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Irreversible bimolecular chemical reactions on directed scale-free networks
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Kinetics of irreversible bimolecular chemical reactions A + A → 0 and A + B → 0 on directed scale-free
networks with the in-degree distribution Pin(k) ∼ k−γin and the out-degree distribution Pout(�) ∼ �−γout are
investigated. Since the correlation between k and � of each node generally exists in directed networks, we
control the correlation 〈k�〉 with the probability r ∈ [0,1] by two different algorithms for the construction of the
directed networks, i.e., the so-called k and � algorithms. For r = 1, the k algorithm gives 〈k�〉 = 〈k2〉, whereas
the � algorithm gives 〈k�〉 = 〈�2〉. For r = 0, 〈k�〉 = 〈k〉〈�〉 for both algorithms. The kinetics of both reactions are
analyzed using heterogeneous mean-field (HMF) theory and Monte Carlo simulations. The density of particles
(ρ) algebraically decays in time t as ρ(t) ∼ t−α . The kinetics of both reactions are determined by the same
rate equation, dρ/dt = aρ2 + bρθ−1, apart from coefficients. The exponent θ is determined by the algorithm:
θ = γin for the k algorithm (r � 0) and θ = γmin for the � algorithm (r > 0), where γmin is the smaller exponent
between γin and γout. For θ > 3, one observes the ordinary mean-field kinetics, ρ ∼ 1/t (α = 1). In contrast, for
θ < 3, ρ(t) anomalously decays with α = 1/(θ − 2). The HMF predictions are confirmed by the simulations on
quenched directed networks.

DOI: 10.1103/PhysRevE.88.042148 PACS number(s): 05.70.Ln, 89.75.Hc, 89.75.Da

I. INTRODUCTION

The bimolecular reactions A + A → 0 and A + B → 0
have been extensively studied because of wide applications to
various fields such as physics, chemistry, and biology [1–14].
In both reactions, when two reactants encounter each other on
the same site, the reaction takes places instantaneously and
both reactants disappear from the system. To understand the
properties of the reactions, reaction-diffusion processes have
been studied extensively on regular lattices [5–8]. Moreover,
the reaction-diffusion processes on complex networks have
also been studied because of the anomalous behavior that is
distinct from the standard mean-field one on regular lattices
[14]. Complex networks exhibit various important structural
properties, such as small world, as well as heterogeneous
and scale-free degree distributions [15,16], which lead to
the anomalous collective phenomena by interplay with the
dynamics evolving on networks. In this context, both chemical
reactions have been constantly studied on undirected scale-
free (SF) networks with the degree distribution P (q) ∼ q−γ

[17–22].
For both reactions, the density of particles (ρ) algebraically

decays in time t as ρ ∼ t−α . For the reactions on d-dimensional
regular lattices, there exists the upper critical dimension (dc).
When d < dc, fluctuations in the distributions of particles
dominate the kinetics and lead to anomalous decay exponent
α ; α = d/2 for A + A → 0 [5] and α = d/4 for A + B → 0
[6–8]. The anomalous kinetics results from the anticorrelation
of reactants for A + A → 0 [5] and the random fluctuations
in the initial particle distributions of each species [6–8]. For
d � dc, the uniform mixing of reactants leads to the classical
mean-field kinetics with α = 1.

On the other hand, unlike on regular lattices, both reactions
exhibit the same kinetics because of the uniform mixing of
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reactants on undirected SF networks [17]. From the systematic
mean-field analysis for both reactions [20,21], it was shown
that ρ(t) decays as t−α with α = 1 for γ > 3 and α =
1/(γ − 2) for 2 < γ < 3. For γ > 3, the fluctuation in the
degree distribution is finite and thus reactions uniformly occur
on all nodes to exhibit the same classical mean-field kinetics
as on regular lattices with d � dc. In contrast, for γ < 3,
most reactions occur on hub nodes with a finite fraction
of total degree of the network and thus the reaction rate is
proportional to the number of hub nodes [20]. As a result,
the strong inhomogeneity of the degree distribution of the
networks drastically changes the kinetics of both reactions,
unlike on regular lattices.

Networks can be classified into undirected and directed
ones [14–16]. Many real networks are directed, for instance,
the World Wide Web (WWW) [23], email networks [24],
neural networks and transcriptional regulation networks [25],
and trade networks of livestock [26]. In directed networks,
a node receives information via incoming links and sends
it via outgoing ones. The effects of the directionality of
links on collective behaviors have been studied for various
systems such as percolation [27], the voter model [28], the
Ising model [29], and epidemic-spreading models [30–32].
It turned out that the directionality plays an important role
and leads to nontrivial results that are distinct from those on
undirected networks. However, despite the natural occurrence
of directed networks and the profound effects of directionality
on collective phenomena, reaction-diffusion processes have
been mainly studied on undirected networks so far. Hence it
is desirous to study various reaction-diffusion processes on
directed networks for the comprehensive understanding of the
effects of the directionality.

In this paper, the kinetics of the bimolecular reactions on
directed SF networks are investigated using heterogeneous
mean-field (HMF) theory and Monte Carlo simulations.
Directed SF networks are characterized by power-law distri-
butions of in- and out-degrees, Pin(k) ∼ k−γin and Pout(�) ∼
�−γout , where k and � denote in-degree and out-degree,
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respectively. Since k and � of a node are usually correlated,
as in the WWW [23], it is necessary to take into account
the correlation between k and � of each node. However, it
is a priori unknown how the correlation is built up for a
given network. In this paper, the correlation 〈kl〉 of a node
is implemented by two different algorithms, i.e., the so-called
k and � algorithms. In the k algorithm, k of each node is
first assigned by the distribution Pin(k). Then, � of each node
is set as � = k with the probability r or is assigned by the
distribution Pout(�) with 1 − r . In the � algorithm, � of each
node is first assigned by the distribution Pout(�) and then k

of each node is set as k = � with r or is assigned by the
distribution Pin(k) with 1 − r . For r = 1, the k algorithm gives
〈kl〉 = 〈k2〉, while 〈kl〉 = 〈�2〉 is given for the � algorithm. For
r = 0, 〈kl〉 = 〈k〉〈�〉 for both algorithms.

We now briefly summarize the results of the HMF theory.
The HMF theory predicts the same kinetics for both reactions.
ρ(t) decays as t−α , but α depends on the algorithm. For
the k algorithm and the uncorrelated cases (r = 0) of both
algorithms, the HMF theory predicts α = 1/(γin − 2) for
γin < 3 and α = 1 for γin > 3 regardless of γout. Since particles
flow into a node through the incoming links of the node, the
particle density of a node is proportional to the in-degree.
As a result, the kinetics is determined by Pin(k), which leads
to γin-dependent α. On the other hand, for the � algorithm,
Pin(k) is modified by Pout(�) and thus the particle density on
a node depends on the out-degree if γout < γin. Therefore,
for the � algorithm, the kinetics is affected and determined
by the smaller degree exponent γmin between γin and γout;
α = 1 for γmin > 3 and α = 1/(γmin − 2) for 2 < γmin < 3,
respectively. To confirm the predictions of the HMF theory,
Monte Carlo simulations are performed on the quenched
directed SF networks.

This paper is organized as follows. The HMF analyses are
given in Sec. II. Results of Monte Carlo simulations for both
reactions are explained in Sec. III. Finally, the summary and
relevant discussions are given in Sec. IV.

II. HETEROGENEOUS MEAN-FIELD ANALYSIS

The kinetics of the reactions on directed SF networks with
Pin = Aink

−γin and Pout = Aout�
−γout are analyzed by the HMF

theory. From now on, a node with in-degree k and out-degree
� is denoted as (k,�).

The reaction A + A → 0 on the networks is defined as
follows. A node (ki,�i) is first selected randomly. If the node is
occupied by a particle, one of the �i outgoing links is randomly
selected. Then the particle on (ki,�i) moves to the target node
(kj ,�j ) connected by the selected outgoing link if (kj ,�j ) is
empty. If (kj ,�j ) is occupied by another A particle, the reaction
occurs instantaneously and the particles on the two nodes
annihilate.

The reaction A + B → 0 is similarly defined by consider-
ing the hard-core interaction between like particles. Hence, if
the target node is occupied by a like particle, then the hopping
attempt is rejected. If an unlike particle occupies the target
node, then the reaction occurs.

A. The HMF analysis for A + A → 0

The HMF analysis for A + A → 0 is first presented. For
the analysis, we consider the density ρk� of particles averaged
over the set of nodes with the same degree k and �. Then, ρk�

for A + A → 0 satisfies the rate equation

dρk�/dt = −ρk� + k(1 − 2ρk�)�. (1)

The first term represents the outflow of a particle from a
node (k,�). The second term consists of the inflow of a
particle into an empty node (k,�) and the reaction of a
particle on a node (k,�) with an incoming particle. Hence,
� is the current of particles into node (k,�) defined as � =∑

k′,�′ ρk′�′T (k�; k′�′)P (k,�|k′,�′). Here, T (k�; k′�′) is the hop-
ping probability from a node (k′,�′) to (k,�), and P (k,�|k′,�′)
is the conditional probability that (k,�) is connected by an
outgoing link of (k′,�′).

For the uncorrelated networks without the degree-degree
correlation between any pair of nodes, P (k′,�′|k,�) is given
by P (k,�|k′,�′) = �′P (k′,�′)/〈�〉 [32]. P (k,�) is the joint
probability of a node having in-degree k and out-degree
�. For the random hopping on the uncorrelated networks,
T (k�; k′�′) = 1/�′, � = ρ/〈�〉 and one obtains

dρk�/dt = −ρk� + k(1 − 2ρk�)

〈�〉 ρ, (2)

where ρ is the total density with ρ = ∑
k,� ρk�P (k,�). The

rate equation of ρ(t) for the directed networks with 〈k〉 = 〈�〉
becomes

dρ/dt = −2ρ〈kρk�〉/〈�〉. (3)

Since ρ(t) algebraically decays in time, dρ/dt in Eq. (3) decays
rapidly in time and thus dρ/dt → 0 in the long-time limit.
Using a quasistatic approximation which sets dρ/dt = 0 and
dρk�/dt = 0 [20], one obtains, from Eq. (2) in the long-time
limit,

ρk� = kρ/〈�〉
1 + 2kρ/〈�〉 = k/kc

2(1 + k/kc)
, (4)

where kc is a crossover degree defined as kc ≡ 〈�〉/2ρ and
diverges in the limit ρ → 0. ρk� depends only on k and scales
with k as ρk� = 1/2 for k 	 kc and ρk� ∼ k for k 
 kc, as
on undirected SF networks [20,22]. Thus, dρ/dt in Eq. (3) is
determined by the term 〈kρk�〉/〈�〉 written as

〈kρk�〉
〈�〉 = 1

4ρ

∫ ∞

1
dk

∫ ∞

1
d�

(k/kc)2P (k,�)

1 + k/kc

. (5)

Since P (k,�) depends on the correlation 〈k�〉, Eq. (3) depends
on the algorithm employed to construct the directed networks.

1. The k algorithm

In the k algorithm, the out-degree � of a node with the
preassigned in-degree k is set as � = k with a probability r ∈
[0,1]. Thus, the conditional probability P (�|k) of a node with
k having � is P (�|k) = rδk� + (1 − r)Pout(�). With P (k,�) =
P (�|k)Pin(k), one obtains the joint probability P (k,�) for the
k algorithm as

P (k,�) = rδk�Pin(k) + (1 − r)Pin(k)Pout(�). (6)
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Then, Eq. (5) becomes

4ρ〈kρk�〉
〈�〉 =

∫ ∞

1
dk

(k/kc)2Pin(k)

1 + k/kc

. (7)

Interestingly, the integral in Eq. (7) is independent of the
correlation r and out-degree. Since ρk� depends on only
in-degree, 〈kρk�〉 is independent of Pout(�). Hence, there are
no effects of the correlation on the rate equation. Therefore,
Eq. (7) also holds for the uncorrelated case (r = 0) of both
algorithms.

Integrating Eq. (7) with Pin(k) = Aink
−γin [32], one obtains

dρ/dt from Eq. (3) in the limit t → ∞,

dρ

dt
= −aρ2 − dinρ

γin−1. (8)

Here, a and din are nondiverging coefficients. Therefore, ρ(t)
decays as t−α with α = 1/(γin − 2) for γin < 3 and α = 1 for
γin > 3. This result is independent of r and the kinetics is the
same as that on the undirected SF networks with the degree
distribution P (q) ∼ q−γ [20], except that γin replaces γ .

2. The � algorithm

In the � algorithm, the in-degree k of a node with the
preassigned out-degree � is set as k = � with the probability
r . Then the conditional probability P (k|�) of a node with
� having k is P (k|�) = rδk� + (1 − r)Pin(k). With P (k,�) =
P (k|�)Pout(�), one obtains P (k,�) for the � algorithm as

P (k,�) = rδk�Pout(�) + (1 − r)Pin(k)Pout(�). (9)

With the same method used in the k algorithm, dρ/dt for the
� algorithm is written as

dρ/dt = −bρ2 − rdoutρ
γout−1 − (1 − r)dinρ

γin−1. (10)

Here, b and dout are also nondiverging coefficients, and din is
exactly the same coefficient in Eq. (8). As expected, Pout(�)
affects the kinetics and, as a result, the r-dependent second
term appears in the final rate equation. Since the last two terms
in Eq. (10) compete with each other, the term with the smaller
degree exponent dominates the kinetics. Therefore, dρ/dt can
be written in a simple form as

dρ/dt = −aρ2 − dminρ
γmin−1, (11)

where γmin is the smaller exponent between γin and γout, and
dmin is the coefficient of the term with γmin in Eq. (11). Then, for
r > 0, one obtains α = 1/(γmin − 2) for γmin < 3 and α = 1
for γmin > 3.

B. The HMF analysis of A + B → 0

For A + B → 0, the hard-core repulsion between like
particles is considered. The reaction proceeds from initial
configurations with the same density of A and B particles,
ρA(0) = ρB (0). Initially, particles are randomly distributed
over nodes without multiple occupation. The equality ρA(t) =
ρB(t) is then maintained at any time.

The density ρA
k� is also defined as the density of A particles

averaged over the set of nodes with the same degree k and �.

For the uncorrelated directed networks, dρA
k�/dt is written as

dρA
k�

dt
= −ρA

k� + k

〈�〉
∑
k′,�′

[
(1 − ρk�)ρA

k′�′ − ρA
k�ρ

B
k′�′

]
P (k′,�′).

(12)

With ρk� = ρA
k� + ρB

k� = 2ρA
k� and ρA = ∑

k,� ρA
k�P (k,�),

Eq. (12) is written as

dρA
k�/dt = −ρA

k� + k
(
1 − 3ρA

k�

)
〈�〉 ρA. (13)

Then, using the quasistatic approximation, one obtains

ρA
k� = kρA/〈�〉

1 + 3kρA/〈�〉 = k/kc

3(1 + k/kc)
, (14)

where kc = 〈�〉/3ρA. (dρA/dt) is thus given as

dρA/dt = −3ρA〈kρA
k�

〉
/
〈
�〉. (15)

Compared with dρk�/dt for A + A → 0 in Eq. (2), the
difference in Eq. (13) is only the numerical prefactor “3.”
Therefore, the time dependence of densities is identical in
both reactions. As a result, the kinetics of A + B → 0 is the
same as that of A + A → 0 for both algorithms.

On the directed networks, the reactions and the inflow
of particles into a node are controlled by the in-degree
distribution. As a result, the kinetics on the directed SF
networks are determined by the in-degree distribution. In
contrast, the out-degree distribution only comes into play in
the case where the in-degree distribution is modified by the
out-degree distribution, as in the � algorithm. In that case, the
kinetics is modified only for γout < γin.

For both algorithms, the decay exponent α is given by
the same equation as that on the undirected networks. It
implies that the mechanism for the anomalous kinetics is nearly
identical for both undirected and directed SF networks. The
reactants are uniformly mixed in networks, which wipes out
the depletion zone by the anticorrelation for A + A → 0 and
the segregation of unlike particles for A + B → 0 [17–22].

In the directed networks, particles move toward the hub
nodes with a large fraction of incoming links and thus most
reactions occur on the hub nodes. In particular, hub nodes
with in-degree k 	 kc are the drains of particles through
which particles disappear due to the reactions. As a result,
the reaction rate is proportional to the number of hub nodes
with k 	 kc, as in undirected SF networks [20]. Therefore,
one can heuristically obtain dρ/dt for both reactions as
follows. dρ/dt is given as dρ/dt ∼ − ∫ ∞

1 d�
∫ ∞
kc

dkP (k,�),
where kc ∼ 1/ρ for both reactions. From Eqs. (6) and (9), one
obtains dρ/dt ∼ −k

1−γin
c for the k algorithm and dρ/dt ∼

−rk
1−γout
c − (1 − r)k1−γin

c for the � algorithm, respectively,
which give the same kinetics as those predicted by the HMF
theory for both reactions.

III. MONTE CARLO SIMULATIONS

To confirm the predictions of the HMF theory, Monte
Carlo simulations of both reactions are performed on
quenched directed SF networks. The networks of size N with
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Pin(k) = Aink
−γin and Pout(�) = Aout�

−γout are first constructed
by taking the following steps.

(i) First, the in-degree k and the out-degree � of each
node are assigned by the following algorithm [32,33]. The
number Nk of nodes with k is deterministically calculated from
Nk = int[N

∑
k′�k Pin(k′)] − int[N

∑
k′�(k+1) Pin(k′)] for k ∈

[kmin,kmax], where int[x] denotes the integer part of a real
variable x [33]. We set kmin = 2, kmax = N1/(γin−1). Then, to
assign the in-degree k to Nk nodes, Nk nodes are randomly
selected among nodes which are not yet assigned in-degree.
By repeating this step from kmax to kmin, the in-degree
sequence {k1, . . . ,kN } for the N nodes is generated. With the
same method for � ∈ [2,N1/(γout−1)], the out-degree sequence
{�1, . . . ,�N } is generated.

(ii) For the correlation between the in-degree and out-degree
of each node, the generated degree sequences are modified
in the following way. In the k algorithm, the generated in-
degree sequence {k1, . . . ,kN } is used without modification.
Then, the out-degree �i of a node i having in-degree ki is set
as �i = ki with probability r or one can leave �i as it is in
the generated out-degree sequence with probability (1 − r).
In the � algorithm, the processes are reversed. The generated
out-degree sequence {�1, . . . ,�N } is used without modification.
Then, the in-degree of a node is modified in the similar way
as in the k algorithm.

(iii) In the directed network, the total in-degree K =∑N
i=1 ki should be equal to the total out-degree L = ∑N

1 �i

because an incoming link of a node is an outgoing link
of another. If the generated sequences in step (ii) do not
satisfy the constraint K = L, the sequences are modified in
the following way. In the k algorithm, one of the nodes
whose out-degrees are not changed in step (ii) is randomly
chosen. Then, the out-degree of the chosen node is replaced
with a new one randomly chosen from the unmodified out-
degree sequence in step (i). In this process, the correla-
tion built in step (ii) is preserved. If the new out-degree
reduces the difference |K − L|, then the new out-degree
replaces the old one. This step is repeated until K = L

holds.
(iv) Finally, the network is constructed by connecting nodes

with directed links. Each directed link is made by matching an
outgoing link of a node to an incoming link of another node.
For the connection of all nodes, an uncorrelated configuration
model (method) (UCM) [34] is used. In the UCM, two lists
are created. One is the K list of size K = ∑

i ki and the other
is the L list of size L = ∑

i �i . A node i with ki and �i is
recorded ki times in the K list and �i times in the L list.
In this way, all nodes are recorded in each list. Then, for the
connection of a pair of nodes, one element is randomly selected
in each list. If the two selected elements are identical or have
already been connected by a directed link, then the pair is
discarded. Otherwise, a directed link between the selected pair
is created. After the creation of the new link, each element
of the selected pair is removed from each list. This step
is repeated until all elements are eliminated from the two
lists.

By taking steps (i)–(iv), it is confirmed for the SF networks
with N � 107 that the networks are constructed without any
fragmentation and there exists at least one directed path
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FIG. 1. (Color online) Simulation results of A + A → 0 for the
k algorithm with r = 0. The main plot shows ρ(t) for (γin,γout) =
(3.5,4.0) (dashed curve) and for (2.5,3.5) (solid curve). The solid
lines represent the HMF theory with αHMF = 2 for γin = 2.5 and the
decay with α = 1. The inset shows the scaling plot of ρtα against t

with α = 1.87 for (2.5,3.5).

between any pair of nodes. On these quenched directed SF
networks, we perform simulations for both reactions.

A. A + A → 0

Simulation results of A + A → 0 for each algorithm are
first presented. For the network average, 100 different networks
of size N = 107 are used for both algorithms.

For the k algorithm, the HMF theory predicts ρ(t) ∼ t−αHMF

with αHMF = 1/(γin − 2) for γin < 3, and αHMF = 1 otherwise.
The kinetics is independent of the correlation r for the k

algorithm, and the independence is confirmed by simulations
for various r . Therefore, the results for r = 0 are mainly
presented. Simulation results on the networks of (γin,γout) =
(2.5,3.5) and (3.5,4.0) are shown in Fig. 1. For the networks,
the HMF theory predicts αHMF = 2 for γin = 2.5 and αHMF = 1
for γin = 3.5, respectively. For γin = 3.5, ρ(t) clearly decay as
t−1 and confirm αHMF = 1. However, as the early time data
compared to the solid line representing the HMF theory in the
main plot of Fig. 1 show, ρ(t) for γin = 2.5 decays with α

close to αHMF = 2 only in early time. In the long-time limit,
ρ(t) decays as t−1, which results from finite-size effects of
the networks, as in undirected SF networks [22]. Hence, ρ(t)
undergoes the crossover from the decay with αHMF to that with
α = 1 induced by the finite-size effects. Since the finite-size
effect comes into play before ρ(t) exhibits the kinetics with
αHMF, the estimate of α is inevitably smaller than αHMF. To
estimate α in early time, the scaling plot of ρtα against t is
made as shown in the inset of Fig. 1. We estimate α = 1.87(2),
which is close to αHMF = 2.

For the � algorithm, one expects αHMF = 1/(γmin − 2) for
γmin < 3, where γmin is the smaller value between γin and γout.
Simulation results on the networks with (γin,γout) = (2.5,3.5)
and (3.5,2.5) constructed by the � algorithm with r = 1/2
are shown in Fig. 2. The HMF theory predicts αHMF = 2,
because γmin = 2.5 for both networks. As shown in Fig. 2,
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FIG. 2. (Color online) Simulation results of A + A → 0 for the
� algorithm with r = 1/2. The main plot shows ρ(t) for (γin,γout) =
(2.5,3.5) (solid curve) and for (3.5,2.5) (dashed curve). The solid
lines represent the HMF theory with αHMF = 2 for γin = 2.5 and the
decay with α = 1. The inset shows the scaling plot of ρtα vs t with
α = 1.54 for γin = 2.5 and α = 1.61 for γin = 3.5.

ρ(t) also exhibits the crossover on both networks as for
the k algorithm. From the scaling plots, α = 1.54(2) for
(2.5,3.5) and α = 1.61(2) for (3.5,2.5) are estimated (see
the inset of Fig. 2). The estimate is smaller than αHMF and
that for the k algorithm, but it is large enough to confirm
the HMF predictions. Figure 3 shows the similar estimates
of α from simulations on the networks with various γin and
γout = 3.5 from both algorithms. The estimates somewhat
deviate from the HMF theory, αHMF = 1/(γin − 2) for γin < 3
and αHMF = 1 for γin � 3, due to the strong finite-size effect,
but clearly follow the trend of the HMF theory.

Next, the finite-size effect is discussed. When αHMF > 1,
the finite-size effects of the networks induce the crossover
behavior for both algorithms, as shown in Figs. 1 and 2.

2.0 2.5 3.0 3.5 4.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

α

γ
in

FIG. 3. Plot of α estimated from simulations of A + A → 0 on
the networks with varying γin and γout = 3.5. Used network size is
N = 107. ◦’s denote the estimates for the k algorithm with r = 0
and �’s denote those for the � algorithm with r = 0.5. The solid
curve represents the HMF theory, αHMF = 1/(γin − 2) for γin < 3
and αHMF = 1 for γin � 3, for both algorithms.

This finite-size effect can be understood from the asymptotic
behavior of ρk� in the limit kc → ∞. For finite-size networks,
the maximal in-degree (kmax) is finite, while kc → ∞ in the
limit t → ∞. Hence, when kc > kmax, ρk� ∼ kρ/〈k〉 for any
k from Eq. (4), which gives ρ(t) ∼ 〈k〉t−1/〈k2〉 from Eq. (3).
Since 〈k2〉 does not diverge in finite-size networks, ρ(t) ∼ t−1

for kc > kmax. On the other hand, for kc < kmax, the finite-size
effect is not activated yet, so ρ(t) tends to follow the HMF
theory. Therefore, there exists the crossover time τc at which
the relation kc(τc) = kmax holds. As a result, ρ(t) tends to
follow the HMF theory for t 
 τc and t−1 for t 	 τc. For the
networks with kmax ∼ N1/(γin−1), τc scales with N as [22]

τc ∼ N1/μ, μ = αHMF(γin − 1) (16)

because kc(τc) ∼ 1/ρ(τc)(= ταHMF
c ) = kmax. The exponent μ

depends on the algorithm, i.e., μ = (γin − 1)/(γin − 2) for the
k algorithm (r � 0) and μ = (γin − 1)/(γmin − 2) for the �

algorithm, respectively.
To confirm the scaling behavior of Eq. (16), τc is numeri-

cally measured in the following way [22]. From the simulation
data of ρ(t), the time interval in which ρ(t) decays with α > 1
is first identified. The time interval in which ρ(t) decays with
α = 1 is also identified. After identifications, the fitting curve
of ρ(t) in each interval is obtained. Then, τc is estimated
from the intersection of the two fitting curves. τc(N )’s for
various N up to 107 are measured on the networks with
(γin,γout) = (2.5,3.5) for the k algorithm and on those with
(3.5,2.5) for the � algorithm with r = 1/2. From the least
square fitting of the relation τc ∼ N1/μ to the data in Fig. 4,
1/μ = 0.33 for the k algorithm and 0.22 for the � algorithm
are obtained. These results agree well with the predictions,
i.e., 1/μ = 1/3 for the k algorithm and 1/μ = 1/5 for the �

algorithm.

105 106 107

102

103

τ c

N

FIG. 4. Plot of τc(N ) of A + A → 0 against N . ◦’s denote the
data for the � algorithm with r = 1/2 and �’s denote those for the
k algorithm with r = 0. (γin,γout) is set to be (2.5,3.5) for the k

algorithm and (3.5,2.5) for the � algorithm, respectively. The lines
represent the theoretical results in Eq. (16) with 1/μ = 1/5 (solid
line) and with 1/μ = 1/3 (dashed line), respectively.
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As shown in Fig. 4, τc is quite small compared with maximal
simulation times for even N = 107 (see Figs. 1 and 2). Hence,
in the simulation on the finite-size networks, α should be
measured in the shorter initial time interval (t < τc). As a
result, the estimated α is inevitably underestimated, but is
expected to approach to the mean-field value in the limit of
N → ∞ or τc → ∞. However, it seems to be practically hard
to confirm the HMF exponents because the crossover time very
slowly increases with N .

Finally, we examine the validity of the quasistatic approx-
imation employed to obtain Eq. (4) in Sec. II. The important
consequence of Eq. (4) is that ρk� depends only on the in-degree
k and the existence of the crossover degree kc = 〈�〉/2ρ. kc is
not a constant but indefinitely increases in time as ρ → 0. As
a result, for kc < kmax, ρk� scales as ρk� ∼ k for k 
 kc and
ρk� = 1/2 for k 	 kc. For kc > kmax, the finite size affects
the kinetics and thus ρk� ∼ k for any k. In addition, ρk� is a
function of one scaling variable k/kc. Therefore, Eq. (4) is
simply written as

ρk� = F (kt−α), (17)

where F (x) = 1/2 for x 	 1 and F (x) 
 x for x 
 1. The
scaling relation (17) includes most information for the kinetics
and also provides another way to measure α for t < τc. Hence
the validity of the quasistatic approximation and Eq. (4) can
be confirmed by examining the scaling relation (17).

To confirm Eq. (17), ρk� should be measured as a function
of k and �. However, since ρk� depends only on k, we instead
measure ρk , the average density of particles on the nodes
with the same in-degree k. Figure 5(a) shows ρk measured

10 100 1000 1000010-4
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10-3 10-2 10-1 100 101 102

10-3

10-2

10-1

100

(b)

ρ k

k

(a)

 

ρ k

k /t
α

FIG. 5. (a) Plot of ρk(t) of A + A → 0 for the k algorithm
with r = 0 against k at t = 20 (�),40 (◦),80 (�), and 160 (×).
Used networks are those with γin = 2.5, γout = 3.5 and N = 107.
(b) Scaling plot of ρk against kt−α with α = 1.87. In (a) and (b),
solid lines represent the theoretical relations ρk ∼ k for k 
 kc and
ρk = 1/2 for k 	 kc.
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FIG. 6. (Color online) Simulation results of A + B → 0. The
solid curve denotes the data on the networks with (γin,γout) =
(2.5,3.5) from the k algorithm with r = 0 and the dashed curve
denotes the data on the networks with (3.5,2.5) from the � algorithm
with r = 1/2. The solid lines represent the HMF theory with
αHMF = 2 and the decay with α = 1. The inset shows the scaling
plot of ρAtα against t with α = 1.88 for the k algorithm and the plot
with α = 1.60 for the � algorithm.

at various time steps on the networks of (γin,γout) = (2.5,3.5)
for the k algorithm with r = 0. ρk at t = 160 linearly increases
with k without saturation, which implies kc > kmax. Hence, the
finite-size effect already appears at t = 160, which agrees with
the behavior of ρ in Fig. 1. For t � 80, ρk linearly increases
for small k and finally saturates to 1/2 for sufficiently large
k, as expected. To confirm the scaling relation (17), ρk for
various times are plotted against kt−α by varying α. As shown
in Fig. 5(b), the best scaling collapse occurs at α = 1.87,
which coincides with the estimated α obtained from the scaling
plot in Fig. 1. Therefore, it is numerically confirmed that the
quasistatic approximation is valid and thus Eq. (4) correctly
describes the kinetics of A + A → 0.

B. A + B → 0

Simulations for A + B → 0 are carried out on the same
networks as those used for simulations for A + A → 0.
Initially, A and B particles with the condition ρA(0) =
ρB(0) = 1/2 are randomly distributed over the nodes without
multiple occupation of like particles on a node. The HMF
theory of Eqs. (14) and (15) predicts the same kinetics as that
of A + A → 0; αHMF = 1/(γin − 2) for the k algorithm and
1/(γmin − 2) for the � algorithm.

Figure 6 shows ρA(t) on the networks with (γin,γout) =
(2.5,3.5) from the k algorithm with r = 0 and on the networks
of (3.5,2.5) from the � algorithm with r = 1/2. The HMF
theory predicts αHMF = 2 on the networks of both algorithms.
As shown in the main plot of Fig. 6, ρA(t) exhibits the crossover
from the decay with α > 1 in early time to that with α = 1
in the long-time limit. From the scaling plot, we estimate α =
1.88(2) for the k algorithm and α = 1.60(2) for the � algorithm
(see the inset of Fig. 6), which are also underestimated due to
the finite-size effect as in A + A → 0. Figure 7 shows similar

042148-6



IRREVERSIBLE BIMOLECULAR CHEMICAL REACTIONS . . . PHYSICAL REVIEW E 88, 042148 (2013)

2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0
α

γ
in

FIG. 7. Plot of α estimated from simulations of A + B → 0 on
the networks with varying γin and γout = 3.5. Used network size is
N = 107. ◦’s denote the estimates for the k algorithm with r = 0
and �’s denote those for the � algorithm with r = 0.5. The solid
curve represents the HMF theory; αHMF = 1/(γin − 2) for γin < 3
and αHMF = 1 for γin � 3, for both algorithms.

estimates of α from simulations on the networks with various
γin and γout = 3.5 from both algorithms. As in A + A → 0,
the estimates somewhat deviate from the predictions of the
HMF theory. However, taking into account the strong finite-
size effect, the results agree well with the theory.

Finally, the validity of the quasistatic approximation is
examined for the k algorithm with r = 0. For this, we measure
ρA

k , the average density of A particles on the nodes with the
same in-degree k. Figure 8(a) shows ρA

k at several time steps on
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FIG. 8. (a) Plot of ρk(t) of A + B → 0 for the k algorithm
with r = 0 against k at t = 20 (�),40 (◦),80 (�), and 160 (×).
Used networks are those with γin = 2.5, γout = 3.5 and N = 107.
(b) Scaling plot of ρk against kt−α with α = 1.88. In (a) and (b),
solid lines represent the theoretical relations ρk ∼ k for k 
 kc and
ρk = 1/2 for k 	 kc.

the networks of (γin,γout) = (2.5,3.5). The plot clearly shows
that ρA

k linearly increases with k for k/kc 
 1 and finally
saturates to a constant 1/3 for k/kc 	 1, as predicted by
Eq. (14). The same scaling relation as Eq. (17) is also valid
for ρA

k�. Figure 8(b) shows that the scaling relation with α

obtained from Fig. 6 holds as well. Therefore, we confirm that
the quasistatic approximation is also valid for A + B → 0 and
thus the HMF theory correctly describes the kinetics of both
reactions.

IV. SUMMARY AND DISCUSSION

In summary, we investigate the kinetics of irreversible
bimolecular chemical reactions A + A → 0 and A + B → 0
on directed scale-free networks with the in-degree distribution
Pin(k) ∼ k−γin and the out-degree distribution Pout(�) ∼ �−γout

using the HMF theory and Monte Carlo simulations. Since
the in-degree k and the out-degree � of a node are generally
correlated in directed networks [23], the correlation between
the degrees of a node is controlled by two different algorithms,
i.e., the k algorithm of Eq. (6) and the � algorithm of Eq. (9).

From the HMF analysis, the density ρk� of a node with k

and � can be written in a simple form as ρk�(t) 
 (k/kc)/(1 +
k/kc) for both reactions apart from a prefactor. kc is the
crossover degree defined as kc = 〈k〉/ρ(t). ρk� is a function
of only in-degree k, i.e., ρk� = ρk , and thus independent
of the correlation. On undirected scale-fee networks with
P (q) ∼ q−γ , the density ρq satisfies the same equation [20–22]
if the in-degree k of directed networks is replaced by the degree
q of undirected networks. The same equations for both directed
and undirected networks result from the fact that the inflow
of particles into a node is controlled by the in-degree of the
node. ρk� linearly increases with k for k < kc and approaches
to a constant for k > kc as in the undirected networks. The hub
nodes with k > kc maintain a constant particle density in such
a way that once the particle on the hub disappears due to the
reactions, the particles on the nearest neighbors linked to the
hub immediately try to occupy the empty hub.

Furthermore, the equation for ρk� from the HMF theory
gives the same type of the rate equation for both reactions as
dρ/dt = aρ2 + bρθ−1, where θ is θ = γin for the k algorithm
[see Eq. (8)] and θ = γmin for the � algorithm [see Eq. (11)].
For θ > 3, one observes ρ ∼ 1/t with α = 1. In contrast, for
θ < 3, ρ(t) anomalously decays with αHMF = 1/(θ − 2) due
to the strong inhomogeneity of degree distributions. On the
undirected networks, dρ/dt satisfies the same equation with
θ = γ [20–22]. Hub nodes with k > kc maintain a constant
density and play as the drains of particles through which
particles disappear due to the reactions as in the undirected
networks [20]. Thus, dρ/dt is proportional to the number of
the hub nodes, i.e., dρ/dt ∼ − ∫ ∞

1 d�
∫ ∞
kc

dkP (k,�), which
also gives the αHMF obtained from Eqs. (8) and (11).

Simulations are performed to confirm the predictions of the
HMF theory on the quenched directed networks. The estimated
α’s for both reactions on the networks with various γin are
plotted and compared to the HMF theory or αHMF in Figs. 3
and 7. However, a finite maximal in-degree kmax of a finite-size
network induces the crossover time τc above which ρ(t) decays
as ρ(t) ∼ t−1 for any γin. For t < τc, the kinetics is not affected
by the finite size yet, and thus ρ(t) tends to follow the decay
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with α > 1. The estimates of α (> 1) from simulations are
smaller than αHMF due to small τc for finite N . On the networks
with kmax ∼ N1/(γin−1), τc is numerically confirmed to scale
with N as τc ∼ N1/μ with μ = αHMF(γin − 1). Since τc slowly
increases with N due to large μ(> 1), it is practically hard to
observe the asymptotic HMF behavior on the moderate-size
networks. However, the measured α is expected to approach
to αHMF in the limit N → ∞ because the measured α is
confirmed to increase with N .

Equations (4) and (14) for ρk� are one of the main results
of the HMF theory because ρk� gives important physics such
as the existence of kc and the information for the finite-size
effect. Hence, in addition to the precise estimation of α and
μ, another way to confirm the validity of the HMF theory
for both reactions is to examine Eq. (4). ρk� is a function
of one scaling variable k/kc, so it can be simply written as
ρk� = f (k/kc) = F (kt−α) [see Eq. (17)]. From the scaling

plot of ρk� as in Figs. 5(b) and 8(b), the scaling relation (17) is
numerically confirmed and the scaling exponent α is the same
as that directly obtained from the data of ρ(t).

All of the simulation results consistently support the
predictions of the HMF theory for both reactions on the
quenched directed networks. In addition, the HMF theory is
exact on annealed networks by definition where links between
nodes are rearranged in time [35,36]. Therefore, we conclude
that the HMF theory correctly describes the kinetics of both
reactions on the directed networks regardless of how quenched
the connectivity is in the networks.

ACKNOWLEDGMENTS

This work was supported by National Research Foundation
of Korea (NRF) grants funded by the Korean Government
(MEST) (Grants No. 2011-0015257 and No. 2012-047246).

[1] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1981).

[2] V. Privman, Nonequilibrium Statistical Mechanics in One
Dimension (Cambridge University Press, Cambridge, UK,
1997).

[3] A. A. Ovchinnikov and Ya. B. Zeldovich, Chem. Phys. 28, 215
(1978).

[4] D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
[5] B. P. Lee, J. Phys. A 27, 2633 (1994).
[6] K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984); Phys.

Rev. A 32, 435 (1985).
[7] B. P. Lee and J. Cardy, J. Stat. Phys. 80, 971 (1995).
[8] U. C. Täuber, M. Howard, and B. P. Lee, J. Phys. A 38, R79

(2005).
[9] S. A. Janowsky, Phys. Rev. E 51, 1858 (1995).

[10] I. Ispolatov, P. L. Krapivsky, and S. Redner, Phys. Rev. E 52,
2540 (1995).

[11] S. Kwon and Y. Kim, Phys. Rev. E 75, 021122 (2007).
[12] S. Kwon, S. Y. Yoon, and Y. Kim, Phys. Rev. E 73, 025102(R)

(2006); 74, 021109 (2006).
[13] S. Kwon and Y. Kim, Phys. Rev. E 79, 041132 (2009); 82,

011109 (2010).
[14] S. N. Dorogovtsev and A. V. Goltsev, Rev. Mod. Phys. 80, 1275

(2008).
[15] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[16] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[17] L. K. Gallos and P. Argyrakis, Phys. Rev. Lett. 92, 138301

(2004).
[18] L. K. Gallos and P. Argyrakis, Phys. Rev. E 72, 017101 (2005).
[19] L. K. Gallos and P. Argyrakis, Phys. Rev. E 74, 056107 (2006).
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