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Insight into the so-called spatial reciprocity
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Up to now, there have been a great number of studies that demonstrate the effect of spatial topology on the
promotion of cooperation dynamics (namely, the so-called “spatial reciprocity””). However, most researchers
probably attribute it to the positive assortment of strategies supported by spatial arrangement. In this paper, we
analyze the time course of cooperation evolution under different evolution rules. Interestingly, a typical evolution
process can be divided into two evident periods: the enduring (END) period and the expanding (EXP) period
where the former features that cooperators try to endure defectors’ invasion and the latter shows that perfect C
clusters fast expand their area. We find that the final cooperation level relies on two key factors: the formation
of the perfect C cluster at the end of the END period and the expanding fashion of the perfect C cluster during
the EXP period. For deterministic rule, the smooth expansion of C cluster boundaries enables cooperators to
reach a dominant state, whereas, the rough boundaries for stochastic rule cannot provide a sufficient beneficial
environment for the evolution of cooperation. Moreover, we show that expansion of the perfect C cluster is
closely related to the cluster coefficient of interaction topology. To some extent, we present a viable method for
understanding the spatial reciprocity mechanism in nature and hope that it will inspire further studies to resolve

social dilemmas.
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I. INTRODUCTION

In evolutionary biology and social science, a challenging
problem is understanding the emergence of cooperative traits
and their sustenance under the pressure of a free rider [1-3].
To explain the origin of this phenomenon, evolutionary game
theory, which provides a theoretical framework, has been
extensively investigated from different disciplines over the past
decades [4-6]. The prisoner’s dilemma game, in particular,
illustrating the social conflict between cooperative and selfish
behaviors, has attracted considerable attention both in theoret-
ical as well as in experimental studies [7—19]. In this simple
paradigmatic model, two individuals simultaneously decide
to adopt one of two strategies: cooperation (C) and defection
(D). If both cooperate (defect), they receive the reward R (the
punishment P). If, however, one player chooses cooperation
while the other defects, the latter gets the temptation 7' and
the former is left with the sucker’s payoff S. These payoffs
satisfy T > R > P > S and 2R > T + S; thus, defection
optimizes the individual payoff, despite the fact that mutual
cooperation could yield a higher collective benefit. This is to
say, when populations play a prisoner’s dilemma game in the
well-mixed case, this setup does not support the organization
of cooperative dynamics.

To overcome this unfavorable outcome, a great number
of scenarios have been identified for supporting the evo-
lution of cooperation. Typical examples include effective
strategies, such as the tit-for-tat [20] or win-stay-lose shift
[21,22], voluntary participation [23,24], spatially structured
populations [25-31], heterogeneity or diversity [32,33], the
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mobility of players [34-36], and co-evolutionary selection of
dynamical rules [37-39], to name but a few. Whereas, Nowak
recently attributed all these to five mechanisms: kin selection,
direct reciprocity, indirect reciprocity, network reciprocity, and
group selection [40], these mechanisms can be somewhat
related to the reduction of an opposing player’s anonymity
relative to the so-called well-mixed situation. Among the
five mechanisms, network reciprocity, where players are
arranged on the spatially structured topology and interact only
with their direct neighbors, has attracted the most notable
attention. In this setup, cooperators can survive by means of
forming compact clusters, which minimize the exploitation
by defectors and protect those cooperators that are located
in the interior of such clusters [7]. Following this discovery,
various types of spatial topology have been introduced into this
field to extend the scope of cooperation on complex networks
[25,26,41-43]. For example, in a recent research paper [25,26]
where a heterogeneous scale-free network was employed as
the potential interaction topology, the state that cooperation
completely dominates was reported. In Refs. [44-46], it was
shown that, on an interdependent network, a high value of
the fitness coefficient was beneficial for the evolution of
cooperative traits and could lead to the long-term sustenance
of cooperation.

Despite the relative large body of work that has been
accumulated, there still is a situation of practical relevance
that has received less attention until now. This is the case of
why spatial topology can provide the beneficial environment
for the evolution of cooperation (namely, how the network
reciprocity works). Inspired by this interesting question, in the
present paper, we plan to explore the potential and genuine
mechanism of spatial reciprocity based on the elementary
spatial populations. Through systematic study, we divide the
time course of cooperation evolution into two sequential
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processes: enduring (END) and expanding (EXP) periods. In
particular, we inspect that different update dynamics and the
initial distribution of strategies can lead to diverse evolution
periods, which directly affects the final level of cooperation in
the spatial populations.

II. SPATIAL MODEL OF THE PRISONER’S DILEMMA

We consider an evolutionary two-strategy prisoner’s
dilemma game with players located on the sites of a network,
whose size is N. Each player i can adopt one of the two
strategies: cooperation (s; = C) or defection (s; = D). For
simplicity, but without loss of generality, we use a standard
parametrization of the game: reward for mutual cooperation
R = 1, punishment for mutual defection P =0, then the payoff
matrix can be rescaled as follows:

R S\ _( 1 -D .
T P>_(1+Dg 0 ) W

where D, =P —S (0< D, <1) is the stag-hunt-type
dilemmaand D, =T — R (0 < D, < 1) denotes the chicken-
type dilemma [47].

The game is iterated forward in accordance with the
sequential simulation procedure comprising the following
elementary steps. First, each player i acquires its payoff P; by
playing the game with all his neighbors. After the evaluation
of payoff for the entire population, player i updates its strategy
synchronously. Here, we mainly pay attention to two types of
update rule. One is the deterministic rule: imitation max (IM),
and the other is the stochastic rule: pairwise Fermi (PW-Fermi),
both of which are the most universal rules.

The IM policy can be described in the following way: The
strategy s;(¢) of individual i at time step ¢ will be

si(t) = s;(t = 1), 2

where j is one member among player ¢ and all
his neighbors €2; (namely, j € {€2; Ui}) such that j =
max{P;(t — 1),V 1 e Q Ui}
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Another flexible update rule is the PW-Fermi rule where
focal agent i randomly chooses one neighbor j and adopts the
strategy s; from the selected player j with the probability,

1
1 +expl(P — P))/K]’

W(si — s5;) = 3)

where K denotes the amplitude of noise or the so-called
intensity of selection [48].K — 0 and K — oo denote the
completely deterministic and completely random selections of
the neighbor’s strategy, whereas, for any finite positive values,
K incorporates the uncertainties in the strategy adoption. As
a previous setting [11-15], we simply fix the value of K to
be K = 0.1 in the present paper. Moreover, it is worth noting
that, compared with IM, there are two stochastic processes:
randomly choosing neighbor and probabilistic determination
of updating strategy in PW-Fermi.

III. ENDURING AND EXPANDING PERIODS

For the sake of the following discussion, we define the
terminology as the enduring (END) period and the expanding
(EXP) period as shown in Fig. 1. In a typical evolution
process where the initial value of the cooperation fraction
is 0.5, there are usually two evident processes: The former
period features the rapid downfall of cooperation, whereas, the
following one is along with the increase in cooperation level
unless the evolutionary trail is absorbed by the all-defectors
state during the foregoing period. In our study, the first is
the so-called END period because cooperators try to endure
defectors’ invasion (or cooperators avoid copying defection
from neighbors). Correspondingly, we call the latter the EXP
period since cooperators, who successfully survive through
forming cooperator clusters (C clusters) in the END period,
expand their area by converting defectors into cooperators.

To analyze how the network reciprocity works, we mainly
pay attention to the evolution process on the most elementary
(homogeneous) network: cycle graph and square lattice.
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neighboring defectors’ invasions
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FIG. 1. (Color online) Schematic of a time evolution of a spatial prisoner’s dilemma game with END and EXP periods. END period: initial
cooperators (red) are rapidly plundered by defectors (blue), which cause only a few cooperators to be left through forming compact C clusters.
EXP period: C clusters start to expand since a cooperator on the clusters’ border can attract a neighboring defector into the cluster.
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FIG. 2. (Color online) Fraction of cooperation on a D, — D, plane with the IM rule on a cycle graph. From left to right, the neighborhood
size is k = 4 [(a) and (e)], k = 6 [(b) and (f)], kK = 8 [(c) and (g)], and 12 [(d) and (h)], respectively. In the upper panel, we show the result of
the pc = 0.5 case where, initially, cooperators and defectors are randomly distributed. Whereas, in the bottom panels, we assume a particular
initial state (namely, the perfect C cluster case) where all agents are defectors except for k + 1 individuals, forming a perfect cooperative

cluster in the center of the graph as shown in Fig. 3.

Interestingly, we find, under the stochastic rule PW-Fermi,
that cooperator clusters (C clusters) usually possess rough
(concavo-convex) boundaries at the end of the END period,
which finally leads to the coexistence of cooperators and
defectors. However, the deterministic rule could produce
smooth boundaries of C clusters, which provides a more
effective condition for the expansion of cooperative behaviors
during the EXP period. In the following part, we will give
more details.

IV. RESULTS AND DISCUSSION

We have performed extensive numerical simulations for
the population comprising N = 1007 individuals. The fraction
of cooperation p. is determined within the last 5000 out of
the total 10° generations. To guarantee validity and statistical
robustness of the data, the final results are averaged over up to
100 independent runs for each set of parameter values. During
one time step, the agents update their strategies synchronously.
Moreover, we have also checked that the qualitative results do
not change for asynchronous updating.

A. Cycle graph

In this section, we discuss the results when the cycle graph
is assumed as the underlying interaction network. Figure 2
shows cooperation fraction p,, versus different neighborhood
size k and initial distribution of strategies on the D, — D,
plane, whereas, for the upper panel, each player is initially
designated either as a cooperator or as a defector with equal

probability, namely, the pc = 0.5 case. To better explain
the network reciprocity, we also consider another prepared
initial state (bottom panel): except for k 4+ 1 cooperators
that form compact center on the center of graph, other
agents are defectors, namely, the perfect C cluster case
(see Fig. 3).

As shown in Fig. 2, the perfect C cluster case presents
better performance of cooperation traits than the other case,
although its initial cooperation level approaches 0 (such as the
initial pc = 5 x 107 for k = 4). This is particularly evident
for the large neighborhood size. To explain the promotion
impact, we need to examine time courses of cooperation (see
Fig. 4 for a schematic representation). From the viewpoints
of END and EXP periods, the perfect C cluster case directly
starts the evolution from the EXP period since there hardly
are any cooperators left to be exploited by defectors (Fig. 5).
Under IM rule, this perfect cluster of cooperators, who possess
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FIG. 3. (Color online) Examples of the perfect C cluster on
(a) a cycle graph with k = 4, (b) a square lattice with k = 4, and (c)
a square lattice with k = 8. Red and blue nodes denote cooperators
and defectors, respectively.
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FIG. 4. (Color online) Schematic to explain the difference among
END and EXP periods for (a) the pc = 0.5 case and (b) the perfect
C cluster case. For the sake of discussion, we assumed a lattice graph
and an IM rule. Red and blue nodes denote cooperators and defectors,
respectively.

higher payoffs, starts expanding its ground against weakened
defectors. Crucial, thereby, is the fact that the clusters formed
by these cooperators are impervious to defector attacks,
which attracts more defectors transferring to cooperators and
penetrate into the cluster. This ultimately results in widespread
cooperation. For the small neighborhood size, tradition setup

—pc=0.5

e Perfect C cluster

0.6

Pc

0.4

0.2

0

0.001 0.01 0.1 1 10 100 1000
t

10000

FIG. 5. Time course depicting the evolution of cooperation in the
case of D, = D, = 0.3. The thin gray line indicates the pc = 0.5
case, and the thick black line is the perfect C cluster case.
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(the pc = 0.5 case) can also get the similar perfect C clusters,
which only needs longer enduring time. However, with the
increment of neighborhood size, it becomes more and more
difficult to organize the perfect C cluster for the traditional
setup since cooperators have been invaded heavily before the
formation of perfect clusters. Whereas, in the perfect C cluster
case, large neighborhood size means that the enhanced cluster
coefficient (CC) of a cycle graph enables an initially prepared
perfect C cluster to expand its domain more effectively,
which can still lead to a high cooperation level. Thus, these
results suggest whether forming a perfect C cluster before
the EXP period is the key for the final cooperation level
in the system.

Moreover, another interesting question is why the perfect
C cluster case possesses immediate transmission from the full
C phase to the full D phase (see bottom panel of Fig. 2),
whereas, there is a fluctuation coexistence region in the
pc = 0.5 case [see Figs. 2(c) and 2(d)]. As is known, when
the IM update rule and the homogeneous cycle graph are
assumed, there is no stochastic influence, which can guarantee
the smooth expansion of the perfect C cluster under the
weak dilemma or can destroy its evolution for the strong
dilemma. However, the initial random distribution of strategies
inevitably introduces stochastic factor, which directly affects
the formation of perfect C clusters. If the perfect C cluster
is constructed by the end of the END period, cooperators
can coexist with a certain number of defectors; otherwise, the
system is absorbed by the full D state (namely, fast diffusion
of defectors inhibits the formation of effective cooperator
clusters). This stochastic impact becomes particularly evident
for large neighborhood sizes. In this sense, the fluctuation
behaviors validate the importance of the perfect C cluster on
the evolution of cooperation.

Next, it becomes meaningful to examine the evolution of
cooperation for the PW-Fermi rule. Results presented in Fig. 6
feature how cooperators fare with the same condition of Fig. 2.
It can be observed, irrespective of which case, that PW-Fermi
cannot promote a high cooperation level and even leads to the
disappearance of cooperators under the weak dilemma. This
is because PW-Fermi is a stochastic rule, under which many
evolutionary trails (such as, C clusters) can be absorbed by the
full defector state. Along this line, the survival environment
of only the C cluster becomes more difficult. Thus, it is
easy to understand why less cooperation is observed in the
perfect C cluster case than the traditional case. Additionally,
through the comparison of both update rules (especially for
the perfect C cluster case), we can see that the deterministic
IM rule is more beneficial for the expanding of cooperation.
In fact, this is closely related to the expanding fashion of
different update rules: the IM rule enables C clusters to
synchronously extend along all the boundaries (namely, always
possessing the smooth boundary), which, thus, effectively
resists invasion of defectors and recovers the lost ground,
whereas, for the PW-Fermi rule, the rough (concavo-convex)
boundary is the only expanding way. As schematically shown
in Fig. 7, a stochastic update inevitably introduces rough
(concavo-convex) parts on the boundary of a C cluster, which
usually takes place in the process of the original coopera-
tors transferring to defectors during the END period. This
might finally make all C clusters perish because cooperators
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FIG. 6. (Color online) Fraction of cooperation on a D, — D, plane with the PW-Fermi rule on a cycle graph. From left to right, the
neighborhood size is k = 4 [(a) and (e)], k = 6 [(b) and (f)], kK = 8 [(c) and (g)], and 12 [(d) and (h)], respectively. In the upper panel, we show
the result of the pc = 0.5 case; whereas, in the bottom panels, we assume the perfect C cluster case.
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FIG. 7. (Color online) Schematic to explain the differences
among END and EXP periods for the (a) pc = 0.5 case and (b) the
perfect C cluster case. For the sake of discussion, we assumed a lattice
graph and PW-Fermi rule. Red and blue nodes denote cooperators and
defectors, respectively.

could not form stable C clusters to resist the invasion of
neighboring defectors.

Up to now, we have analyzed the evolution behavior of
the system for different update rules and prepared initial
conditions. We find that the final cooperation level depends
on two key factors: one is whether perfect C cluster forms or
not at the end of the END period; the other is the expanding
fashion of the C cluster during the EXP period. Compared with
the traditional version, the perfect C cluster case provides
better guarantee for the cluster formation. Whereas, in the
EXP period, the synchronous expanding along the smooth
boundaries of the C clusters enables cooperation to dominate
the system more effectively (to support our argument, we also
validate the influence of stochastic factor or mutation in the
evolution process [49]). Moreover, if any stochastic factor
is introduced (such as, the random distribution of strategies
or the nondeterministic updating rule), it becomes rather
difficult to quantitatively depict the evolution characters of
C clusters [50].

B. Square lattice

To further validate our argument, it is necessary to explore
the evolution of cooperation on the square lattice where we
expect to observe the similar traits. Figures 8 and 9 show the
evolution of cooperation under the IM and PW Fermi rules.
Clearly, except for the case of Fig. 8(c), a similar tendency is
observed on the cycle graph, which attests to the fact that the
deterministic IM rule on homogeneous topology guarantees a
higher cooperative level due to its particular expansion fashion
of clusters. Whereas, for the perfect C cluster case under the
IM rule [namely, Fig. 8(c)], it is caused by its value of the
cluster coefficient (CC), which equals zero for k = 4.
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FIG. 8. (Color online) Fraction of cooperation on a D, — D,
plane with the IM rule on a square lattice. From left to right,
the neighborhood size is k =4 [(a) and (c)] and k = 8 [(b) and
(d)], respectively. In the upper panel, we show the result of the
pc = 0.5 case; whereas, in the bottom panels, we assume the perfect
C cluster case.
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FIG. 9. (Color online) Fraction of cooperation on a D, — D,
plane with the PW-Fermi rule on a square lattice. From left to
right, the neighborhood size is k = 4 [(a) and (c)] and k = 8 [(b)
and (d)], respectively. In the upper panel, we show the result of the
pc = 0.5 case; whereas, in the bottom panels, we assume the perfect
C cluster case.
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FIG. 10. (Color online) Fraction of cooperation on a D, — D,
plane with the (a) IM and (b) PW-Fermi rules on a square lattice.
We assume a k = 4 neighborhood for the playing game, whereas,
we assume a k = 12 neighborhood for strategy updating. We use
the perfect C cluster case where all agents are defectors except for
k + 1 = 5 agents that form a perfect cooperative cluster.

Interestingly, to improve the evolution environment of
the perfect C cluster, Fig. 10 features the results of such a
case: agents still play games within the first von Neumann
neighborhood (namely, k = 4) but update strategies among
the second von Neumann neighborhood (namely, £k = 12). It
is obvious that cooperation is greatly promoted under the IM
rule (but there is no change under the rule), which can be
attributed to the fact that the CC value of the network of
strategy updating is not zero again (for a similar phenomenon,
see Ref. [51]). Combined with the results of the perfect C
cluster on a cycle graph [Figs. 2(e) and 6(e)], we can get that
the expansion of the perfect C cluster is closely related to the
CC of the strategy updating network under deterministic rule.
In fact, the larger the value of the CC, the higher the final
level of cooperation. Whereas, for the rule (due to stochastic
impact), its improvement for cooperation evolution is limited
on the perfect C cluster case.

V. DISCUSSION

We have elucidated that the so-called spatial reciprocity
can be analyzed through dividing the time evolution trail
into two typical periods. The END period is featured as the
decline of cooperation due to the fast invasion of defectors,
whereas, the EXP period demonstrates that the survival C
clusters start to expand their territory by attracting defectors
into their own partners. Interestingly, our results show that the
evolution of cooperation depends on two factors: the formation
of the perfect C cluster at the end of the END period and the
expanding fashion of the C cluster during the EXP period. The
IM rule can guarantee more robust EXP than the stochastic
PW-Fermi rule; this is because the IM rule possesses the
smooth expansion of C clusters on the homogeneous network,
whereas, the PW-Fermi rule organizes the rough boundaries for
C clusters, which impedes the effective expansion (this point
can also get further support from the evolution of cooperation
on heterogeneous networks [52]).

Notably, a slower strategy update for cooperators and a
faster strategy update for defectors are helpful for END and
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EXP periods, respectively. A slower strategy update gives
cooperators more chances to survive during the END period.
Whereas, a faster update can accelerate the conversion (from
defection to cooperation), which is more meaningful for the
EXP period. Along this line, it becomes easy to understand
why cooperation is greatly enhanced in Refs. [53,54] where
a richer neighbor is more likely to be chosen as the pairwise
opponent. Under this case, an agent lying on the borders of
clusters is apt to regard a cooperator inside the C clusters
as the potential strategy donor. This declines the learning of
defection behavior and boosts the expansion of cooperators
as mentioned above. A similar phenomenon was observed
recently in a spatial game where the social performance was
refereed to denote the opponent’s payoff and, thus, altered

PHYSICAL REVIEW E 88, 042145 (2013)

the impact of the EXP and END periods on the evolution of
cooperation [55]. We hope that this paper will inspire future
studies, especially in terms of understanding the emergence of
cooperation traits in societies via a co-evolutionary process [9].
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