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Molecules with an induced dipole moment in a stochastic electric field
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The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic
molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence
properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum
as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative
solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole
moment and the average angular momentum along the deterministic electric field direction do not decay to zero,
despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average
over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution,
the component of the average electric dipole moment and the average angular momentum in the deterministic
electric field direction also decay to zero.
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I. INTRODUCTION

Quantum decoherence arises from the interaction of a
system with its environment. This interaction gives rise to
the entanglement of the system and the environment and
leads to the suppression of interference because the phases
of the quantum amplitudes in the system wave function are
adversely affected by the entanglement. Here we consider the
decoherence of a system that has an induced electric dipole
moment, di = αijEj , where αij is the polarizability tensor and
Ej is the j th component of an external electric field that is
in contact with an environment (a bath). Examples of such
systems include homonuclear diatomic molecules, such as
H2 [1] and N2 [2], polyatomic molecules with no permanent
electric dipole moment (i.e., a molecule which, if fixed in space
so that it cannot rotate, has a vanishing electric dipole moment
when no external electric field is present), and a mesoscopic
or macroscopic system, such as a colloidal particle having no
permanent dipole moment [3]. The dynamics of such systems
that are in contact with an environment can be represented
by evolving the system in an effective electric field, E(eff) =
E0 + EB(t), where E0 is the deterministic electric field (which
could be time dependent) and EB(t) is the electric field which
models the influence of the environment (the bath B) on the
dipole moment. The field EB(t) can be represented by a vector
stochastic process ε(t), where the nature of the environment
determines the type of stochastic process. Averaging over
fluctuations corresponds to tracing over the environmental
degrees of freedom. This yields a reduced nonunitary dynamics
wherein the averaged dipole moment and angular momentum
decohere in time. This approach was recently used to treat
decoherence of spin systems caused by an environment [4] and
the decoherence of systems with a permanent dipole moment
[5]. The physical properties of the environment determine the
statistical properties of EB(t), which in turn determine the type
of stochastic process ε(t). A prototype model for fluctuations

is Gaussian white noise, wherein the random process has
vanishing correlation time, but other types of noise are also
commonly encountered [4,6–10].

II. CLASSICAL DYNAMICS

Consider a static electric field E in the direction of the
space-fixed z axis and obtain the classical equations of
motion of the system. In spherical coordinates, the kinetic
energy is T = 1

2I (θ̇2 + sin2 θ φ̇2) and the potential energy is

U = −d · E = −α
2 (n · E)2 = −αE2

2 cos2 θ , where θ and φ are
the polar and azimuthal angles of the diatomic axis, I is the
moment of inertia, and n is the unit vector in the direction of
the axis of the system (e.g., the unit vector along the axis of a
homonuclear diatomic molecule). For simplicity we assumed
that the polarizability α has a component only along the axis
of the molecule so that the induced dipole moment is given by
d = (α/2)(n · E)n. Hence the Lagrangian is

L(θ,φ,θ̇ ,φ̇) = T − U = 1
2I (θ̇2 + sin2 θφ̇2) + αE2

2
cos2 θ.

(1)

The Euler-Lagrange equations of motion are

0 = ∂L
∂φ

− d

dt

∂L
∂φ̇

= −I
d

dt
(sin2 θ φ̇)

⇒ φ̇ = ω

sin2 θ
, ω = const, (2)

0 = ∂L
∂θ

− d

dt

∂L
∂θ̇

⇒ θ̈ + αE2

2I
sin 2θ − ω2

2

sin 2θ

sin2 θ
= 0.

(3)

The dynamics are relatively simple since the z component
of the angular momentum, Lz = ∂L

∂φ̇
= I sin2 θ φ̇ ≡ Iω, is

conserved because there is no component of torque, τ =
d × E = α

2 (n · E)(n × E), along z. The second constant of the
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FIG. 1. (Color online) (a) Lx(t),Ly(t),Lz(t), and L(t) =
√

L2
x(t) + L2

y(t) + L2
z(t) (green curve) for n(0) = (sin(π/4) cos(π/4),

sin(π/4) sin(π/4), cos(π/4)) and (Lx(0),Ly(0),Lz(0)) = (10,3,6). (b) Parametric plot of L(t).

motion is the total energy E ,

E = T + U = 1
2I

(
θ̇2 + ω2

sin2 θ

)
− αE2

2
cos2 θ. (4)

Another way of expressing the classical equations of motion
is in terms of the angular momentum L and the unit vector n,

ṅ = −1

I
L × n = −ω × n, (5)

L̇ = −α(n · E)(E × n). (6)

Figure 1 shows Lx(t),Ly(t),Lz(t), and L(t) =√
L2

x(t) + L2
y(t) + L2

z(t) versus time, and Figs. 2 and 3 show
nx(t),ny(t), and nz(t) versus time. The dimensionless
parameters used in these calculations are α = 1, I = 20, and
(Ex,Ey,Ez) = (0,0,1), and the initial conditions are taken
as (Lx(0),Ly(0),Lz(0)) = (10,3,6), and n(0) = (sin(π/4)
cos(π/4), sin(π/4) sin(π/4), cos(π/4)) = (1/2,1/2,1/

√
2).

The dynamics is almost periodic with a period of about 250
(dimensionless units). This “quasiperiodicity” is a general
feature of systems with as many degrees of freedom as
conserved dynamical quantities [11,12].

FIG. 2. (Color online) nx(t),ny(t), and nz(t) vs time for nx(0) =
ny(0) = 1/2, nz(0) = 1/

√
2 [initial conditions for L(t) given in Fig. 1

caption].

III. QUANTUM TREATMENT

The Hamiltonian for the system is given by H = L̂2

2I
−

d̂ · E; taking the induced dipole moment operator to have a
component only along the system axis, d̂ = (α/2)(n̂ · E)n̂,
where n̂ is the vector operator of unit length in the direction of
the system axis, we obtain [13,14]

H = L̂2

2I
− α

2
(n̂ · E)2. (7)

The Heisenberg equations of motion for n̂ and L̂, ˙̂n = i
h̄

[H,n̂]

and ˙̂L = i
h̄

[H,L̂], determine the dynamics. For ˙̂n we find

˙̂n = i

2h̄I
[L̂2,n̂] − i α

2h̄
[(n̂ · E)2,n̂]. (8)

Using the fact that [L̂i,n̂j ] = ih̄εijkn̂k , we obtain [L̂2,n̂] =
2ih̄[L̂ × n̂ + ih̄ n̂]. Because [n̂i ,n̂j ] = 0 for all i and j , the
second term on the right-hand side of Eq. (8) vanishes, and we
find

˙̂n = −1

I
[L̂ × n̂ + ih̄ n̂]. (9)

FIG. 3. (Color online) Parametric plot of n(t) vs time.
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FIG. 4. (Color online) Average and standard deviation of nx(t),ny(t),nz(t) vs time obtained for stochastic dynamics using Eqs. (15) and (16),
with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.02.

The torque on the molecule due to the presence of the external

field, ˙̂L = i
h̄

[H,L̂], is given by

˙̂L = −α(n̂ · E)(E × n̂). (10)

Since the angular momentum is not conserved, the solution of
the Heisenberg equations of motion would require a basis set
calculation including many angular momentum states; doing
so with a stochastic electric field (see Sec. IV) would be very
tedious. Therefore, we develop a mean-field approach.

A. Mean-field dynamics

If the initial angular momentum of the molecule is large
compared to h̄, a semiclassical treatment can be a good
approximation. Setting h̄ = 0 in Eq. (9) allows a semiclassical
solution for the expectation values 〈n̂(t)〉 and 〈L̂(t)〉. The
semiclassical equations are equivalent to the classical solution
presented in Sec. II and are valid for an arbitrary direction of E.
The mean-field theory treatment takes the expectation values
of Eqs. (9) and (10), replacing the expectation value of the
product L̂ × n̂ by the product of the expectation values [15–18]
and taking the limit as h̄ → 0 on the right-hand side of (9):

〈 ˙̂n〉 = −1

I
〈L̂〉 × 〈n̂〉, (11)

〈 ˙̂L〉 = −α(〈n̂〉 · E)(E × 〈n̂〉). (12)

The nonlinear equations of motion, (11) and (12) [which are
the same as Eqs. (5) and (6)], must be solved simultaneously.

IV. STOCHASTIC DYNAMICS

We now consider the dynamics in the presence of a
stochastic electric field, so the total electric field is taken
to be the sum of a deterministic field and a stochastic field,
E = E0 + ε(t), where ε(t) is a stochastic process. We solve
for the dynamics in two ways. First, we treat the stochastic
field perturbatively, by dropping the term in the dynamical
equations of motion that is quadratic in ε(t) and by taking
the linear term in ε(t) to be Gaussian white noise. Then we
treat the full (nonperturbative) dynamics, taking ε(t) to be an
Ornstein-Uhlenbeck process.

In what follows, we denote the quantum averages of the
unit vector along the axis of the molecule and the angular
momentum by n(t) ≡ 〈n̂(t)〉 and L(t) ≡ 〈L̂(t)〉. The averages
of these quantities over the stochasticity can be denoted by
n(t) and L(t), respectively.

A. Perturbation theory in ε(t)

In Eq. (12), we substitute E = E0 + ε(t) and expand,
keeping only the linear term in ε(t) and dropping the quadratic
term. The resulting equation is of the form of a stochastic
differential equation. We need only specify the details of the
stochastic electric field ε(t). We take εx(t), εy(t), and εz(t) to be
stochastic processes with zero mean and δ function correlation
function κ(t − t ′),

εi(t) = 0, (13)

εi(t)εj (t ′) = κ(t − t ′) δij = ε2
0 δ(t − t ′) δij (14)

FIG. 5. (Color online) Average and standard deviation of the angular momentum vector (Lx(t),Ly(t),Lz(t)) vs time obtained for stochastic
dynamics using Eqs. (15) and (16), with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.02.
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FIG. 6. (Color online) Average and standard deviation of nx(t),ny(t),nz(t) vs time obtained for stochastic dynamics using Eqs. (15) and
(16), with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.1.

for i,j = x,y, and z. We consider a vector Wiener process
W(t), where the white noise ε(t) can be written as the
time derivative of the Wiener process, ε(t) = dW/dt . More
formally, the Wiener process is the integral of the white
noise. Equations (11) and (12) form a system of differential
equations, which can be written in the standard stochastic
differential equation form [6–10],

dn(t) = −1

I
L(t) × n(t) dt, (15)

dL(t) = −α {[n(t) · E0] [E0 × n(t)] dt

+ [n(t) · E0] [dW(t) × n(t)]

+ [n(t) · dW(t)] [E0 × n(t)]}. (16)
The stochastic field calculations were carried out using

the Mathematica 9.0 built-in command ItoProcess [19] for
solving stochastic differential equations, with the stochastic
field W(t) taken as a Wiener process. In the numerical
calculations we took E0 = (0,0,1) (in dimensionless units)
and the initial conditions n(0) and L(0) as in Figs. 1, 2, and 3.
Figures 4 and 5 show the vectors n(t) = ((nx(t),ny(t),nz(t))
and L(t) = (Lx(t),Ly(t),Lz(t)) calculated with the stochastic
fields, εx(t), εy(t), and εz(t), taken as Gaussian white noise
with a small stochastic field strength (volatility), ε0 = 0.02.
The central curves [in red (medium gray)] give the averages
n(t) and L(t) in Figs. 4 and 5, and the mean values plus and
minus the standard deviations are shown as curves [in blue
(dark gray)], with the region between the plus and minus
standard deviations shaded [in yellow (light gray)]. Since
the initial conditions for the stochastic field is taken to be

ε(0) = 0 and ε0 is small, the dynamical variables n(t) and
L(t) start off very much like the variables calculated without
stochasticity, but by a time of about 250 (dimensionless time
units), decoherence is evident. The decoherence becomes
significant for times larger than about 400. The variables
nx(t),ny(t) and Lx(t),Ly(t) decay to zero at large times, but
nz(t) and Lz(t) “hang up” at finite values. It is clear from
Eq. (16) that d〈Lz(t)〉/dt = 0 because d〈ε(t)〉/dt = 0 and
[E0 × n(t)]z = 0.

Figures 6 and 7 are similar to Figs. 4 and 5 and show
the average and standard deviation of the vectors n(t) =
(nx(t),ny(t),nz(t)) and L(t) = (Lx(t),Ly(t),Lz(t)) calculated
with a larger value of volatility, ε0 = 0.1. Now, decoherence
sets in at earlier times, becoming significant for times larger
than around 150. Again, nz(t) and Lz(t) hang up at finite values.
Since we expect perturbation theory to begin to break down at
larger values of volatility, we now carry out nonperturbative
calculations.

B. Nonlinear in ε(t) calculation

In order to treat the equations of motion that are nonlinear
in the variable ε, we recast them in the form [recall that we are
using the notation n(t) ≡ 〈n̂(t)〉 and L(t) ≡ 〈L̂(t)〉]

dn(t) = −1

I
L(t) × n(t) dt, (17)

dL(t) = −α n(t) · [E0 + ε(t)] [E0 + ε(t)] × n(t) dt, (18)

dε(t) = −ϑε(t) dt + σdW(t). (19)

FIG. 7. (Color online) Average and standard deviation of the angular momentum vector (Lx(t),Ly(t),Lz(t)) vs time obtained for stochastic
dynamics using Eqs. (15) and (16), with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.1.
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FIG. 8. (Color online) Average and standard deviation of nx(t),ny(t),nz(t) vs time obtained for stochastic dynamics using Eqs. (17)–(19),
with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.1.

Here ϑ is the mean reversion rate of the Ornstein-Uhlenbeck
process ε with long term mean equal to zero, W(t) is the
standard Wiener process with zero mean and volatility 1,
and σ is the volatility of the Ornstein-Uhlenbeck process.
With nonvanishing ϑ , the functional dependence on time
of the variance and correlation function of the process ε

is very different from a Wiener process, but with ϑ = 0,
the process ε is a Wiener process. Here too we used the
Mathematica 9.0 built-in command ItoProcess [19] for solving
stochastic differential equations (17)–(19). In the numerical
calculations we took ϑ = 0 and initial conditions εi(0) = 0
for i = 1,2,3.

The results of the nonlinear calculation for small volatility
are similar to the linear calculations for sufficiently small
times. This is not surprising because the nonlinear terms in the
volatility are quadratically small. But as the volatility increases
(the dimensionless parameter is σ/|E0|, but we have set
|E0| = 1), the nonlinear terms begin to contribute significantly,
even for small times. The nonlinear terms contribute additional
decoherence mechanisms, so we expect faster and additional
decoherence. Figures 8 and 9 show the results of the nonlinear
calculation with a value of volatility σ = 0.1. There is a
significant difference between the perturbative results shown
in Figs. 6 and 7 and the nonperturbative results, even for times
as early as t = 25, and decoherence is already significant for
times beyond t = 25. The most significant difference is that
the dynamical variables nz(t) and Lz(t) no longer hang up at
finite values but decay to zero at large time. It is not surprising
that the hang-up is removed by the additional decoherence
resulting from the nonlinear terms.

V. SUMMARY AND CONCLUSION

We introduced a model for treating the dynamics of a
molecule with an induced dipole moment in the presence
of an external electric field. We showed that the classical
dynamics is equivalent to the mean-field quantum dynamics
of the system. The dynamics is more complicated than the
dynamics of a magnetic dipole moment in a magnetic field,
despite the similarity of the Stark Hamiltonian for an electric
dipole moment in an electric field, HS = −d · E, and Zeeman
Hamiltonian for a magnetic dipole moment in a magnetic
field, HZ = −μ · B. The difference is due to the fact that
the electric dipole moment of a molecule is locked along a
molecule-fixed direction (as opposed to the magnetic case
where the moment is along the angular momentum), and
its evolution in an electric field is coupled to but distinct
from the rotational motion of the molecule. Hence, modeling
the dynamics requires equations of motion for both the
angular momentum operator L̂(t) and the operator for the
unit vector in the direction of the axis of the molecule n̂(t).
Then, we considered the dynamics in the presence of an
external electric field that is a sum of a deterministic field
and a stochastically fluctuating field (noise). For simplicity,
we took the fluctuations to be Gaussian white noise. The
model makes the external noise approximation [6] wherein
no back action of the system on the environment is present.
A consequence of this assumption is that the system does not
come into equilibrium with a thermal environment [4]. This
is a good approximation when the back action is weak, as
explained in Refs. [4,6]; that is, the influence of the system
dipole moment on the dynamics of the bath is negligible

FIG. 9. (Color online) Average and standard deviation of the angular momentum vector (Lx(t),Ly(t),Lz(t)) vs time obtained for stochastic
dynamics using Eqs. (17)–(19), with εx(t), εy(t), and εz(t) fields taken as Gaussian white noise and volatility σ = 0.1.
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[20]. Using perturbation theory for the stochastic field, the
z component of the average induced electric dipole moment,
〈n̂(t)〉, and the z component of the average angular momentum,
〈L̂(t)〉, do not decay (decohere) to zero, despite fluctuations
in all three components of the electric field (but the other
components of these vectors do decohere). This is in contrast
to the decay of the average over fluctuations of a magnetic
moment, which does decohere to zero in a stochastic magnetic
field with Gaussian white noise in all three components [4].
In contradistinction to the perturbative analysis, i.e., upon
including the term nonlinear in the stochastic field in the
equations of motion, we find that decoherence occurs in all
three components of 〈L̂(t)〉 and 〈n̂(t)〉. Moreover, decoherence
of the transverse components of these vectors appears signif-
icantly earlier than in the perturbation theory solutions. These
predictions, obtained under the external noise assumption,
should be able to be readily checked experimentally. These
predictions should remain valid also for Gaussian colored

noise stochastic processes, as long as the temporal correlation
time of the colored noise process τc is short compared with
the rotation time of the molecule, τr = I/〈L〉, and the Stark
time scale, τS = h̄/(Ed). It would be particularly interesting to
experimentally verify the full decoherence of all components
of the averaged dipole moment and angular momentum
in the strong (nonperturbative) stochastic field case and to
experimentally determine the conditions for back action to
become observable (i.e., obtaining the long-time statistical
mechanics distributions).
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