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Memory effects for a trapped Brownian particle in viscoelastic shear flows
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The long-time limit behavior of the positional distribution for an underdamped Brownian particle in a fluctuating
harmonic potential well, which is simultaneously exposed to an oscillatory viscoelastic shear flow is investigated
using the generalized Langevin equation with a power-law-type memory kernel. The influence of a fluctuating
environment is modeled by a multiplicative white noise (fluctuations of the stiffness of the trapping potential)
and by an additive internal fractional Gaussian noise. The exact expressions of the second-order moments of the
fluctuating position for the Brownian particle in the shear plane have been calculated. Also, shear-induced cross
correlation between particle fluctuations along orthogonal directions as well as the angular momentum are found.
It is shown that interplay of shear flow, memory, and multiplicative noise can generate a variety of cooperation
effects, such as energetic instability, multiresonance versus the shear frequency, and memory-induced anomalous
diffusion in the direction of the shear flow. Particularly, two different critical memory exponents have been found,
which mark dynamical transitions from a stationary regime to a subdiffusive (or superdiffusive) regime of the
system. Similarities and differences between the behaviors of the models with oscillatory and nonoscillatory
shear flow are also discussed.
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I. INTRODUCTION

Recent years have witnessed an increasing interest in noise-
induced phenomena in nonequilibrium dynamical systems.
Stochastic fluctuations often evoke an unexpected response
in physical, chemical, and biological systems; these include
stochastic resonance [1,2], noise-enhanced stability [3,4],
hypersensitive response [5,6], and the ratchet effect [7,8],
to name a few. Specifically, anomalous diffusion with the
mean-square displacement of particles 〈r2(t)〉 ∼ tα(α �= 1) is
found in different systems [9–18]. Examples of such systems
are supercooled liquids, glasses, colloidal suspensions, poly-
mer solutions [9,10], amorphous semiconductors, viscoelastic
media [11,12,19], cytoplasm of living cells [20], and large
proteins [21].

One of the possibilities for modeling anomalous diffusion
in physical and biological systems can be formulated in
the framework of the generalized Langevin equation (GLE)
[13,15–17]. In most cases a GLE is obtained by replacing the
usual Stokes-type friction term by a generalized friction term
with a power-law memory [13–17]. Physically such a friction
term has, due to the fluctuation-dissipation theorem [22], its
origin in a non-Ohmic thermal bath, whose influence on the
dynamical system is described with a power-law correlated
additive internal noise in the GLE, e.g., with fractional
Gaussian noise, which is closely related to fractional Brownian
motion [13,16].

Although the behavior of Brownian motion in quiescent
fluids has been investigated in detail, our understanding
of thermally induced particle dynamics in flows is still far
from complete [23,24]. Especially in shear flows, little is
known about the dynamics of Brownian particles and about
hydrodynamic interaction effects in spite of their fundamental
relevance and importance in microfluidic applications
[23,25–27]. Of particular interest are small mesoscopic
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systems such as colloidal particles, nanoparticles in solutions,
or biological systems in cells, all of which are dominated
by fluctuations. Recently, to overcome part of this problem,
several studies have focused on the dynamics of underdamped
Brownian particles trapped by harmonic potentials and
exposed to shear flows [23,24,28–30]. The interest in
harmonically trapped particles has been stimulated by new
experimental techniques to trap mesoscopic particles, such as
laser-optical tweezers [31,32], which allow direct observation
and manipulation of individual particles under the influence
of external forces of flows (see also Ref. [23], and references
therein).

It should be noted that Refs. [23,24,28,29] consider shear
flows independent of time, but in Ref. [30] the response of
Brownian particles to an externally imposed oscillatory shear
flow is explored. The analytical solutions exposed in Ref. [30]
reveal that in weakly damped systems both the particle and
velocity distributions and the cross moments exhibit a strong
resonance. With relatively low shear rates, it is possible to
induce a significant anisotropy in the distribution functions.
Potential experiments to verify those theoretical results on
dusty plasmas and trapped colloidal dispersions in a fluid
solvent are also discussed in Ref. [30].

However, in Refs. [23,24,28–30] it is assumed that the
interaction of Brownian particles with shear flow is charac-
terized by Stokes friction. The latter is irrelevant for shear
flow in viscoelastic media, where anomalous diffusion occurs.
Moreover, the previous calculations are based on models
without using multiplicative noise. It is important to note that
multiplicative noise in GLE arises in a natural way in quan-
titative measurements with laser-optical tweezers, where the
stiffness of the effective trapping potential may fluctuate [31].

Motivated by the results of Ref. [30], the present paper
considers a model similar to the one presented in Ref. [30],
except that the Stokes-type friction term is replaced with a
power-law-type memory kernel and that the influence of the
fluctuating environment is modeled not by additive Gaussian
white noise, but by a multiplicative white noise (fluctuating

042142-11539-3755/2013/88(4)/042142(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.042142


ROMI MANKIN, KATRIN LAAS, AND NEEME LUMI PHYSICAL REVIEW E 88, 042142 (2013)

stiffness of the effective trapping potential) and by an additive
internal fractional noise.

The main contribution of this paper is as follows. In the
long-time limit, (t → ∞), we provide exact formulas for
the analytic treatment of the dependence of second-order
moments of the fluctuating particle position and the mean
angular momentum of the rotational part of particle motion
in the shear plane on system parameters, such as the shear
oscillation frequency, the memory exponent, the shear rate,
the intensity of the multiplicative noise, and the friction
coefficient. We show that although the stochastic motion of
a trapped particle moving in oscillatory shear flow with a
characteristic oscillation frequency � and of a particle in time-
independent shear flow (� = 0) have common characteristic
signatures, such as an inclined elliptical particle distribution,
there are also substantial differences. Specifically, it is found
that the critical memory exponents, which mark dynamical
transitions from a stationary regime to an anomalous diffusive
regime of the system, are different for the cases � �= 0 and
� = 0. This effect is due to the involvement of different
time scales in the models. To avoid misunderstandings, let us
mention that we use the term stationary regime in a wide sense,
meaning bounded (also periodic) first and second moments of
output by increasing time. Furthermore, we show that in the
case of � �= 0, in certain parameter regions the second-order
moment of the particle displacement in the direction of the
shear flow exhibits a multiresonance behavior versus �. We
also demonstrate that the presence of multiplicative noise in
the GLE has a profound effect on the behavior of the particle
distribution: first, as the intensity of the multiplicative noise
tends to a critical value, energetic instability appears, which
makes a stationary regime impossible; second, in the vicinity
of the critical intensity the particle distribution is very much
elongated in the shear flow direction in comparison with the
case without multiplicative noise.

Moreover, for fractional dynamics with memory we have
derived Eqs. (14) and (40), which can be useful for calculations
of the correlators for fractional dynamics with multiplicative
white noise (Appendix C).

The structure of the paper is as follows. In Sec. II we
present the model investigated. Exact formulas are found for
the analysis of the behavior of the second-order moments
and of the mean angular momentum. In Sec. III we analyze
the dependence of the particle distribution characteristics on
system parameters. Section IV contains some brief concluding
remarks. Some formulas and proofs are delegated to the
Appendixes.

II. MODEL AND THE EXACT MOMENTS

A. Model

We consider a Brownian particle of the unit mass (m = 1)
suspended at the position r = (X,Y,Z) in a viscoelastic flow
field with parallel streamlines in the x direction

v(r,t) = ρY cos (�t)ex, (1)

with ex denoting the unit vector in the x direction, ρ the shear
rate, and � the shear frequency. The particle is trapped by a

harmonic potential with its minimum at r0 = 0,

U (r) = ω2

2
r2, (2)

where ω is the trap frequency. As a model for such a system
with memory, strongly coupled with a noisy environment,
we consider a GLE with a fluctuating harmonic confinement
potential Ũ (r)

r̈(t) + γ

∫ t

0
η(t − t ′){ṙ(t ′) − v[r(t ′),t ′]}dt ′ + ∇Ũ (r) = ξ (t),

(3)

where ṙ ≡ d r/dt , γ is the damping coefficient, and ξ (t) =
[ξ1(t),ξ2(t),ξ3(t)] is the internal Gaussian stochastic force.
The latter is assumed to have zero mean, 〈ξ (t)〉 = 0, and the
stationary power-law correlation function

〈ξi(t)ξj (t ′)〉 = γ kBT δij


(1 − α)|t − t ′|α . (4)

Here, T is the absolute temperature of the heat bath, kB is
the Boltzmann constant, and 
(1 − α) is the gamma function.
The memory exponent α can be taken as 0 < α < 1, which is
determined by the viscoelastic properties of the medium. Since
the driving noise ξ (t) is internal noise, the memory kernel
η(t) in Eq. (3) satisfies Kubo’s second fluctuation-dissipation
theorem [22] expressed as

γ kBT η(|t − t ′|)δij = 〈ξi(t)ξj (t ′)〉. (5)

By taking the limit α → 1 in Eqs. (4) and (5) we see
that the correlation function (4) possesses all properties of
δ function (its δ-functional behavior manifests itself in the
integrals) and thus the noise ξ (t) corresponds to white noise
and consequently, to nonretarded friction in the GLE (3)
[16,17,33]. It should be noted that the internal noise ξ (t) with
the power-law correlation function (4) has been successfully
applied in the description of a wide variety of problems in
viscoelastic media [13–17,34]. The fluctuating confinement
potential Ũ (r) is assumed to be in the form

Ũ (r) = U (r) + X2

2
Z1(t) + Y 2

2
Z2(t) + Z2

2
Z3(t), (6)

where Z(t) = [Z1(t),Z2(t),Z3(t)] is a white noise with the
following properties:

〈Z(t)〉 = 0, 〈Zi(t)Zj (t ′)〉 = 2Dδij δ(|t − t ′|),
〈Zi(t1) . . . Zi(tn)〉 = 〈Zi(t1)Zi(t2)〉〈Zi(t3) . . . Zi(tn)〉, (7)

where t1 � t2 � · · · � tn, and D is the noise intensity (cf.
also Ref. [35]). Although we assume a special type of the
white noise with properties (7), the results discussed in this
paper are more general. For example, all results do not change
if the noises Zi(t) are replaced with Gaussian white noises
(see Appendix C). The noise Z(t) is assumed as statistically
independent from the noise ξ (t). In the following we use the
Stratonovich interpretation of the GLE (3) with a fluctuating
confinement potential (6). Note that such a potential acting,
for example, on a colloidal particle may be realized by optical
tweezers [31,32]. It should be pointed out that in the case
of Stokes friction (α = 1) and without the multiplicative noise
Z(t) the model (3) reduces to the model for a trapped Brownian
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particle in an oscillatory shear flow previously considered in
[30]. Due to the linearity of the restoring force, −∇Ũ (r), the
z component in Eq. (3) decouples and remains–by sufficiently
small intensities of the multiplicative noise Z(t), D < Dcr–in
equilibrium

〈Z(t)〉 = 0, 〈Z2〉 = kBT Dcr

ω2(Dcr − D)
. (8)

Therefore, in the rest of this paper we consider the motion
in the x-y plane. The occurrence and the behavior of the
critical noise intensity Dcr are established in Sec. II C (cf. also
Refs. [36,37]).

Note that counterparts of the model (3) without the multi-
plicative noise Z(t) and flow field v(r,t) are widely used in
fitting experimental data from intracellular microrheology and
from single-molecule experiments probing conformational
fluctuations in proteins (see, e.g., Refs. [13,14,38]). For
example, in Ref. [14] the authors succeeded in modeling the
motion of the donor-acceptor distance within a protein as
the coordinate of a fictitious particle diffusing in a harmonic
potential according to a GLE [i.e., with the help of a
model similar to Eq. (3) with Z(t) = v(r,t) = 0], while the
memory exponent α ≈ 0.51 was deduced from experimental
observations.

B. First moments

In the x-y plane, the GLE (3) can be written as two second-
order fractional differential equations

Ÿ (t) + γ
dα

dtα
Y (t) + [ω2 + Z2(t)]Y (t) = ξ2(t), (9)

Ẍ(t) + γ
dα

dtα
X(t) + [ω2 + Z1(t)]X(t)

= ξ1(t) + γρ
dα

dtα

[ ∫ t

0
Y (t ′) cos(�t ′)dt ′

]
, (10)

where the operator dα/dtα with 0 < α < 1 denotes the
fractional derivative in Caputo’s sense, given by [33]:

dαf (t)

dtα
= 1


(1 − α)

∫ t

0

ḟ (t)

(t − t ′)α
dt ′. (11)

After averaging Eqs. (9) and (10) over the ensemble of
realizations of the random processes Z(t) and ξ (t) we obtain

d2

dt2
〈Y (t)〉 + γ

dα

dtα
〈Y (t)〉 + ω2〈Y (t)〉 = 0, (12)

d2

dt2
〈X(t)〉 + γ

dα

dtα
〈X(t)〉 + ω2〈X(t)〉

= γρ
dα

dtα

[ ∫ t

0
〈Y (t ′)〉 cos(�t ′)dt ′

]
. (13)

Here we have used that from Eqs. (3) and (7) it follows that
the correlator

〈Z(t)r(t)〉Z = 0, (14)

where 〈〉Z denotes an average over an ensemble of realizations
of the multiplicative noise. A proof of the last statement is
given in Appendix C. Thus, it turns out that fluctuations of the
confinement potential do not affect the first moments 〈X(t)〉
and 〈Y (t)〉 of the output of the GLE, provided the fluctuations

are δ-correlated, and 〈r(t)〉 remains equal to the noise-free
solution. By applying the Laplace transformation to Eqs. (9)
and (10) one can easily obtain formal expressions for the
displacements X(t) and Y (t) in the following forms:

Y (t) = 〈Y (t)〉 +
∫ t

0
H (t − τ )[ξ2(τ ) − Y (τ )Z2(τ )]dτ, (15)

X(t) = 〈X(t)〉 +
∫ t

0
H (t − τ )

{
ξ1(τ ) − X(τ )Z1(τ )

+ γρ
dα

dτα

[ ∫ τ

0
(Y (t ′) − 〈Y (t ′)〉) cos(�t ′)dt ′

]}
dτ,

(16)

where the averages 〈Y (t)〉 and 〈X(t)〉 are given by

〈Y (t)〉 = ẏ0H (t) + y0G(t), (17)

〈X(t)〉 = ẋ0H (t) + x0G(t) + γρ

∫ t

0

{
H (t − τ )

× dα

dτα

[ ∫ τ

0
〈Y (t ′)〉 cos(�t ′)dt ′

]}
dτ, (18)

with the deterministic initial conditions X(0) = x0, Y (0) = y0,
Ẋ(0) = ẋ0, and Ẏ (0) = ẏ0. The relaxation functions H (t) and
G(t) with the initial conditions H (0) = 0 and G(0) = 1 are
the Laplace inversions of

Ĥ (s) =
∫ ∞

0
e−stH (t)dt = 1

s2 + γ sα + ω2
, (19)

Ĝ(s) = s + γ sα−1

s2 + γ sα + ω2
, (20)

respectively. Integral representations of the relaxation func-
tions H (t) and G(t) are given by Eqs. (A1)–(A8) in Appendix
A. For large t the functions H (t) and G(t) decay as power law,
namely, at t → ∞

H (t) ∼ t−(1+α), G(t) ∼ t−α. (21)

Thus, in the long-time limit, t → ∞, in Eq. (17) the memory
about the initial conditions will vanish and the average y-
coordinate 〈Y (t)〉as := 〈Y (t)〉|t→∞ is zero, i.e.,

〈Y (t)〉as = 0. (22)

The asymptotic behavior of the average displacement in
the x direction, 〈X(t)〉as , is more subtle. It follows from
Eqs. (17)–(20) that we have two different cases. (i) An
oscillatory shear flow, � �= 0. In this situation, if t is much
larger than 1/�, then 〈X(t)〉 tends to zero as

〈X(t)〉 ∼ t−α, t → ∞, � �= 0. (23)

(ii) The static limit, � = 0. In this case we get

〈X(t)〉 ∼ y0t
1−2α, t → ∞, � = 0, y0 �= 0. (24)

Thus (recall that y0 �= 0), the asymptotic value 〈X(t)〉as = 0
if the memory exponent α is in the interval (1/2, 1). On
the other hand, if α < 1/2, the average displacement 〈X(t)〉
grows unlimited as 〈X(t)〉 ∼ t1−2α . Therefore, in the case
� = 0, y0 �= 0, α < 1/2 relaxation to a stationary regime is
not possible.
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C. Second moments

In the following, our interest is in the stationary regime in
the long-time limit, t → ∞, when the system has lost all mem-
ory of the initial conditions. We consider the second moments
〈X2(t)〉, 〈Y 2(t)〉, and 〈X(t)Y (t)〉 that determine the particle’s
positional distribution function (see Refs. [23,24,28–30]).
Here we remind the reader that we use the term “stationary
regime” in a wide sense, meaning bounded (also periodic) first
and second moments of output by increasing time.

Since the motion in the y direction is independent of the
shear flow and of the motion in the x -direction, the respective
correlation functions and also the moment 〈Y 2(t)〉 remain
unaffected. They are simply those of a fractional oscillator with
fluctuating frequency and can be found as in Refs. [36,37]. In
particular, in the long-time limit

〈Y (t + τ )Y (t)〉as = kBT

ω2
G(τ ) + 2D〈Y 2〉asψ(τ ), (25)

〈Y 2〉as = kBT Dcr

ω2(Dcr − D)
, (26)

where

ψ(τ ) :=
∫ ∞

0
H (t)H (t + τ )dt, (27)

Dcr = [2ψ(0)]−1. (28)

From Eq. (26) we can see that the stationary regime is possible
only if D < Dcr . The exact formula useful for a numerical
treatment of the critical noise intensity Dcr is given by Eq. (A9)
(see Appendix A). As the noise intensity D tends to the critical
value Dcr the variance 〈Y 2〉as increases to infinity. This is
an indication that for D > Dcr energetic instability appears,
which manifests itself in an unlimited increase of the second-
order moments of the output of the oscillator with time, while
the mean value of the oscillator displacement remains finite
[35,39]. It is important to note that the formulas (25)–(28) are
applicable for all values of the memory exponent, 0 < α < 1.

Using Eqs. (14), (16), and (25) we obtain

〈X(t)Y (t)〉as = γρ〈Y 2〉as

∫ t

0
χ (t ′)F (t ′) cos[�(t − t ′)]dt ′,

t → ∞, (29)

where

F (t) : = 2Dψ(t) + G(t)[1 − 2Dψ(0)], (30)

χ (t) : = 1

γ
[G(t) − Ḣ (t)]. (31)

Equation (29) can be written as

〈X(t)Y (t)〉as = γρ〈Y 2〉as |A(∞)| cos(�t + ϕ1), (32)

where

A(t) :=
∫ t

0
χ (t ′)F (t ′)e−i�t ′dt ′, (33)

and the phase shift ϕ1 can be represented as

tan ϕ1 = ImA(∞)

ReA(∞)
. (34)

In the case of nonoscillatory shear flow, � = 0, the integral
(33) converges at t → ∞ only if α > 1/2. If the memory

exponent α < 1/2, then the cross correlation 〈X(t)Y (t)〉 grows
unlimited as

〈X(t)Y (t)〉 ∼ t1−2α, α < 1
2 , � = 0, (35)

and a stationary regime is not possible [see also Eqs. (A19)
and (A21) in Appendix A].

Next we consider, in the long-time limit, the behavior of the
variance 〈X2(t)〉. Suppose that the system has been relaxed to a
stationary regime. Starting from Eqs. (16) and (25), we obtain
the following asymptotic formula for the second moment of
the particle displacement in the x direction

〈X2(t)〉as = 〈Y 2〉as

{
1 + γ 2ρ2

[
Re(B0)

(1 − 2Dψ(0))

+ |B1|
|1 − 2Dφ(�)| cos(2�t + ϕ2)

]}
, (36)

where

Bj :=
∫ ∞

0
[e(−1)j i�t1χ (t1)

∫ t1

0
e−i�t2χ (t2)F (t1 − t2)]dt2dt1,

j = 0,1, (37)

φ(�) :=
∫ ∞

0
H 2(t)e2i�tdt, (38)

and the phase shift ϕ2 is given by

tan ϕ2 = − Im[B1(1 − 2Dφ(�)]

Re[B1(1 − 2Dφ(�)]
. (39)

Here we have used that because of the statistical independence
of the processes ξ (t) and Z(t) it follows from Eq. (14) that
(see Appendix C)

〈ξ (t1)X(t2)Z(t2)〉 = 〈ξ (t2)X(t1)Z(t1)〉 = 0 (40)

and that in the case of a δ-correlated noise Z(t) the correlator
〈X(t1)X(t2)Z1(t1)Z1(t2)〉 can be given by

〈X(t1)X(t2)Z1(t1)Z1(t2)〉 = 2D〈X2(t2)〉δ(|t1 − t2|). (41)

The exact formulas convenient for a numerical treatment of the
quantities A(∞) and Bj are given by Eqs. (A12) and (A16)
(see Appendix A).

In effect, the integral B0, Eq. (37), converges to a finite
value only if α > 1/2 for the case of � �= 0 and if α > 2/3
for � = 0. Therefore, a stationary regime in the x direction is
possible only if the above conditions are fulfilled. Particularly,
it can be shown that in the case of � = 0 and α < 2/3, the
second moment 〈X2(t)〉 grows as t2−3α for large t . In this case,
the long-time behavior of the particle in the x direction is
subdiffusive for 1/3 < α < 2/3 or superdiffusive if α < 1/3.
In the case of an oscillatory shear flow, � �= 0, the process
X(t) is subdiffusive for α < 1/2, 〈X2(t)〉 ∼ t1−2α .

In the case of Stokes friction, α = 1, it is known that the flow
leads to rotation in the x-y plane with an angular momentum
〈Lz(t)〉 = 〈X(t)Ẏ (t) − Y (t)Ẋ(t)〉, [28,30]. For the model (3),
it is given by

〈Lz(t)〉as = −ρ〈Y 2〉as |C| cos(�t + ϕ3),t → ∞, (42)

where

C = γ

∫ ∞

0
e−i�t [χ (t)Ḟ (t) − χ̇ (t)F (t)]dt (43)
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and

tan ϕ3 = ImC

ReC
. (44)

It is remarkable that the formulas (42)–(44) are applicable
for all values of the memory exponent, 0 < α < 1 [see also
Appendix A, Eq. (A13)].

III. RESULTS

A. Time-independent shear flow

Several aspects of the behavior of a Brownian parti-
cle in time-independent shear flow with Stokes friction
have been experimentally and theoretically investigated in
Refs. [23,24,28,29,40]. In this section, we will focus on the
case of a viscoelastic shear flow and explore the influence of
multiplicative noise on the dynamics of a single particle.

1. Critical noise intensity

In Figs. 1(a) and 1(b) we depict the behavior of the
critical noise intensity Dcr and the second moments 〈X2〉as ,
〈Y 2〉as , and 〈XY 〉as by variations of the memory exponent α.
Figure 1(a) shows a typical phenomenon of the memory-
enhanced energetic stability considered previously in
Ref. [37]. The dependence of Dcr/γ on α shows a typical
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2
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,X
Y
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b

FIG. 1. Dependence of the critical noise intensity Dcr and the
second moments computed from Eqs. (28), (A9), (26), (32), (A12),
(36), and (A16) on the memory exponent α. Parameter values: ω = 1,
� = 0, and ρ = 0.03. (a) Dcr/γ vs α at different values of the friction
coefficient γ . Solid line: γ = 4; dashed line: γ = 3; dashed-dotted
line: γ = 2; dotted line: γ = 1. (b) Second moments vs α. System
parameter values: kBT = 0.1, D = 4.8, and γ = 4. Solid line: 〈X2〉as ;
dashed line: 〈XY 〉as ; dotted line: 〈Y 2〉as . The thin dashed vertical lines
mark the positions of the critical memory exponents: α1 ≈ 0.325,
α2 = 1/2, α3 = 2/3, α4 ≈ 0.872.

resonance-like behavior of Dcr (α). As a rule, the maximal
value of Dcr/γ increases as the value of the friction coefficient
γ increases, while the positions of the maxima are monoton-
ically shifted to lower α as γ rises. In the case considered
in Fig. 1(b) the intensity of the multiplicative noise is in
the interval ω2γ < D < Dcrmax, where Dcrmax is the maximal
value of Dcr (α) by variations of α. In this case the moments
〈X2〉as , 〈Y 2〉as , and 〈XY 〉as increase rapidly to infinity at α4,
Dcr (α4) = D. This is an indication that for α � α4 energetic
instability appears. From Fig. 1(b) it can be seen that there also
occur three other critical memory exponents, α1 ≈ 0.325, α2 =
1/2, and α3 = 2/3, at which the moments 〈Y 2〉as , 〈XY 〉as , and
〈X2〉as diverge, respectively. The critical exponent α1, D =
Dcr (α1), indicates the occurrence of energetic instability for
〈Y 2〉as at α1, but the critical exponents α2 and α3 characterize
a transition from confined dynamics to a subdiffusive regime
(see also Sec. II).

2. Distribution of particle position

If multiplicative noise is absent, the right-hand sides of
Eqs. (15) and (16) are linear combinations of Gaussian
processes ξ (t) = [ξ1(t),ξ2(t)], thus r(t) = [X(t),Y (t)] is also
Gaussian and therefore completely specified by its mean
and correlation matrix. So, in the long-time limit, t → ∞,
the stationary particle position distribution P (r) is Gaussian
(cf. Refs. [23,28]):

P (r) = 1√
(2π )2 det (M)

exp

[
−1

2
rT M−1r

]
, (45)

where the superscript “T” in Eq. (45) denotes transpose, and
the covariance matrix M is given by

M =
( 〈X2〉as 〈XY 〉as

〈XY 〉as 〈Y 2〉as

)
. (46)

In the general case of Eq. (3), i.e., in the presence of a mul-
tiplicative noise and time-dependent shear flow, the particle
distribution P (r,t) is not necessarily Gaussian. However, in
this work we also use the matrix M computed from Eqs. (26),
(32), and (36) to characterize the particle distribution in
the general case (cf. also Refs. [23,30]). If the positional
distribution P (r) is Gaussian (or approximately Gaussian),
the nondiagonal elements of the matrix M, cf. Eqs. (45) and
(46), describe the cross correlations of the particle fluctuations
in the x and y directions and, consequently, the deviation P (r)
from a spherically symmetric distribution to an ellipsoidal one
in the shear plane. Thus the particle positional distribution is
described by a covariance ellipsoid, with the lengths of its two
main axes C1 and C2, which are given by the corresponding
eigenvalues C2

1 and C2
2 of the matrix M (see Refs. [23,28],

also Eq. (B2) in Appendix B). The larger main axis of the
covariance ellipsoid forms an angle φ with the x axis [see
Eq. (B3)], which starts out at π/4 for small shear rates (ρ → 0)
and approaches zero for large shear rates (ρ → ∞), [28]. The
behavior of the covariance ellipsoids by an increasing intensity
D of the multiplicative noise are illustrated in Fig. 2. By
increasing the noise intensity D both the ratio V = C2/C1

of the minor and the major axis of the covariance ellipsoid and
the angle φ in Fig. 2 decrease monotonically. At the critical
noise intensity, D → Dcr , both characteristics V and φ tend
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FIG. 2. The covariance ellipsoids in the x-y plane computed from
Eqs. (26), (32), (36), (B2), and (B3) at � = 0 for several values of
the intensity D of the multiplicative noise. Parameter values: ω = 1,
ρ = 0.1, kBT = 1, γ = 4, and α = 0.8. Line (1): D = 0; line (2):
D = 4; line (3): D = 4.8. The angles between the larger main axis
and the x axis are: φ1 = 0.5497, φ2 = 0.2368, and φ3 = 0.0934.

to zero. This circumstance reflects the fact that the parametric
stochastic resonance associated with energetic instability is
more pronounced for 〈X2〉 compared with the second moments
〈Y 2〉 and 〈XY 〉, [cf. Eqs. (26), (32), and (36)].

In Fig. 3 we depict, on two panels, the behavior of V (α) and
φ(α) for various values of the noise intensity D < Dcr (2/3).
Both V (α) and φ(α) exhibit a nonmonotonic dependence on
the memory exponent α, i.e., a typical resonance phenomenon

0.5 0.6 0.7 0.8 0.9 1.0
0.00
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a

0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.005

0.010

0.015

φ

b

α

α

FIG. 3. The ratio V = C2/C1 of the minor and the major axis of
the covariance ellipsoid and the angle φ between the major axis and x

axis as functions on the memory exponent α. The curves are computed
from Eqs. (26), (32), (36), (B2), and (B3) for several values of the mul-
tiplicative noise intensity D. Parameter values: � = 0, ρ = γ = 4,
kBT = ω2 = 1. Solid line: D = 4.8, dashed line: D = 4.2; dotted
line: D = 3. In the case of solid line, D = 4.8, the critical memory
exponent α1 equals to α1 ≈ 0.8721.

occurs as α increases. Clearly, the resonancelike behavior
of the covariance-ellipsoid characteristics versus α is signif-
icantly associated with the nonmonotonous dependence of
the critical noise intensity Dcr (α) on the memory exponent
and with the subdiffusive motion of a Brownian particle
in the x direction at α < 2/3. In the case of ω2γ < D <

D(2/3), the phenomenon of memory-induced resonance is
very pronounced. In particular, in this case the system is
in the stationary regime only if the values of the memory
exponent are in the finite interval α ∈ (2/3,α1), D = Dcr (α1);
at α = 2/3 the quantities V and φ tend to zero due to the
appearance of subdiffusive dynamics in the x direction (〈X2〉
increases unlimited).

3. Time asymmetry in the cross correlation

Inspired by a recent experiment [40], where shear-induced
cross correlations of particle position fluctuations perpendicu-
lar and along streamlines in the case of Stokes friction are
investigated we now consider the behavior of the asymp-
totic cross-correlation functions 〈X(t + τ )Y (t)〉as and 〈X(t)
Y (t + τ )〉as , (see also Appendix A). As pointed out in
Refs. [23,40], the shear-induced asymmetry of the cross-
correlation functions 〈X(t + τ )Y (t)〉as �= 〈X(t)Y (t + τ )〉as

with respect to the time lag τ is one of the important effects of
shear flow on the distribution of particle positional fluctuations.
The typical forms of the graphs K1(τ ) and K2(τ ) vs τ

are represented in Fig. 4, where K1(τ ) and K2(τ ) are the
normalized cross-correlation functions

K1(τ ) = 1

〈XY 〉as

〈X(t + τ )Y (t)〉as,

(47)

K2(τ ) = 1

〈XY 〉as

〈Y (t + τ )X(t)〉as .

Note that the exact cross-correlation functions exhibit
exponentially damped oscillations around a curve, which
for large τ decay absolutely monotonically like a power
law. Namely, both cross-correlation functions decay, in the
long-time-lag regime as τ 1−2α (see Appendix A). In a quiescent

0 5 10 15 20

4

2

0

2

4

τ

K
1
τ

,K
2
τ

FIG. 4. Normalized cross-correlation functions K1(τ ) and K2(τ )
vs the time lag τ in the case of nonoscillatory shear flow, � = 0. The
curves are computed from Eqs. (47), (A22), and (A23). Parameter
values: ω2 = ρ = kBT = 1, γ = 0.2, α = 0.7, and D = 0.1. The
solid line and the dashed line correspond to the dependence of K1(τ )
and K2(τ ) on the time lag τ , respectively.
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fluid cross correlations between particle displacements in
orthogonal directions vanish, i.e., 〈X(t + τ )Y (t)〉as = 〈Y (t +
τ )X(t)〉as = 0. But shear flow causes finite cross correlations
in the shear plane [23,40].

In experimental realizations, the time lag is τmin � τ � τmax,
where τmin is the acquisition time interval and τmax is the
measurement time. Therefore it is important to analyze the
behavior of the correlation functions K1(τ ) and K2(τ ) for
several time scales involved in the model (3). There are three
important characteristic times for Ki(τ ), i = 1,2:

τ1 = 1

β
, (48)

τ
(2)
2 = 2(2α − 1)DDcr

ω4(Dcr − D)
, i = 2, (49)

τ
(1)
2 =

{
τ

(2)
2

ω2
(α)

γ
(2α)[1 − 2 cos(πα)]

} 1
1−α

, i = 1. (50)

Below, we consider the case

τmin < τ1 � τ
(i)
2 � τmax (51)

to allow the following separation of time scales: (i) τ � τ1; (ii)
τ1 � τ � τ

(i)
2 ; (iii) τ 
 τ

(i)
2 . From Eq. (A3) it follows that τ1

depends only on the parameters α, γ , and ω. Particularly, as
a rule, τ1 increases as γ or α decrease. Note that in the time
region τ < τ1 the oscillatory behavior of K1(τ ) and K2(τ ) is
significant [see Fig. 4, cf. also Eqs. (A2), (A9), (A22), and
(A23)] and thus it should be used in the interpretation of ex-
perimental results. Notably, the usually employed overdamped
approximation is not applicable in this situation.

The other characteristic time τ
(2)
2 is related to the asymptotic

regimes of the correlation function K2(τ ) and is defined as
the time at which a crossover from a power-law regime with
the exponent −2α to a power-law regime with the exponent
1 − 2α occurs (see Fig. 5). More precisely, at a long-time
limit (τ → ∞) the asymptotic behavior of Ki(τ ), α > 1/2,
is given by Eqs. (A24) and (A25), from which follow the
formulas (49) and (50) for the characteristic times τ

(i)
2 . It is

2 4 6 8 10 12 14 16
15

10

5

0

ln τ

ln
K 1
,l
n
K 2 ττ 2

τ1 2

FIG. 5. A logarithmic plot of the asymptotic dependence of the
normalized cross-correlation functions K1(τ ) and K2(τ ) on the time
lag τ . System parameter values: γ = 4, ρ = kBT = ω = 1, � = 0,
α = 0.7, and D = 5.7897. Solid line, ln |K2(τ )| vs ln τ ; dashed
line ln |K1(τ )| vs ln τ . Note a crossover between two asymptotic
power-law regimes, τ−1.4 and τ−0.4, at the characteristic lag-time
value ln τ

(2)
2 = 8.9872.

obvious that τ
(2)
2 tends to a very large value in the vicinity

of energetic instability, D → Dcr . If τ
(2)
2 > τmax, then the

asymptotic monotonic decay of the correlation function K2(τ )
should be used with care in the interpretation of experimental
data. Namely, in the case of τ

(2)
2 > τmax a naive interpretation

of experimental data shows, for K2(τ ), a power-law decay
like τ−2α , which corresponds to the memory exponent α∗ =
α + 0.5. The genuine memory exponent α appears only in
the time scale τ 
 τ

(2)
2 . From Eqs. (A24) and (A25) there

follows a somewhat surprising circumstance that in crossover
regions the pictures of the asymptotic dependence of K1(τ ) and
K2(τ ) on τ are different. First, although in the long-time-lag
regime both of the normalized cross-correlation functions
K1(τ ) and K2(τ ) decay similarly as τ−(2α−1), below the
characteristic crossover time τ

(i)
2 the functions K1(τ ) and

K2(τ ) relax asymptotically as τ−α and τ−2α , respectively. Thus
in this region K2(τ ) exhibits a much faster decay than K1(τ )
(see. Fig. 5). Second, for physically reasonable values of the
friction coefficient, γ /ω2−α < 10, the crossover time τ

(1)
2 for

K1(τ ) is always significantly larger than τ
(2)
2 for K2(τ ) [cf.

Eqs. (50) and (51)]. We emphasize that the above described
crossover effects occur only in the presence of multiplicative
noise. Since without multiplicative noise such effects are
absent, the appearance of power-law regimes with different
exponents for K1(τ ) and K2(τ ) in possible microrheology
experiments is an indication of the presence of a multiplicative
noise influencing the dynamics of the system. It should be
noted that a similar phenomenon of a multiplicative-noise-
induced crossover between two different asymptotic power-
law regimes for correlation functions have been previously
considered for a fractional oscillator in Ref. [36].

B. Oscillatory shear flow

In Eq. (3) the shear flow (� �= 0) can be considered as an
external periodic driving force. As such, it allows excitation
of internal modes of the unperturbed system [30]. We now
explicitly consider the spatial moments and particle angular
momentum, where resonance effects manifest themselves as
amplitude peaks at particular shear frequencies �. Since the
component Y is not affected by the shear flow, its second
moment 〈Y 2〉as is a constant, Eq. (26). To discern memory
effects from those generated by multiplicative noise we now
consider the case without multiplicative noise, D = 0. The
dependence of the amplitude |B1| for the time-dependent
contribution to 〈X2(t)〉as [cf. Eq. (36)] on the frequency �

is shown in Fig. 6(a) for different values of the memory
exponent α. These graphs show a typical multiresonance,
with nonmonotonic behavior for the frequencies � close to
several resonance frequencies, which is a bona fide resonance
phenomenon. For intermediate values of the memory exponent
α, but relatively low values of the friction coefficient γ the
amplitude |B1| exhibits three resonance peaks at � ≈ 0.5ω,
� ≈ ω, and � ≈ 2ω. As a rule the peak near the trap frequency,
� ≈ ω, becomes the dominant resonance at intermediate
values of γ < ω2−α . The peaks at ω and 2ω are connected
with the resonant behavior of the cross-moment 〈X(t)Y (t)〉as .
Namely, from Eqs. (29) and (32) it follows that the amplitude
|A(∞)| exhibits resonances near � ≈ 2ω and � = ω, which
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FIG. 6. Multiresonance of the second moment 〈X2〉as characteris-
tics Re(B0) and |B1| [see Eq. (36)] computed from Eq. (A16) at ω = 1,
and D = 0. (a) depicts the resonancelike behavior of the amplitude
|B1| for the time-dependent contribution to 〈X2〉as vs the frequency
� of the shear flow. (b) Dependence of the time-independent quantity
Re(B0) in Eq. (36) on �. Solid lines: α = 0.6 and γ = 0.02;
dashed lines: α = 0.6 and γ = 0.2; dotted lines: α = 0.9; γ = 0.02.
The values of Re(B0) and |B1| at the local maxima: solid lines,
Re[B0(1)] ≈ 39.93, Re[B0(2)] ≈ 476.78, and |B1(1)| ≈ 2.86; dotted
line, Re[B0(2)] ≈ 318.87. More details in the text.

become less pronounced as γ increases. The resonance for |B1|
at � ≈ 2ω is dominant for low values of the friction coefficient,
γ � ω2−α . The third peak at � ≈ 0.5ω is relatively small
and decreases as the memory exponent α increases. The
time-independent term Re(B0) in Eq. (36) has a two-peak
structure by γ < ω2−α [cf. Fig. 6(b)]. The resonances appear
at the frequencies � ≈ 2ω and � ≈ ω. Although the peak
at � ≈ 2ω tends to dominate, at sufficiently small values
of the memory exponent α (near the subdiffusive regime of
〈X2〉) the peak at � ≈ ω can become the dominant resonance.
The resonances of 〈X2(t)〉as vs � disappear at sufficiently
large values of the friction coefficient, γ > ω2−α . It should be
noted that both the term Re(B0) and the amplitude |B1| attain
large values near � = 0 (a finite value for α > 2/3; unlimited
growth for 0.5 < α � 2/3) and vanish in the limit � → ∞. In
the last case the particles are too inert to adjust to the motion of
the flow. Before we study the resonance of the particle angular
momentum 〈Lz(t)〉as , Eq. (42), we compare our results with the
case of Stokes friction, which have been previously calculated
in Ref. [30]. By taking the limit α → 1 in Eqs. (3) and (4)
we see that the noise ξ (t) corresponds to white noise and,
consequently, to Stokes friction. In this limit the quantities
Re(B0) and |B1| are characterized with one resonance peak at
� ≈ 2ω and two peaks at � ≈ ω and � ≈ 2ω, respectively.
Thus, in some cases the number and location of the resonance
peaks of 〈X2(t)〉as vs � can give an indicator to estimate the
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FIG. 7. Resonance for the particle angular momentum 〈Lz〉as

versus the shear flow frequency � at different values of the memory
exponent α, [cf. Eq. (42)]. The amplitude |C| of 〈Lz〉as is computed
from Eq. (A13) with ω = 1 and D = 0. Solid lines, α = 0.5; dashed
lines, α = 0.6; dotted lines, α = 0.95. At high values of the shear
flow frequency, � → ∞, the amplitude |C| tends to 0. In the limit of
zero frequency, � → 0, the value of |C| approaches 1. (a) γ = 0.1,
(b) γ = 4.3. More details in the text.

viscoelastic properties of the medium in experiments such as
described in Ref. [30].

Our next task is to examine the dependence of the amplitude
C of 〈Lz(t)〉as , Eq. (42), on the shear flow frequency �. In the
case of Stokes friction, α = 1, it follows from Eq. (43) that

|C| =
[

1 +
(

�

γ

)2]− 1
2

; (52)

consequently |C(�)| decreases monotonically as � increases
(cf. also Ref. [30]). If the shear flow is viscoelastic, α < 1,
the behavior of |C(�)| is more complicated. The results for
the particle angular momentum are illustrated in Fig. 7. For
weak friction, γ < ω2−α , the amplitude |C(�)| exhibits a clear
resonance at � ≈ ω, which becomes less pronounced as the
memory exponent α increases. The resonance effect becomes
much less obvious at intermediate values of the friction
coefficient, γ ≈ ω2−α , and at α ≈ 1, where the resonance is
suppressed. It is important to note that in the case of strong
friction, γ > ω2−α , the resonance also occurs, but the location
of the resonance peak is significantly shifted from the trap
frequency ω to greater values of �, which tends to the value
2ω as α decreases. Here we emphasize that in this case the
value of |C| increases at resonance maxima by increasing the
friction coefficient γ and is larger than in the low-frequency
limit, |C| > |C(0)| = 1. As mentioned above, the resonance
disappears at sufficiently large values of the memory exponent,
α ≈ 1, particularly in the case of Stokes friction. Thus we have
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found an experimentally convenient criterion that enables us
to verify the importance of viscoelasticity in shear flow as a
factor of the dynamics of Brownian particles.

IV. CONCLUSIONS

We have studied, in the long-time regime, the dynamics of
an underdamped Brownian particle in a fluctuating trapping
potential well, which is simultaneously subjected to an
oscillatory viscoelastic shear flow. Starting from a generalized
Langevin equation with a power-law-type memory driven by
an internal noise and a multiplicative noise [Eq. (3)], we have
been able to derive exact analytical expressions of the second-
order moments and cross-correlation functions of the fluctuat-
ing displacement for the Brownian particle in the shear plane.

As our main result we have established that in the
investigated model an interplay of the multiplicative noise,
the shear flow, and memory effects can generate a rich variety
of nonequilibrium cooperation phenomena. Namely, (i) the
existence of critical memory exponents αcr1 = 1

2 and αcr2 = 2
3

for oscillatory and time-independent shear flows, respectively,
which mark dynamical transitions from the confined dynamics
of a Brownian particle to the subdiffusive regime; (ii) a reso-
nancelike dependence of the anisotropy of the particle position
distribution on the memory exponent α; (iii) a crossover
between two different asymptotic power-law regimes in time
τ for the cross-correlation functions, e.g., τ−2α and τ 1−2α for
〈X(t)Y (t + τ )〉as ; (iv) multiresonance of the second moment
of the particle displacement in the shear flow direction
〈X2〉 and the cross-correlation 〈XY 〉 between the orthogonal
directions in the shear plane versus the frequency � of the shear
flow (up to three peaks for 〈X2〉 and up to two peaks for 〈XY 〉);
(v) the existence of a memory-dependent critical intensity of
the fluctuations of the trapping potential well, above which an
energetic instability occurs; (vi) resonance of the mean angular
momentum 〈Lz〉 of Brownian particles versus the frequency
�. The last effect, i.e., the resonance of 〈Lz〉 vs �, is relatively
strong at intermediate values of the memory exponent α. This
contrasts with the case of Stokes friction (α = 1) in the shear
flow, where such an effect is absent (the amplitude of 〈Lz〉
is a decreasing function on �, [30]). Thus it seems that the
appearance of a resonant peak of 〈Lz〉 vs � can provide an
experimentally convenient criterion enabling estimation of the
importance of the viscoelastic properties of the shear flow.

We believe that the results of this paper not only supply
material for theoretical investigations of fractional dynamics
in stochastic systems, but also suggest some possibilities for
interpreting experimental data, e.g., for particles trapped by
optical tweezers in dusty plasmas and in the cytoplasm of cells,
where issues of memory and multiplicative noise can be crucial
[20,21,41]. A possible perspective is to apply our results in the
design of experiments with optical tweezers, such as employed
in Ref. [40] for direct measurements of the Brownian motion
of micron-sized beads in a shear flow. For an oscillatory
shear flow possible experiments on dusty plasmas and trapped
colloidal dispersions have been discussed in Ref. [30].

Finally, according to the results of Ref. [30] for Stokes
friction, we speculate that the model discussed in this paper
can be expanded, along the lines described in Ref. [30], to one
suitable for studying interacting many-particle systems.
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APPENDIX A: FORMULAS FOR THE
RELAXATION FUNCTIONS

1. Time dependence of the relaxation functions H(t) and G(t)

The relaxation functions H (t) and G(t) in Eqs. (17) and
(18) can be obtained by means of the Laplace transformation
technique. To evaluate the inverse Laplace transform of Ĝ(s)
and Ĥ (s) [see Eqs. (19) and (20)] we use the residue theorem
method described in Ref. [42]. The inverse Laplace transform
gives

H (t) = γ sin(απ )

π

∫ ∞

0

rαe−rt dr

B(r)

+ 2√
u2 + v2

Im[ei�e−(β−iω∗)t ], (A1)

G(t) = ω2γ sin(απ )

π

∫ ∞

0

e−rt dr

r1−αB(r)

+ 2ω2

√
u2 + v2

Im

[
ei�e−(β−iω∗)t

β − iω∗

]
. (A2)

Here s1,2 = −β ± iω∗, (β > 0,ω∗ > 0) are the pair of conju-
gate complex zeros of the equation

s2 + γ sα + ω2 = 0, (A3)

where Eq. (A3) is defined by the principal branch of sα . The
quantities u, v, �, and B(r) are determined by

u = −2β + γα cos[(1 − α)ϕ]

(β2 + ω∗2)
1−α

2

, (A4)

v = 2ω∗ − γα sin[(1 − α)ϕ]

(β2 + ω∗2)
1−α

2

, (A5)

with

ϕ = π + arctan

(
−ω∗

β

)
, (A6)

� = arctan

(
u

v

)
, (A7)

and

B(r) := [r2 + γ rα cos(πα) + ω2]2 + γ 2r2α sin2(απ ). (A8)

The relaxation functions H (t) and G(t) can be represented via
Mittag-Leffler-type special functions [33]. But as in the last
case the numerical calculations are very complicated, so we
suggest, apart from possible representations via Mittag-Leffler
functions, a numerical treatment of Eqs. (A1) and (A2). It
should be noted that the representations (A1) and (A2) for the
relaxation functions H (t) and G(t) have been previously used
by analysis of the energetic stability and temporal behavior
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of the autocorrelation functions of a fractional oscillator with
multiplicative noise [36,37].

2. Integrals for relaxation functions

Here the exact formulas for the quantities ψ(t), φ(�),
A(∞), C, and Bj , which determine the long-time behavior
of the second moments, are presented. From Eqs. (27), (38),
and (A1) one can conclude that the ψ(t) and φ(�) are given
by

ψ(t) = γ sin(απ )

π

∫ ∞

0

rαe−rt

B(r)
Ĥ (r)dr

+ 2e−βt

√
u2 + v2

Im[ei(ω∗t+�)Ĥ (β − iω∗)] (A9)

and

φ(�) = γ sin(απ )

π

∫ ∞

0

rα

B(r)
Ĥ (r − 2i�)dr

+ 1

i
√

u2 + v2
{ei�Ĥ [β − i(ω∗ + 2�)]

− e−i�Ĥ [β + i(ω∗ − 2�)]}, (A10)

where

Ĥ (s) = 1

s2 + γ sα + ω2
. (A11)

Using formulas (30), (31), (A1), and (A9) we obtain, for
complex amplitudes A(∞) and C of the cross correlation 〈XY 〉
and of the angular momentum 〈Lz〉 [see Eqs. (33) and (43)],
respectively:

A(∞) = γ sin(απ )

π

∫ ∞

0

rαf (r)

B(r)
χ̂ (r + i�)dr + 1

i
√

u2 + v2
{ei�f (β − iω∗)χ̂ [β − i(ω∗ − �)]

− e−i�f (β + iω∗)χ̂ [β + i(ω∗ + �)]} (A12)

and

C = γ 2 sin(απ )

π

∫ ∞

0

rαf (r)(2r + i�)

B(r)
χ̂ (r + i�)dr + γ

i
√

u2 + v2
{ei�f (β − iω∗)[2β − i(2ω∗ − �)]

× χ̂ [β − i(ω∗ − �)] − e−i�f (β + iω∗)[2β + i(2ω∗ + �)]χ̂[β + i(ω∗ + �)]}, (A13)

where

f (s) := 2DĤ (s) + ω2

s
[1 − 2Dψ(0)], (A14)

χ̂(s) = sα−1

s2 + γ sα + ω2
. (A15)

For the second moment 〈X2(t)〉 [see Eq. (36)] the integrals Bj , j = 0,1, can be evaluated as follows:

Bj = sin(απ )

π

∫ ∞

0

(ω2 + r2)

r1−αB(r)
χ̂(r + i�2j )F̂ [r + i�(2j − 1)]dr + 1

i
√

u2 + v2

×
{

ei�

(−β + iω∗)1−α
χ̂ [β − i(ω∗ − 2j�)]F̂ {β − i[ω∗ − (2j − 1)�]}

− e−i�

(−β − iω∗)1−α
χ̂ [β + i(ω∗ + 2j�)]F̂ {β + i[ω∗ + (2j − 1)�]}

}
, (A16)

where

F̂ (s) = γ sin(απ )

π

∫ ∞

0

rαf (r)dr

(r + s)B(r)
+ 1

i
√

u2 + v2

×
[
ei�f (β − iω∗)

β + s − iω∗ − e−i�f (β + iω∗)

β + s + iω∗

]
. (A17)

3. Asymptotic behavior of relaxation functions

The asymptotic behavior of the relaxation functions H (t),
G(t), and ψ(t) at large t has been previously considered in
Ref. [36]. From Eqs. (A1), (A2), and (A9) it follows that in
a long-time limit (t → ∞), these functions decay as a power

law

H (t) ∼ γα

ω4
(1 − α)
t−(1+α), (A18)

G(t) ∼ γ

ω2
(1 − α)
t−α, (A19)

ψ(t) ∼ γα

ω6
(1 − α)
t−(1+α). (A20)

Using Eqs. (30) and (31) we see that

F (t) ∼ G(t)[1 − 2Dψ(0)], χ (t) ∼ 1

γ
G(t) (A21)

at t → ∞. The asymptotic formulas (A19) and (A21) are
used for estimation of the behavior of second moments in
nonstationary regimes (Sec. II C).
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4. Asymptotic behavior of cross-correlation functions

As shown experimentally in Ref. [40], the shear induced
asymmetry of cross-correlation functions 〈X(t + τ )Y (t)〉 �=
〈X(t)Y (t + τ )〉 with respect to the time lag τ is one of the
important effects of shear flow on the distribution of particle
fluctuations. In the case of a stationary regime of the model (3)
these functions can be expressed as [see also Eqs. (30), (31),
(A1), (A2), and (A9)]

〈Y (t + τ )X(t)〉as

= γρ〈Y 2〉asRe

[
ei�t

∫ ∞

0
e−i�t1χ (t1)F (t1 + τ )dt1

]
(A22)

and

〈Y (t)X(t + τ )〉as

= γρ〈Y 2〉asRe

{
ei�t

[∫ ∞

0
dt1e

−i�t1F (t1)χ (t1 + τ )

+
∫ τ

0
dt1e

i�t1χ (τ − t1)F (t1)

]}
. (A23)

If � �= 0, then the formulas (A22) and (A23) are applicable for
all values of the memory exponent, 0 < α < 1, but for � = 0,
a stationary regime is possible only if 1/2 < α < 1.

From Eqs. (A22) and (A23) it follows that for large τ the
cross-correlation functions decay as a power law. Namely,
at a long-time limit (τ → ∞), the asymptotic behavior of
〈Y (t + τ )X(t)〉as and 〈Y (t)X(t + τ )〉as for � = 0 and 1/2 <

α < 1 reads as:

〈Y (t + τ )X(t)〉as

∼ ρ〈Y 2〉as

γ 2 sin(απ )

πω6

{
2D

ω2
· 
(2α)

τ 2α

+ω2[1 − 2Dψ(0)]

(2α − 1)

τ 2α−1

}
, (A24)

〈X(t + τ )Y (t)〉as

∼ ργ 2〈Y 2〉as

sin(απ )

πω6

[
2D
(α)

γ τα
+ ω2[1 − 2Dψ(0)]

× [1 − 2 cos(απ )]

(2α − 1)

τ 2α−1

]
. (A25)

APPENDIX B: PRINCIPAL AXES
OF THE COVARIANCE MATRIX

In the stationary regime the particles positional distribution
in an x-y plane is characterized with the covariance matrix
(see Ref. [23])

M =
( 〈X2〉as 〈XY 〉as

〈XY 〉as 〈Y 2〉as

)
. (B1)

According to Ref. [23] the lengths of the principal axes C1,2

of the elliptical distributions are given by the eigenvalues C2
1,2

of the matrix M

C2
1,2 = 1

2 [〈X2〉as + 〈Y 2〉as]

± 1
2

√
4〈XY 〉2

as + [〈X2〉as − 〈Y 2〉as]2, (B2)

where the subscript 1 (2) refers to the plus (minus) sign. The
longer axis is rotated counterclockwise with respect to the x

axis by an angle φ, which is given by the expression

tan φ = 〈XY 〉as

C2
1 − 〈Y 2〉as

. (B3)

APPENDIX C: PROOF OF EQS. (14) AND (40)

For the sake of simplicity, here we restrict ourselves to a
special type of white noise Zi(t), which can be considered as a
limit process of the Markovian telegraph noise (dichotomous
noise) Z̃(t) with a zero mean and exponential correlator

〈Z̃(t)〉 = 0, 〈Z̃(t1)Z̃(t2)〉 = a2e−ν|t2−t1|, (C1)

where the random variable Z̃(t) takes the values Z̃ = ±a, so
that [Z̃(t)]2 = a2, with the mean waiting time (ν/2)−1 in both
states [43]. Transition to white noise occurs if ν → ∞, a2 →
∞, so that a2/ν equals a finite constant D (the intensity of the
white noise) [43,44]. As was shown in Ref. [43], the correlation
function and higher-order moment functions at such a limit
process are the same as for a δ-correlated process with the
properties (7).

Assuming that the noise ˜Z(t) = [Z̃1(t),Z̃2(t),Z̃3(t)] is sta-
tistically independent from the noise ξ (t) [Z̃i(t) are statistically
independent dichotomous noises with properties (C1)] and
replacing now Z2 in Eq. (9) with Z̃, it can be rewritten as two
differential equations:

Ẏ (t) = p(t), (C2)

ṗ(t) = −γ
dα

dtα
Y (t) − [ω2 + Z̃(t)]Y (t) + ξ2(t). (C3)

Multiplying Eqs. (C2) and (C3) by Z̃(t) one gets (after
averaging over an ensemble of realizations of the multiplicative
noise)

〈Z̃Y 〉̇Z = −ν〈Z̃Y 〉Z + 〈Z̃p〉Z, (C4)

〈Z̃p〉̇Z = −ν〈Z̃p〉Z − γ


(1 − α)

∫ t

0

e−ν(t−t ′)

(t − t ′)α

×〈Z̃(t ′)p(t ′)〉Zdt ′ − ω2〈Z̃Y 〉Z − a2〈Y 〉Z. (C5)

Here we have used the Shapiro-Loginov formula for the
dichotomous noise Z̃(t)

〈Z̃(t)φt (Z̃)〉·Z = 〈Z̃(t)
d

dt
φt (Z̃)〉Z − ν〈Z̃(t)φt (Z̃)〉Z, (C6)

where φt (Z̃) is an arbitrary functional of Z̃(t ′) involving only
times t ′ � t [45], and the equality (see also Refs. [43,46])

〈Z̃(t)φt ′(Z̃)〉Z = 1

a2
〈Z̃(t)Z̃(t ′)Z̃(t ′)φt ′(Z̃)〉Z

= e−ν(t−t ′)〈Z̃(t ′)φt ′(Z̃)〉Z, t ′ � t. (C7)

Assuming that the correlators 〈Z̃Y 〉Z and 〈Z̃p〉Z are
bounded, we obtain after the limit procedure (ν → ∞,
a2 → ∞, a2/ν = D):

〈Z2Y 〉Z = 0, 〈Z2Ẏ 〉Z = −D〈Y 〉Z. (C8)
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Analogously, using that in Eq. (10) Y is independent of noise
Z1 one gets

〈Z1X〉Z = 0, 〈Z1Ẋ〉Z = −D〈X〉Z. (C9)

Thus, we have verified Eq. (14) for fractional dynamics
described by Eqs. (3)–(7).

The results (C8) and (C9) are not restricted to the special
type of white noise with the condition represented in Eq. (7)
for higher-order moment functions. For example, considering
that the random process

˜̃ZN (t) = Z̃1(t) + · · · + Z̃N (t),

where Z̃k(t) are statistically independent processes with the
properties of Z̃(t) with Z̃2 = a2/N , we obtain that the process˜̃Z(t) = limN→∞ ˜̃ZN (t) is a Gaussian Markovian process [43].
Thus, Eqs. (C8) and (C9) are valid also in the case of the
Gaussian white noise Zi(t).

To derive Eq. (40) we emphasize that due to statistical
independence of the noises ˜Z(t) and ξ (t)

〈ξ (t1)˜Z(t2)X̃(t2)〉 = 〈ξ (t1)〈˜Z(t2)X̃(t2)〉Z〉ξ , (C10)

where 〈〉ξ denotes an average over an ensemble of realizations
of the random process ξ (t) and X̃(t) is determined with
Eq. (10), where the noise Z(t) is replaced with the dichotomous
noise ˜Z(t). As the process ξ (t) is independent from the
dichotomous noise parameters a and ν the limit procedure
(ν → ∞,a2 → ∞,a2/ν = D) gives

〈ξ (t1)Z(t2)X(t2)〉 = 〈ξ (t1)〈Z(t2)X(t2)〉Z〉ξ
= 〈ξ (t1) × 0〉 = 0,

where we have used Eqs. (C8) and (C9) and the equality〈
Z̃2(t)

dα

dtα

[ ∫ t

0
Y (t ′) cos(�t ′)dt ′

]〉
Z

= e−νt dα

dtα

[ ∫ t

0
eνt ′ 〈Z̃2(t ′)Y (t ′)〉Z cos(�t ′)dt ′

]
.

Thus, we have verified Eq. (40).
Finally, we note that the equation of motion of the

ordinary oscillator with a random frequency has been studied
extensively. It turns out that fluctuations of the frequency do not
affect the first moment of the underdamped oscillator provided
the fluctuations are δ-correlated (see, e.g., Refs. [35,43,44,46]).
This fact is in accordance with Eq. (14) with α = 1.
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