle states,
and â

†
i (âi) are creation (annihilation) operators obeying com-

mutations rules which define the quantum statistics of the
system (Bose or Fermi). We assume that the particle-particle
interaction v(|r − r′|) depends only on the distance between
the particles, whereas the external potential is Vext(r). In the
mean-field approximation the total energy of the system can
be written as

E =
∑

i

(ti + Vi)n
(±)
i + 1

2

∑
ij

vij n
(±)
i n

(±)
j , (2)

where ti = 〈i|t̂ |i〉 are single-particle kinetic energies, Vi =
〈i|V̂ext|i〉, and vij = 〈ij |v̂|ij 〉 ∓ 〈ij |v̂|ji〉 are antisymmetrized
(symmetrized) matrix elements for fermions (bosons). The
upper and lower signs in the superscripts of the occupation
numbers n

(±)
i stand for fermions and bosons, respectively.

At the thermodynamic limit, the finite temperature prop-
erties of the system can be accessed via the grandcanonical
partition sum defined by the mean-field one-body entropy
as

ln(Z)βμ = ∓
∑

i

{[1 ∓ n
(±)
i ] ln[1 ∓ n

(±)
i ] ± n

(±)
i ln n

(±)
i }

−β(E − μN ), (3)

Maximizing this function with respect to the single particle
occupations gives the equilibrium particle populations,

n
(±)
i = [eβ(ε̃i−μ) ± 1]−1, (4)

where the quantities ε̃i ≡ ∂E/∂ni = ti + Vi + ∑
j Vijn

(±)
i are

Landau’s quasiparticle energies.
If we assume a large number of particles, and a suffi-

ciently slowly varying external potential, we can employ the
Thomas-Fermi (or Landau) theory which amounts to extending
this mean-field formalism to a finite inhomogeneous system
employing a semiclassical limit for the kinetic energy. We
can divide the system into macroscopic cells δr, centered at
r, where the external field is locally constant and apply the
thermodynamic limit in each cell. The single-particle energies
are continuous variables and it is meaningful to introduce the
density of states (DOS) in each cell as δrσ (r,t). Then the

quasiparticle energies read

ε̃r(t) = t + Vext(r) +
∫

�

dsr′
∫ ∞

0
v(|r − r′|)

× n(±)(r′,t ′)σ (r′,t ′) dt ′. (5)

We observe that the sum of the quasiparticle energies

Ẽ =
∫

�

dsr
∫ ∞

0
ε̃r(t)n(±)(r,t)σ (r,t) dt (6)

is not equal to the total mean-field energy E, because of the
well-known double counting of the interactions.

III. THE FES FORMALISM

Now we want to show that the semiclassical Thomas-Fermi
results can be reproduced by an ideal system, provided that
such a system obeys FES. A FES system consists of a countable
number of species, denoted here by an index, I or J (we use
capital letters to denote species). Each species I contains GI

available single-particle states and NI particles, each of them
of energy εI and chemical potential μI . If the particles are
bosons, GI represents also the number of states in the species.
If the particles are fermions, the number of single-particle
states in the species I is TI = GI + NI . The FES character of
the system consists of the fact that if the number of particles
in one species, for example, in species I , changes by δNI ,
then the number of states in any other species J changes as
δGJ = αJI δNI for bosons, or δTI = αJI δNI for fermions.
The parameters αIJ are called the FES parameters. The total
number of microconfigurations in the system is

W
(−)
{(GI ,NI )} =

∏
I

(GI + NI − 1)!

NI !(GI − 1)!
(7a)

for bosons and

W
(+)
{(TI ,NI )} =

∏
I

TI !

NI !(TI − NI )!
≡ W

(−)
{(TI −NI +1,NI )} (7b)

for fermions; the products in Eqs. (7) are taken over all the
species in the system. Using Eqs. (7) and the fact that all
the particles in a species have the same energy and chemical
potential, we write the partition functions,

Z (+) =
∑
{NI }

Z (+)
{(TI ,NI )} and Z (−) =

∑
{NI }

Z (−)
{(GI ,NI )}, (8)

where we used the notations

Z (+)
{(TI ,NI )} =

∏
I

TI !

NI !(TI − NI )!
e−β(εI −μ)NI , (9a)

Z (−)
{(GI ,NI )} =

∏
I

(GI + NI − 1)!

NI !(GI − 1)!
e−β(εI −μ)NI . (9b)

In Eqs. (9) we made the usual simplifying assumption that
all the chemical potentials in all the species are the same, i.e.,
μI ≡ μ for all I . This assumption is justified by the fact that in
the present application all the particles are identical and, as we
shall see below, a species represents a single particle energy
interval.

The equilibrium populations are obtained by maximizing
Z (+)

{(TI ,NI )} and Z (−)
{(GI ,NI )} with respect to NI , taking into account
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the variation of the number of states in the species with the
number of particles. We obtain the equations

ln
1 ∓ n

(±)
K

n
(±)
K

±
∑

I

αIK ln(1 ∓ n
(±)
I ) − β(εK − μ) = 0, (10)

where n
(−)
I ≡ NI/GI and n

(+)
I ≡ NI/TI [18].

A fermionic system may be transformed into a bosonic
system if we define GI = TI − NI + 1 and α′

IJ = αIJ + δIJ ,
which leads to n

(−)
I ≡ NI/GI ≈ n

(+)
I /[1 − n

(+)
I ].

In the ideal system the total energy is equal to the sum
of quasiparticle energies, which are independent of the
populations. We define alternative quasiparticle energies—the
FES quasiparticle energies—as

εr ≡ t + Vext(r) +
∫

�

dsr′θ [t + Vext(r) − Vext(r′)]

×
∫ t+Vext(r)−Vext(r′)

0
dt ′σ (r′,t ′)n(r′,t ′)v(|r − r′|), (11)

and we can immediately check that

E =
∫

�

dsr′
∫ ∞

0
εrn

(±)[r,t(εr)]σ (r,εr) dεr. (12)

Equation (12) shows that the total energy can be obtained as
a simple sum of quasiparticles energies, meaning that these
latter can be viewed as an ideal gas. This surprising result for
an interacting system is well known in the context of FES.
From Eq. (11) we obtain the DOS along the ε axis,

σ [r,εr(t)] = σ (r,t)

∣∣∣∣dεr

dt

∣∣∣∣
−1

= σ (r,t)

∣∣∣∣1 +
∫

�

dsr′θ [Vext(r) − Vext(r′)]

× v(|r − r′|)σ (r′,t)n[r′,t(εr)]

∣∣∣∣
−1

. (13)

Although εr depends explicitly on n(r,t) (11), we can transfer
this dependence to the statistical interaction through the FES
parameters which leaves the quasiparticle gas an ideal gas,
as explained, for example, in Ref. [36]. The FES parameters
are calculated similarly to Refs. [16,17]. To this aim in
each such volume δr, the quasiparticle energy axis ε is split
into elementary intervals δε centered at ε. Each (s + 1)-
dimensional elementary volume, δr × δε, represents a FES
species, as indicated in Fig. 1. Between species with the same
energy, ε ≡ ε3 [arrow (a) in Fig. 1], but located in different
volumes, δr1 and δr2, we have the FES parameters

αδr1ε3;δr2ε3 = v(|r1 − r2|)σ [r1,t(ε3)]δr1. (14a)

Between species with different energies, ε2 	= ε3 [arrow (b) in
Fig. 1], we have the parameters

αδr1ε3;δr2ε2 = θ (ε3 − ε2)v(|r1 − r2|) d{ln[σ (r1,t)]}
dt

∣∣∣∣
t(ε3)

× σ [r1,t(ε1)]δr1δt. (14b)

Finally, if ε2 	= ε1 and ε1 is the lowest energy species in the
volume δr1, i.e., t(ε1) = 0 [arrow (c) in Fig. 1], then we have

αδr1ε1;δr2ε2 = θ (ε1 − ε2)v(|r1 − r2|)σ (r1,0)δr1. (14c)

y

x

ε

ε

ε
2r

1
r

(c)

(b)

(a)

ε
ε

1

2

3

3

FIG. 1. (Color online) Species in a nonhomogeneous system in
an external field, illustrating the change in the number of states in
species located at r1, upon inserting particles in species located at
r2. The FES parameters corresponding to Eqs. (14) are indicated:
(a) αδr1ε3;δr2ε3 , (b) αδr1ε3;δr2ε2 , and (c) αδr1ε1;δr2ε2 .

The presence of nonzero FES parameters is a proof that the
system obeys FES.

We now turn to show that the whole thermodynamics can be
equivalently calculated in the TF and in the FES approaches.
Plugging the FES parameters (14) and the quasiparticle
energies (11) into the FES equations (10), we obtain

β(μ − εr) + ln
[1 ∓ n(±)(r,εr)]

n(±)(r,εr)

= ∓
∫

�

dsr′θ [εr − Vext(r′)]v(|r − r′|)

×
{
σ [r′,t(εr)] ln[1 ∓ n(±)(r′,εr)]

+
∫ ∞

ε(εr)
dt ′

∂σ (r′,t ′)
∂t ′

ln[1 ∓ n(±)(r′,t ′)]
}

∓
∫

�

dsr′θ [Vext(r′) − εr]v(|r − r′|)

×
{
σ (r′,0) ln[1 ∓ n(±)(r′,0)]

+
∫ ∞

0
dt ′

∂σ (r′,t ′)
∂t ′

ln[1 ∓ n(±)(r′,t ′)]
}

. (15)

Now we can check the equivalence between the FES and
the TF descriptions of the system by substituting Eq. (4) into
Eq. (15). By doing so we recover the relation between εr and
ε̃r,

εr ≡ ε̃r −
∫

�

dsr′
{
θ [εr − Vext(r′)]

∫ ∞

t(εr)
dt ′σ (r′,t ′)

× n(r′,t ′)v(|r − r′|) + θ [Vext(r′) − εr]

×
∫ ∞

0
dt ′σ (r′,t ′)n(r′,t ′)v(|r − r′|)

}
, (16)

which is in accordance with the definitions (5) and (11).
Equations (5) and (11), as well as Eqs. (15) and (16), make

sense only if the integrals in these expressions converge. This
is a limitation of the mean-field formalism.
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IV. NUMERICAL EXAMPLE

We illustrate our model and the relation between the FES
and the TF descriptions on a one-dimensional system of
fermions with repulsive Coulomb interactions, V (|r − r′|) =
1/|r − r′|, in the absence of external fields. The length of
the system, �, is discretized as in Ref. [38] into Nr equal
elementary segments, δrξ = 1, where ξ = 1, . . . ,Nr. In each
such elementary “volume” the DOS is taken to be constant,
δrξ σ (rξ ,t) ≡ σ0, and on the ε axis we define Nε equal con-
secutive segments between 0 and εmax, δεi ≡ εmax/Nε , where
i = 1, . . . ,Nε—we choose εmax such that n(+)(r,εmax) 
 1 for
any r. In this way we obtain Nr × Nε species of particles,
δrξ × δεi , identified also by a double index (ξ,i) [38]. To
avoid the singularity at the origin of the interaction potential,
we consider a cut-off distance of δrξ /2.

The total number of particles in the system is N = NrεF σ0,
where εF is the Fermi energy in the noninteracting system.
We set the energy scale of the system by fixing εF = 1 and
kBT = 1/β = 1.

Figure 2(a) shows the quasiparticle density of states in the
FES description, σξi ≡ δrξ σ (rξ ,εi) [Eq. (13)]. The density
of Landau’s quasiparticle states may be calculated also as
σ̃ [r,ε̃r(t)] = σ (r,t) |dε̃r/dt |−1 and we obtain σ̃ξ i(ε̃) = θ (ε̃ −
ε̃ξ,min)σ0, which is different from zero only for ε̃ � ε̃ξ,min. The
minimum value of ε̃ξ (5) is ε̃ξ,min ≡ ε̃rξ

(t = 0) = ε̃rξ
(t) − t .

The position dependent ε̃ξ,min is plotted in Fig. 2(b).
Figure 2(c) shows the populations, n

(+)
ξi ≡ n(+)(rξ ,εi) (15).

To obtain Landau’s populations (4), we simply shift the
quasiparticle energy from εi (11) to ε̃ξ i (5) and n(+)[rξ ,ε̃(εξi)]
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FIG. 2. (Color online) Specific FES and TF quantities for a one-
dimensional system with repulsive Coulomb interactions (Nr = 20,
Nε = 50, εmax = 25): (a) the quasiparticle density of states in the FES
description; (b) the position dependent energy shift ε̃ξ,min of Landau’s
quasiparticle energies; (c) the FES populations; and (d) the particle
density, scaled with εF σ0—the dashed line represents the uniform
distribution of a similar noninteracting system. In the (a) and (c) insets
we plot a curve for each elementary segment δrξ , ξ = 1, . . . ,20. We
use the same symbols (color) for symmetric segments, namely, square
(red) for 1 and Nr, up triangle (green) for 2 and Nr − 1, down triangle
(blue) for 3 and Nr − 2, and circles (black) for the rest. The chemical
potential μ is marked by vertical dashed lines.

becomes a Fermi distribution in ε̃ξ i for any ξ and with the
same μ as for the FES distribution. For example one may
substitute ε̃ξ,min into Eq. (4) and obtain the same population
for the species with the lowest energy, n

(+)
ξ,i=0, presented in the

FES description in Fig. 2(c).
The particle density, ρ̃ξ = ∑

i σ̃ξ inξiδε̃i , is represented in
Fig. 2(d). Due to the symmetry of the problem, we have
pairwise identical populations, nξ,i = nNr−ξ+1,i and ρ̃ξ =
ρ̃Nr−ξ+1, for any ξ and i. The largest deviations in the particle
density occur for the extremal species, placed at both ends
of the one-dimensional (1D) box as an effect of repulsive
interactions.

We observe from Eqs. (5) and (11) and from Fig. 2 that
because Vext(r) = 0, the range of εrξ

is [0,∞) in any elementary
volume ξ , whereas the range of ε̃rξ

is [ε̃ξ,min,∞), with
ε̃ξ,min > 0.

V. ANALYTICAL EXAMPLES

a. Calogero-Sutherland model in a one-dimensional har-
monic trap. In Ref. [37] Murthy and Shankar analyzed the
Calogero-Sutherland model (CSM), i.e., a 1D system of
fermions in a harmonic potential of frequency ω, with inverse
square law particle-particle interaction potential v(r) ∝ r−2,

H =
N∑

i=1

(
−1

2

∂2

∂xi

)
+ 1

2

N∑
i<j=1

g(g − 1)

(xi − xj )2
, (17)

where N is the fixed total number of particles and we take,
like in Ref. [37], h̄ = m = 1, m being the particle mass. Such
a system is not solvable in the TF approximation, but its
spectrum is exactly known [37,39]:

E =
∞∑

k=0

tknk − ω(1 − g)
N (N − 1)

2
, (18)

where tk = kω, k is an integer, nk is the occupation number,
and N = ∑∞

k=0 nk . The energy (18) is of mean-field type (2)
and from this point the formalism of Sec. III may be applied
straightforwardly, with v(r) = −ω(1 − g), independent of r .
The quasiparticle energies are [37]

εk = tk − ω(1 − g)
∑
l(<k)

nl, (19)

and the species are small intervals δε centered at ε, along the
quasiparticle energy axis. In this way, from (14a) and observing
that ω = σ−1, we get the “diagonal” FES parameters,

αε;ε = g − 1. (20)

From (14b) we get αε;ε′ = 0 for any ε 	= ε′, since the DOS is
constant in this case.

Finally, Eq. (14c) is not applicable to this system since
we work with single-particle states extended over the whole
system and not in the TF approximation. In conclusion we can
write, in general, that αε;ε′ = (g − 1)δε,ε′ .

This result is identical with that of Murthy and Shankar,
considering that we calculate αε;ε′ in the fermionic picture,
whereas α′

ε;ε′ = gδε;ε′ of Ref. [37] was calculated in the
bosonic picture. The two α’s should satisfy the relation
α′

ε;ε′ = αε;ε′ + δε;ε′ (see Sec. III), which is correct.
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b. Calogero-Sutherland model on a ring. FES may
be applied not only in the energy space, but also in the
(quasi)momentum space [7,13,14]. Following Ref. [13] (and
keeping h̄ = c = m = 1) for a CSM system of N particles on
a ring of length L, the equation for the asymptotic momentum
k is

Lk −
∑
k′

φ(k − k′) = 2πI (k) ≡ Lk0. (21)

The sum is taken over all the particles in the system, I (k)
is an integer, and φ(k − k′) is the phase shift due to the
particle-particle interaction. The total number of particles, the
momentum, and the energy of the system are

N =
∑

k

1, P =
∑

k

k, and E =
∑

k

k2

2
, (22)

respectively. Since I takes integer values, Eq. (21) leads to a
density of states along the k axis [18],

σ (k) = L

2π

{
1 − 1

L

∫
φ′(k − k′)σ (k′)n(k′) dk′

}
. (23)

The species are defined as intervals δk, centered at k, along
the momentum axis, and the FES parameters are

αk;k′ = 1

2π
φ′(k − k′)δk, (24)

where φ′(k) = dφ(k)/dk, and n(k) is the occupation of the
state with asymptotic momentum k. If the interaction is like
in the previous example, v(|x − x ′|) = g(g − 1)/(x − x ′)2,
then φ(k) = π (g − 1)sgn(k), with sgn(k) being the sign of k,
and we obtain again αk;k′ = (g − 1)δk;k′ [7,13,18].

The problem may be transferred from the momentum space
to the quasiparticle energy space. The total energy of the
system is E (22) and the quasiparticle energy is

ε = k2

2
. (25)

The species δk along the k axis are mapped into species δε

along the ε axis. To each species δε, there corresponds two
species, δk and δk′, symmetric with respect to the origin on the
k axis—that is, if δk is centered at k, then δk′ is centered at −k

and ε = k2/2. Therefore every two symmetric species, δk and
δk′, are combined into one energy species δε. If the dimensions
of the species on the k axis are Gδk and Gδk′ , respectively, then
the dimension of the species δε is Gδε = Gδk + Gδk′ . A similar
relation holds for the particle numbers: Nδε = Nδk + Nδk′ . The
FES parameters in the ε space are obtained by applying the
rules of Ref. [32]. If we calculate the αε1,ε2 , which connects
the species δε2 to the species δε1, then the following relations
have to be satisfied:

αε1,ε2 = αk1,k2 + α−k1,k2 = αk1,−k2 + α−k1,−k2 , (26)

where δε1 corresponds to the intervals δk1 and δk′
1 on the k

axis, whereas δε2 corresponds to the intervals δk2 and δk′
2. If

αk;k′ = (g − 1)δk;k′ , then

αε1,ε2 = (g − 1)δk1;k2 + (g − 1)δ−k1;k2 ≡ (g − 1)δε1;ε2 , (27)

like in the case of the CSM in a harmonic trap.

VI. CONCLUSIONS

In conclusion we have formulated an approach by which
a system of quantum particles with general particle-particle
interaction V (|r − r′|) in an s-dimensional space and external
potential Vext(r) is described in the quasiclassical limit as an
ideal gas of FES. We have given the equations for the calcula-
tion of the FES parameters and equilibrium populations.

The FES approach has been compared with the TF formal-
ism and we have shown that although there are differences
in the definitions of certain quantities like the quasiparticle
energies, the physical results are the same. The main difference
between the two formalisms is that in the FES approach
the quasiparticle energies are independent of the populations
of other quasiparticle states and therefore the FES gas is
“ideal”, with the total energy of the gas being equal to
the sum of the quasiparticle energies, whereas in the TF
approach the quasiparticles are interacting and the energy of
the quasiparticle gas is not equal to the energy of the system.

We have exemplified our procedure on a one-dimensional
system of fermions with repulsive Coulomb interaction for
which we calculated the main microscopic parameters, like
the quasiparticle energies, quasiparticle density of states, and
energy levels populations. For each of these quantities we
discussed the similarities and differences between the FES
and the TF approaches. We also applied our procedure on the
one-dimensional CSM which is well studied in the literature
[7,13,19,37] and proved that the results are consistent.

One practical consequence that appears from our calcula-
tions is that the solution of the FES integral equations may
eventually be calculated easier by solving self-consistently
the TF equations for population and quasiparticle energies,
(4) and (5).

Another consequence is that while in the TF formulation the
quasiparticle energies may form an energy gap at the lowest
end of the spectrum due to the particle-particle interaction, in
the FES description such an energy gap does not exist.

By establishing the equivalence between the self-consistent
mean-field theory and the FES approach we show that in
general a quasiclassical interacting system can be mapped onto
an ideal FES system.
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