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Multicritical behavior in models with two competing order parameters
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We employ the nonperturbative functional renormalization group to study models with an O(N1) ⊕ O(N2)
symmetry. Here different fixed points exist in three dimensions, corresponding to bicritical and tetracritical
behavior induced by the competition of two order parameters. We discuss the critical behavior of the symmetry-
enhanced isotropic, the decoupled and the biconical fixed point, and analyze their stability in the N1,N2 plane.
We study the fate of nontrivial fixed points during the transition from three to four dimensions, finding evidence
for a triviality problem for coupled two-scalar models in high-energy physics. We also point out the possibility
of noncanonical critical exponents at semi-Gaussian fixed points and show the emergence of Goldstone modes
from discrete symmetries.
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I. INTRODUCTION

Systems with competing order parameters and their cor-
responding symmetries play an important role in a variety
of physical situations, where the competing orders entail
multicritical points in the phase diagram [1–7]; for reviews see
Refs. [8–11]. Examples include anisotropic antiferromagnets
in an external magnetic field [12–19], high-Tc superconductors
[20,21], and possibly even quantum chromodynamics [22,23].
In the vicinity of a multicritical point, the phase diagram of
such systems can be analyzed using a model of two coupled
order-parameter fields with O(N1) ⊕ O(N2) symmetry, where
N1 and N2 depend on the physics in question. For instance,
anisotropic antiferromagnets in a magnetic field along the
easy axis have a phase diagram that can be described by
a model with N1 = 1 and N2 = 2, corresponding to an
antiferromagnetic phase and a spin flop phase, respectively;
see Refs. [24,25] for illustrations of the phase diagram.

Models with competing order parameters were first in-
vestigated in Ref. [1], where the existence of multicritical
points, at which different phases meet, was pointed out: A
bicritical point separates the two ordered phases and a phase of
unbroken symmetry; see Fig. 1. In contrast, four transition lines
meet at a tetracritical point. The fourth phase is determined
by two nonzero order parameters. In the case of superfluid
helium, this phase has been termed supersolid phase [1];
however, its experimental realization remains unclear, see, e.g.,
Refs. [26,27].

As a function of N1 and N2, different phase diagrams are
realized, with a bicritical point with symmetry enhancement
O(N1) ⊕ O(N2) → O(N1 + N2) for N1 = 1 = N2. A tetracrit-
ical point appears beyond critical values for N1 and N2, first
calculated approximately in Refs. [2,3]. The determination of
these critical values is possible with different methods, namely
the ε expansion around d = 4 − ε dimensions [2–5], two-loop
perturbative renormalization group methods [7,28], as well as
Monte Carlo simulations [29–33].
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The nature of the multicritical point at N1 = 1, N2 = 2
is still under debate: Experiments indicate a bicritical point
[13–15], confirmed by early results from the ε expansion
[2,4,24]. Subsequent higher-order computations indicated an
instability of the bicricital, symmetry enhanced fixed point [5],
see also Refs. [7,29], implying a tetracritical nature of the
point. In contrast, Monte Carlo simulations in Ref. [30] found
a bicritical point, while simulations in Ref. [34] refuted these
claims.

There are also several further interesting and open ques-
tions: The situation in d = 2 remains to be fully understood;
see, e.g., Ref. [35]. Also, the nature of the phase diagram close
to the multicritical point depends on nonuniversal quantities
specific to the material under consideration. These nonuniver-
sal properties are more challenging to access theoretically.
Furthermore, the existence of a bicritical point in certain
regions of parameter space has not been studied in detail yet.
A nonperturbative method that provides access to fixed-point
properties as well as nonuniversal quantities, also at finite
temperature, is clearly indicated to tackle these questions.

It turns out that there is a wide class of matrix models
which can be reduced to a coupled theory of two distinct
order parameters in a certain range of their parameter space
and which provide a more general context for these models
[36–39,41–46].

Interestingly, the same models play a role in a rather
different context, where the emphasis is not on competing
order parameters: In high-energy physics, a four-dimensional
model with N1 = 1 = N2, realizing a Z2 reflection symmetry
for each scalar field, plays a role in hybrid models for inflation
[47], see Refs. [48–50] and references therein, and is also of
interest as a toy model for a Higgs-inflaton coupling.

Here, we analyze these systems with the functional renor-
malization group (FRG) [51], which allows us to analyze
quantum and statistical field theories even away from the per-
turbative regime. This method provides a unified framework
to access universal as well as nonuniversal properties. Thus,
not only universal behavior in the vicinity of a second-order
phase transition but also physical properties away from the
transition, as well as first-order phase transitions, can be
studied in detail; see Refs. [52,53] for examples in the case
of the QCD phase diagram. The FRG is also applicable in any
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FIG. 1. (Color online) Here we plot schematic phase diagrams
containing a bicritical point (left panel) and a tetracritical one (right
panel), at which a mixed phase exists which is dominated by two
condensing order parameters. Solid lines denote second-order and
dashed lines first-order phase transitions.

dimension and does not require a small parameter to expand in.
Instead, our approximation consists of a particular truncation
of the space of operators that drive the RG flow. Further,
within perturbative RG approaches nontrivial resummation
techniques are required in order to obtain reliable quantitative
results, e.g., for critical exponents in three-dimensional O(N )
models. For the FRG method no such resummation is required;
see Ref. [54–56] for a detailed discussion of this matter. In
many applications fermions also play an important role and
can be included straightforwardly with the FRG, even within
the chiral limit; see for examples Refs. [57–64]. Unlike lattice
field theory the FRG is a continuum method, and our results are
therefore unaffected by either finite-volume or discretization
artifacts. Results from the perturbative RG, Monte Carlo
simulations, and the FRG thus complement each other and,
taken together, provide us with the possibility to understand
physical systems in great qualitative as well as quantitative
detail. Here we will focus on the analysis of multicritical points
in O(N1) ⊕ O(N2) models in 3 � d � 4.

Our main results consist in a confirmation of the position
of the border between bicritical and tetracritical behavior in
the N1,N2 plane as discussed in Refs. [5,7] with the method of
the nonperturbative functional renormalization group that we
newly apply to these systems. We infer that the N1 = 1,N2 = 2
model shows tetracritical behavior with critical exponents
corresponding to that of the so-called biconical fixed point.
As a new result, we show how the critical behavior of the
system is determined by collisions of fixed points in the space
of couplings: As a function of N1,N2, the fixed points move
through the space of coupling, exchanging stability properties
as they collide. This observation could explain why the critical
exponents describing the system in the N1 = 1,N2 = 2 case
are close to the Heisenberg universality class. Further, we
report the discovery of a new fixed point. Unlike the other
fixed points, it does not show an enhancement of the symmetry
group. It exists in a particular region of parameter space for
these models, where previous analysis have not seen fixed
points. In the case that this new fixed point persists beyond the
approximation in our work, it would imply bicritical behavior
for models in this region of parameter space. Finally, we turn
to d = 4 dimensions and analyze implications for high-energy
physics. We discuss the existence of noncanonical scaling
behavior at fixed points which show vanishing fixed-point
values for some couplings. Similar semi-interacting fixed
points could be of interest for a UV completion of the

standard model in the context of quantum gravity. In this
case, similar noncanonical scaling behavior could be expected
even for asymptotically free couplings. We also follow the
fixed points that exist in d = 3 towards four dimensions
and find that only the noninteracting fixed point can exist
in d = 4. This implies a triviality problem for models with
coupled scalar degrees of freedom, with potential interest
for Higgs models and inflaton models. Finally, we discuss
how the enhancement of discrete symmetries to a continuous
symmetry in the N1 = 1 = N2 case can lead to the emergence
of Goldstone bosons from a model with discrete symmetries at
the microscopic level. We explicitly follow an RG trajectory,
starting from a microscopic action with discrete symmetry and
ending at a symmetry-enhanced fixed point. The masses of the
two modes, starting out equal in the UV, differ in the IR, where
one of them goes to zero.

This paper is structured as follows: In Sec. II, we define our
model and discuss the possible phase diagrams and the nature
of the multicritical point. The functional renormalization group
as a calculational tool to access these models is explained in
Sec. III. We specify our truncation and derive a flow equation
for the effective potential in Sec. III A. A connection to matrix
models that explains how to map a subclass of matrix models
onto our vector model is established in Sec. III B. We present
our results in Sec. IV, first focusing on fixed points discussed
in the literature, where we confirm results obtained with other
methods. We then find additional fixed points in a disconnected
part of parameter space, which we analyze in detail. Finally,
we discuss the relevance of our results for high-energy physics.
Here, a semi-Gaußian fixed point, i.e., a fixed point at which
a subset of the couplings vanishes, defines an interesting new
universality class that shows that canonical scaling should not
be expected for vanishing couplings at semi-Gaußian fixed
points. Similar behavior could be relevant for a UV completion
of the standard model coupled to gravity. We then focus
on the emergence of Goldstone bosons from a model with
discrete symmetries. This mechanism relies on the possibility
of enhancing the discrete symmetry to a continuous one at
a fixed point of the renormalization group flow. Finally, we
present the continuation of the new fixed points towards d = 4
dimensions and confirm the triviality of two-scalar models.
We conclude in Sec. V.

II. MODEL

Here, we study models that are composed of two bosonic
sectors with O(N1) and O(N2) symmetry, respectively. Non-
trivial interaction terms which couple the two sectors are
compatible with this requirement and will be responsible for
considerably more interesting physics than in the simpler case
of a bosonic model with only one sector. For these models the
Landau-Ginzburg-Wilson functional reads

H =
∫

ddx

[
1

2
(∂μφ)2 + 1

2
(∂μχ )2 + 1

2
rφφ2 + 1

2
rχχ2

+ uφ

4!
φ4 + uχ

4!
χ4 + uφχ

3 · 4
φ2χ2

]
, (1)

where φ = (φ1,φ2, . . . ,φN1 ) and χ = (χ1,χ2, . . . ,χN2 ) are
N1-component and N2-component fields, respectively. The
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functional in Eq. (1) is symmetric under O(N1) ⊕ O(N2)
transformations. Naturally, this model features multicriticality
when the critical lines of the two different order parameters
intersect. A variety of fixed points appears in those theories
and it requires a stability analysis of the RG flow in the
vicinity of the fixed points to find out which one governs
the critical behavior. The number of relevant eigendirections,
i.e., the number of negative eigenvalues of the stability matrix,
determines the number of parameters that have to be fine-tuned
in order to approach the critical point. The infrared (IR) stable
fixed point is the one with the lowest number of relevant
directions.

The bicritical versus tetracritical nature of the multicritical
point, see Fig. 1, depends on the sign of

� = uφuχ − u2
φχ , (2)

at the fixed point. For � > 0 the fixed point is tetracritical,
whereas it becomes bicritical for � < 0, cf. Ref. [1]. In the first
case, a phase 1 of unbroken symmetry, a phase 2 with broken
O(N1) and unbroken O(N2), a phase 3 with unbroken O(N2)
and broken O(N1), and a phase 4 with broken O(N1) ⊕ O(N2)
meet at the multicritical point. This can be derived directly
from a consideration of the Gibbs free energy [1], where it
becomes clear that the phase with both symmetries broken can
exist only for � > 0.

A special subspace of our theory space for which an
additional symmetry φ ↔ χ holds has been examined in
Ref. [65] for N1 = 1 = N2 and at finite temperature in
Ref. [66], with a special focus on d = 3 and d = 4. We will
keep the dimensionality general in the following and later
specialize to d = 3 and d = 4.

III. METHOD

In the following we employ the nonperturbative functional
renormalization group (FRG) to evaluate the generating
functional (for reviews see, e.g., Refs. [67–73]). This method
allows us to successively integrate out statistical (and quan-
tum) fluctuations following the Kadanoff-Wilson picture of
momentum shell integration [74–78] in a Euclidean setting.
For this description we start with the functional integral
representation of the partition function Z = ∫

�
Dϕ e−S[ϕ] with

the microscopic action S[ϕ], where � is a UV cutoff. The
flowing action is defined as a modified Legendre transform of
the infrared regularized Schwinger functional Wk[J ], i.e.,

	k[
] = sup
J

{ ∫
ddx J (x)
(x) − Wk[J ]

}

− 1

2

∫
ddp

(2π )d

(−p)Rk(p)
(p), (3)

where 
 = 〈ϕ〉J and

Wk[J ] = ln
∫

�

Dϕ e
−S[ϕ]− 1

2

∫
dd p

(2π)d
ϕ(−p)Rk (p)ϕ(p)

. (4)

k is an infrared momentum scale. J denotes a source term.
The function Rk = Rk(q) acts as a masslike, k-dependent
regulator suppressing infrared modes below the RG scale k.
Up to the requirements that Rk(q) → ∞ for k → � → ∞,
Rk(q) ≈ k2 for |q|

k
→ 0, and Rk(q) → 0 for k

|q| → 0 it can be

chosen freely. The flowing action 	k then contains the effect
of fluctuations above the momentum scale k only and connects
the microscopic action S for k → � to the full effective action
	 in the infrared. The latter is the generating functional of the
one-particle-irreducible (1PI) correlation functions allowing
us to access the macroscopic or thermodynamic properties
of the system under consideration. The FRG then provides a
functional differential equation for the flowing action 	k whose
scale dependence is governed by the Wetterich equation [51],

∂t	k[
] = 1
2 Tr

[(
	

(2)
k [
] + Rk

)−1
∂tRk

]
, (5)

with ∂t = k∂k . Here, the field 
 collects all bosonic degrees
of freedom of a given model, and 	

(2)
k [
] denotes the second

functional derivative of 	k ,

(
	

(2)
k [
]

)
ij

(p1,p2) = δ2

δ
i(−p1)δ
j (p2)
	k[
], (6)

where pi denote momenta. The Tr operation involves a
summation over internal indices as well as a loop momentum
integration. With these conditions, the solution to Eq. (5) pro-
vides an RG trajectory, interpolating between the microscopic
action 	� at the ultraviolet scale � and the full effective action
	 = 	k→0.

One of the main technical advantages of Eq. (5) is its one-
loop form, written as the trace over the full propagator, with the
regulator insertion ∂tRk in the loop. It is crucial to stress that the
method is nonperturbative and thus also yields higher terms in
a perturbative expansion, see, e.g., Ref. [79], since it depends
on the full, field- and momentum-dependent propagator and
not just on the perturbative propagator.

An expansion of the flowing action functional 	k in terms
of a suitable basis of momentum-dependent monomials in 
,

	k =
∑

i

ḡi(k)Oi(∂,
), (7)

turns Eq. (5) into an infinite set of coupled differential
equations for the expansion coefficients ḡi(k), i.e., the running
couplings, in terms of β functions. A suitable expansion
scheme should include the physically important degrees of
freedom of a given problem at all scales under consideration
and respect the symmetries of the system. Reducing the
expansion to a tractable (and typically finite) subset of running
couplings defines a truncation. Crucially, the success of a
chosen truncation does not necessarily rely on the existence of
a small expansion parameter. While perturbative results can be
reproduced straightforwardly with the Wetterich equation, its
regime of validity goes beyond perturbation theory and allows
us to access nonperturbative physics. To devise a truncation
that yields quantitatively good results only requires that the
neglected operators do not couple too strongly into the flow
of the included operators. The quality of a truncation can be
tested by the convergence of the results under systematical
extensions of a given truncation scheme, by a study of
its regulator dependence, and, of course, by comparison to
well-known limiting cases as well as complementary methods.
Convergence of the FRG flow can be improved by the choice
an optimized regulator function [69,81,82].

In the following, we will be interested in fixed-point
solutions, corresponding to scale-free points, as these allow
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us to evaluate the scaling behavior of physical quantities close
to a second-order phase transition. To that end we study the
RG flow of the dimensionless couplings,

gi(k) = ḡi(k)k−dgi , (8)

where dgi
is the canonical dimensionality of the coupling. The

reason for this is that a fixed point, which is a scale-free point,
is hard to identify when dimensionful couplings are present,
since each dimensionful coupling corresponds to a scale. The
RG flow of the couplings is given in terms of β functions,

βgi
({gn}) = ∂tgi(k) = −dgi

gi(k) + f ({gn}), (9)

which are functions of the dimensionless couplings and do not
explicitly depend on the RG scale k. The first term reflects the
scale dependence due to the canonical dimensionality, whereas
the second term carries the quantum or statistical corrections
to the scaling.

To determine the critical exponents, which enter the scaling
of observable quantities in the vicinity of a second-order phase
transition, we linearize the flow around the fixed point {gn ∗},
satisfying

βgi
({gn ∗}) = 0, (10)

and we find

βgi
({gn}) =

∑
j

∂βgi

∂gj

∣∣∣∣
gn=gn ∗

(
gj − gj ∗

) + . . . . (11)

The solution to this linearized equation is given by

gi(k) = gi ∗ +
∑

I

CIV
I
i

(
k

k0

)−θI

, (12)

where

−∂βgi

∂gj

∣∣∣∣
gn=gn ∗

VI = θIVI . (13)

Herein, CI is a constant of integration and k0 is a reference
scale. The VI are the eigenvectors and −θI the eigenvalues
of the stability matrix, defined by (11). The critical exponents
θI can be complex, in which case the real part is decisive
for the stability properties of the fixed point [80]. In order to
approach the fixed point in the IR, observe that CI is arbitrary
for irrelevant directions where θI < 0. On the other hand, a
relevant direction with θI > 0 corresponds to a parameter that
needs to be tuned in order to ensure that the fixed point is
reached in the IR. Accordingly, relevant directions correspond
to quantitites that need to be adjusted experimentally (e.g., the
temperature) in order to reach a second-order phase transition.
We conclude that the fewer relevant directions a fixed point
has, the more likely it plays a role in a realistic physical
system, where only a small number of quantities is accessible
to experimental tuning.

At a noninteracting fixed point, the θI equal the canon-
ical dimensionality dgi

, whereas nontrivial contributions are
present at an interacting fixed point.

A. Truncation and flow of the effective potential

To investigate models with two order-parameter fields, we
consider a truncation of the form

	k =
∫

ddx

[
Zφ k

2
(∂μφ)2 + Zχ k

2
(∂μχ )2 + Uk(φ,χ )

]
,

(14)

with uniform scale-dependent wave-function renormalizations
Zφ k and Zχ k and an effective potential Uk(ρ̄φ,ρ̄χ ), where

ρ̄φ = φ2

2 and ρ̄χ = χ2

2 . These are the first terms in a derivative
expansion of the effective action, i.e., a local potential
approximation (LPA). We neglect further terms with a more
complicated momentum and field dependence, as well as
a distinction between Goldstone and massive modes in the
anomalous dimension [67]. The scale derivatives of the
wave-function renormalizations are given by the anomalous
dimensions

ηφ = −∂t lnZφ k, ηχ = −∂t lnZχ k. (15)

Using an optimized regulator [69,81,82] of the form
Rk,φ/χ (p) = Zφ/χ k(k2 − p2)θ (k2 − p2), we can derive an
equation for the dimensionless effective potential uk =
k−dUk(ρ̄φ,ρ̄χ ), which is a scale-dependent quantity. As we are
interested in a quantitative determination of critical exponents,
the use of the optimized shape function is advisable [82]. The
effective potential uk is a function of the dimensionless renor-
malized field variables ρφ = Zφ kk

2−d ρ̄φ, ρχ = Zχ kk
2−d ρ̄χ .

Its flow can be derived from (5) and be written in compact form
using threshold functions,

∂tuk = −duk +(d − 2 + ηφ)ρφu
(1,0)
k +(d − 2 + ηχ )ρχu

(0,1)
k

+ I d
R,φ(ωχ,ωφ,ωφχ ) + (N1 − 1)I d

G,φ

(
u

(1,0)
k

)
+ I d

R,χ (ωφ,ωχ,ωφχ ) + (N2 − 1)I d
G,χ

(
u

(0,1)
k

)
. (16)

Herein the first line arises from canonical dimensionality
and the nontrivial wave-function renormalizations Zφ k and
Zχ k . The u

(1,0)
k and u

(0,1)
k denote the derivatives with respect

to the first and second arguments of uk , respectively. The
subsequent two lines correspond to the nonperturbative loop
contributions of the massive radial and the Goldstone modes
with factors (N1 − 1) and (N2 − 1). We have defined the
threshold functions,

I d
R,i(x,y,z) = 4vd

d

(
1 − ηi

d + 2

)
1 + x

(1 + x)(1 + y) − z
,

(17)

I d
G,i(x) = 4vd

d

(
1 − ηi

d + 2

)
1

(1 + x)
,

with the volume element v−1
d = 2d+1πd/2	( d

2 ). The arguments
in the flow equation (16) read

ωφ = u
(1,0)
k + 2ρφu

(2,0)
k , (18)

ωχ = u
(0,1)
k + 2ρχu

(0,2)
k , (19)

ωφχ = 4ρφρχ

(
u

(1,1)
k

)2
. (20)
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For the effective potential, we employ a polynomial expansion
of the form

uk(ρφ,ρχ ) =
nmax∑

l+m�2

λl,m

l! · m!
(ρφ − κφ)l(ρχ − κχ )m, (21)

where κφ and κχ denote scale-dependent nontrivial vacuum
expectation values in the symmetry-broken regime. For nota-
tional convenience, we do not indicate the scale dependence
of the κφ, κχ , and the λi,j explicitly.

In order to derive explicit β functions for the couplings
λi,j and the expansion points κφ and κχ , we have to specify
the projection prescriptions. These can be straightforwardly
derived from the scale derivative of Eq. (21) and read

∂tκφ = u(0,2)∂tu
(1,0)
k − u

(1,1)
k ∂tu

(0,1)
k(

u
(1,1)
k

)2 − u
(2,0)
k u

(0,2)
k

∣∣∣∣
ρφ=κφ
ρχ =κχ

, (22)

∂tκχ = u
(2,0)
k ∂tu

(0,1)
k − u

(1,1)
k ∂tu

(1,0)
k(

u
(1,1)
k

)2 − u
(2,0)
k u

(0,2)
k

∣∣∣∣
ρφ=κφ
ρχ =κχ

, (23)

∂tλl,m = (
∂tu

(l,m)
k + u

(l+1,m)
k ∂tκφ + u

(l,m+1)
k ∂tκχ

)∣∣
ρφ=κφ
ρχ =κχ

.

(24)

The flow equations for the wave-function renormalization
factors Zφ and Zχ are derived by a suitable projection of
the flow equation (5) onto the momentum-dependent terms in
the ansatz (14), i.e.,

∂tZφ = (2π )d
∫

ddq
∂

∂p2

δ2

δφ(p)δφ(−q)
∂t	k

∣∣∣∣
ρφ=κφ
ρχ =κχ

, (25)

∂tZχ = (2π )d
∫

ddq
∂

∂p2

δ2

δχ (p)δχ (−q)
∂t	k

∣∣∣∣
ρφ=κφ
ρχ =κχ

. (26)

Note that the functional derivatives with respect to the fields
have to be specified. Typically, they will take into account both
the contributions from the radial mode and massless Goldstone
modes. Here we do not distinguish between the two different
contributions [67]. In the following, we will restrict ourselves
to a polynomial truncation to order φ8,χ8 (LPA 8) or φ12,χ12

(LPA 12), yielding a total of 14 or 27 couplings, respectively.
At this point it is useful to re-examine the criterion � >

0 for our parametrization of the effective potential: It turns
out that the position of the global minimum of the potential
depends on the value of the quantity

�′ = λ2,0λ0,2 − λ2
1,1, (27)

which is clearly related to �. The minimum lies at φ �= 0,χ �=
0 in the case �′ > 0 and shifts onto one of the axes in field
space, i.e., at φ = 0,χ �= 0 or φ �= 0,χ = 0 for �′ < 0; see
Fig. 2. The first case corresponds to a phase where both
symmetries are broken. Accordingly, this yields a tetracritical
point, which is adjacent to this phase. In contrast, this phase
does not exist for �′ < 0, which implies that the multicritical
point is bicritical in nature.

The RG flow cannot cross the boundary �′ = 0. This
follows immediately from symmetry considerations. Within
theory space, the surface �′ = 0 defines a subspace with an
enhanced symmetry (up to field reparametrizations). Such a
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FIG. 2. (Color online) Here we plot the potential u(φ,χ ) in
eighth-order LPA at a point with �′ > 0 (upper two panels), �′ = 0
(middle two panels), and �′ < 0 (lower two panels). The second case
exhibits an O(2) rotation symmetry. For �′ > 0 the minima lie at
φ �= 0 and χ �= 0, whereas they lie along one of the axes in field
space in the case �′ < 0.

symmetry-enhanced subspace is closed under RG transfor-
mation as long as the regulator-function respects the global
symmetries. Accordingly, any RG trajectory starting from a
generic nonsymmetric point can only approach the �′ = 0
surface asymptotically but can never cross it.

In the case �′ < 0 it can be convenient to adapt the
parametrization of the effective potential, Eq. (21), to the
physical situation when one of the expectation values vanishes.
Then the parametrization (21) does not correspond to an
expansion around the minima of the effective potential. In
this case we can employ the modified expansions

uk(ρφ,ρχ ) = m2
χρχ +

nmax∑
l+m�2

λl,m

l! · m!
(ρφ − κφ)lρm

χ , (28)

with the projection prescriptions

∂tm
2
χ = (

∂tu
(0,1)
k + u

(1,1)
k ∂tκφ

)∣∣
ρφ=κφ
ρχ =κχ

, (29)

∂tκφ = −∂tu
(1,0)
k

u
(2,0)
k

∣∣∣∣
ρφ=κφ
ρχ =κχ

, (30)

for the mass term m2
χ and the minimum κφ . For the λi,j the

prescription in Eq. (24) with ∂tκχ = 0 holds.
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EICHHORN, MESTERHÁZY, AND SCHERER PHYSICAL REVIEW E 88, 042141 (2013)

B. Relation to matrix models

Here, we establish a correspondence between O(N1) ⊕
O(N2) models and certain matrix models (typically dis-
cussed in the context of condensed-matter theory [36–40],
nuclear physics [41,42], QCD-like theories [43,44], or two-
dimensional quantum gravity [45]; for a review see, e.g.,
Ref. [46]). A study of such models is possible with FRG tools
[60,62,64,67,83–88]. Generally, matrix models can be phrased
in terms of invariants of the reducible tensor representation of
a given symmetry group. These invariants essentially describe
the competing order parameters of the theory. Their identifi-
cation relies on the decomposition of the tensor representation
into irreducible representations that determine the possible
symmetry breaking patterns of the symmetry group.

As an example consider the U(2) matrix model written in
terms of a Hermitian 2 × 2 matrix, where the decomposition
of the tensor representation 2 ⊗ 2 = 3 ⊕ 1 yields a coupled
theory of two scalar fields with SO(3) ⊕ Z2 symmetry. The
corresponding order parameters define the two invariants of
the U(2) matrix model that are written in terms of the trace in
the defining representation σ̄1 = 1

2 (Tr 
)2 and σ̄2 = 1
2 Tr 
2.

While the invariant σ1 captures the breaking of the Z2 center
symmetry of the O(3)  SU(2) subgroup, a nonvanishing
vacuum expectation value for the order parameter σ2 leads
to a breaking of the SO(3) symmetry. The effective potential
for the matrix model can be written solely in terms of these
two invariants, i.e., U(
) = U(σ̄1,σ̄2). Higher-order operators
can be expressed completely in terms of linear combinations
of σ̄1 and σ̄2 to some given power. Note that both invariants
define field monomials of degree two and thus lead to the same
type of competition for the corresponding order parameters,
as discussed previously. If one examines the expansion of the
potential in terms of these invariants

U(
) =
∑

l+m�2

λ̄l,m

l! m!
(σ̄1 − σ̄1,0)l(σ̄2 − σ̄2,0)m, (31)

where σ̄i,0 denote the corresponding expectation values in
the symmetry broken phase, it is immediately apparent that
this theory may exhibit a multicritical point that features
an enhanced O(4) symmetry. In fact, deriving the mass
spectrum for this theory, one notices that it is completely
equivalent to the coupled SO(3) ⊕ Z2 two-scalar model. This
is an explicit example of universality—the flow equations are
completely independent of the field representations as long as
the underlying symmetry and dimensionality of the problem
are the same.

Let us use a different physical context to elucidate a
subtlety in such matrix models: Another prominent example
featuring the U(2) symmetry group appears in the context of
low-energy effective models for QCD, e.g., the quark-meson
model with two light quark flavors [64]. It features a similar
SU(2)L × SU(2)R × U(1)A symmetry which is written in
terms of a generic complex matrix in the 2 ⊗ 2 representation.
Considering only the scalar sector, such a matrix theory can
be written in terms of four invariants σ̄i = Tr (
†
)i , i =
1, . . . ,4, of the symmetry group. Similarly to the discussion
above, examining a polynomial expansion of the effective
potential one could expect an enhanced O(8) symmetry at
the multicritical point. It turns out that here the competing

order parameters do not necessarily enter with the same
canonical mass dimension, which may lead to different
dynamics compared to the Hermitian U(2) matrix model. In
particular, there are no competing operators of degree 2 (the
only masslike invariant being Tr 
†
) that are relevant in the
critical domain. The situation differs, however, in the case
without the U(1)A axial symmetry, where an additional order
parameter is allowed that violates this symmetry. It can be
expressed in terms of a linear combination of det 
 and det 
†

and is obviously quadratic in the fields.
For the purpose of this paper it is useful to focus on U(N )

symmetric theories, where the corresponding tensor represen-
tation can be decomposed as N ⊗ N = (N2 − 1) ⊕ 1. In that
case, there are in general N group invariants σ̄i , i = 1, . . . ,N

that define the order parameters and possible patterns of
symmetry breaking. The number of group invariants depends
on the rank of the group where the higher invariants essentially
describe the possible breaking of the O(N2 − 1) symmetry. For
this class of models we may exploit universality to map the flow
equations onto the class of Z2 ⊕ O(N ) symmetric theories. For
that purpose, one expands the potential only in terms of the
respective (lowest) invariants (see Refs. [62,89] for details). In
this work, we will employ this correspondence to evaluate the
anomalous dimension η in specific cases; see Sec. IV A2.

IV. RESULTS

A. Fixed points from symmetry in d = 3

1. Deducing fixed points from O(N) models

In this section, we deduce the existence and the properties
of fixed points in three dimensions from symmetry arguments.
These fixed points have been studied in great detail starting
in Refs. [2,4]. We first observe that any subspace of theory
space that shows an additional global symmetry must be a
closed subspace under the RG flow, as long as we do not
employ a symmetry-breaking regulator function. Accordingly,
any surface with an enhanced symmetry must be a fixed surface
of the RG flow. With the knowledge that models with O(N )
symmetry in three dimensions show a nontrivial, as well as a
Gaußian fixed point, one can immediately deduce the existence
of five fixed points for the O(N1) ⊕ O(N2) model:

(i) A trivial, Gaußian fixed point (GFP).
(ii) A decoupled fixed point (DFP), where the model

decomposes into two disjoint O(N1) and O(N2) models and
all mixed interactions such as λ1,1 are zero. This fixed point
must be tetracritical since �′ > 0.

(iii) Two decoupled, semi-Gaußian fixed points (DGFP), at
which one of the O(Ni) sectors approaches a Gaußian, and the
other a non-Gaußian fixed point. Again, all mixed interactions
vanish.

(iv) A symmetry-enhanced isotropic fixed point (IFP), at
which there is only one independent coupling at each order
in the fields, e.g., λ1,1 = λ2,0 = λ0,2, and the fixed-point
coordinates agree with those of a O(N1 + N2) symmetric
model.

In a condensed-matter setting, the fixed point with the
lowest number of relevant directions, typically 2, is commonly
referred to as the stable one, as it has the least number of
parameters that require tuning.
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TABLE I. FRG critical exponents for O(N ) models in three
dimensions in a derivative expansion to order ∇2 and an expansion
of the effective potential to order φ12 in comparison to the Monte
Carlo results in Ref. [90] for N = 1, Ref. [91] for N = 2, Ref. [92]
for N = 3, and Ref. [34]. These are FRG values obtained by
the truncation and regularization scheme presented here and are
employed to produce Fig. 3 [93].

N ν νMC η ηMC

1 0.637 0.63002(10) 0.044 0.03627(10)
2 0.685 0.6717(1) 0.044 0.0381(2)
3 0.731 0.7112(5) 0.041 0.0375(5)
4 0.772 0.750(2) 0.037 0.0360(3)

Dimensional analysis can help us to deduce the stability
properties of the GFP and the two DGFPs: At the fully Gaußian
fixed point, five relevant parameters exist, and it is therefore
not likely to be the stable fixed point. At a (partially) interacting
fixed point, fluctuations contribute to the scaling dimensions
of operators, which accordingly depart from canonical scaling
and can even change their sign. In contrast, at fully Gaußian
fixed points, critical exponents are determined by canonical
scaling. The two DGFPs show an interesting property when
it comes to the question of relevant couplings, which we will
discuss further in Sec. IV C1. For a vanishing coupling, one
might at a first glance expect its critical exponent to agree
with its dimensionality. It turns out that the critical exponents
of two-scalar interaction couplings such as λ1,1 receive a
nontrivial contribution from fluctuations and do not accord
with a naive dimensional analysis. Thus dimensional analysis
only implies the existence of at least two relevant couplings
at this fixed point. Using that a O(N ) model has one relevant
coupling, see Table I, we conclude that the DGFPs have at
least three relevant directions and are therefore not likely to be
the stable ones. For the IFP and the DFP, we can infer a subset
of their critical exponents from O(N ) models and conclude
that the IFP has at least one, and the DFP at least two, relevant
couplings. To determine which of these is the stable one, a
detailed analysis of their critical exponents is necessary. In the
following, we will conduct a numerical search for fixed points
and determine their critical exponents numerically.

2. Critical exponents for the symmetry-enhanced IFP

At the IFP, a subset of the critical exponents can be inferred
directly from those of an O(N ) symmetric theory where N =
N1 + N2. Besides the appertaining eigendirections, which
correspond to an O(N ) symmetric approach to the fixed point,
further exponents exist that cannot be inferred from O(N )
models. In other words, the theory space of an O(N ) model
corresponds to a genuine subspace of the O(N1) ⊕ O(N2)
model. Therefore the universality class of the symmetry-
enhanced O(N ) fixed point is a particular enlargement of the
well-known O(N ) universality class.

Interestingly, a further universality class exists, correspond-
ing to a theory space with an additional φ ↔ χ symmetry,
existing for N1 = N2, which contains the O(N ) theory space
while itself being embedded in the full O(N1) ⊕ O(N2) theory
space. Our theory space thus corresponds to a nesting of three
closed theory spaces: The smallest O(N ) theory space lies

TABLE II. Table with critical exponents of the IFP in LPA 12
including the anomalous dimension η. For comparison, we also show
the yi,j notation from Ref. [5]. The crossover exponent is given by
φT = y2,2ν where ν = 1/θ2 is the exponent of the correlation length.
The O(N ) critical exponents are highlighted in italics.

N θ1 = y2,2 θ2 = y2,0 θ3 = y4,4 θ4 = y4,2 θ5 = y4,0 φT

2 1.756 1.453 −0.042 −0.446 −0.743 1.209
2.31 1.767 1.423 −0.0009 −0.425 −0.746 1.242
3 1.790 1.362 0.086 −0.380 −0.756 1.314
4 1.818 1.292 0.196 −0.324 −0.775 1.407
5 1.842 1.240 0.289 −0.283 −0.797 1.485
10 1.908 1.116 0.568 −0.154 −0.879 1.710
100 1.990 1.010 0.951 −0.015 −0.988 1.970
1000 1.999 1.001 0.995 −0.002 −0.999 1.988
∞ 2 1 1 0 −1 2

within the φ ↔ χ symmetric theory space, which itself is
embedded in the full O(N1) ⊕ O(N2) theory space. The same
nesting pattern holds for the critical exponents: A subset of
the critical exponents agrees with all critical exponents of the
φ ↔ χ symmetric case. A subset of these then agrees with
all critical exponents of the O(N ) model. It turns out that the
φ ↔ χ symmetric universality class is of particular interest
when it comes to determining the IR stability of the fixed point:
Inheriting one positive critical exponent from the O(N ) model
for all values of N , cf. θ2 in Table I, and showing a second
positive one for all N , cf. θ1 in Table I, it is the third-largest
critical exponent of the universality class which determines
how many parameters need to be tuned in order to reach a
second-order phase transition. This particular critical exponent
changes its sign from negative to positive between N = 2 and
N = 3 and thus changes the stability properties of this fixed
point. To determine its value, it actually suffices to consider the
φ ↔ χ symmetric model. Dropping this symmetry-restriction
only adds further critical exponents to the universality class,
cf. θ1 and θ4 in Table II, but does not change the values of the
other exponents.

The value Nc, at which N the third-largest critical exponent
of the IFP changes its sign, has been a much-investigated
question, cf. Refs. [5,7] and references therein. Here, we
present a first analysis using the nonperturbative functional
RG. Our results indicate, in accordance with Refs. [5,7] that
the IFP has two positive critical exponents for N = 2 and three
for N = 3. We find that the transition occurs for a critical
value of Nc ≈ 2.32; see Table II. This should be compared
to a value of Nc = 2.89(4) from a six-loop calculation [94]
and Nc ≈ 2.6 in Ref. [7]. Let us compare our results to those
obtained in Ref. [34] using Monte Carlo simulations. There
y2,2 = 1.7639(11) for N = 2, y2,2 = 1.7906(3) for N = 3,
and y2,2 = 1.8145(5) for N = 4. These compare rather well
to our results. For the case of y4,4, the Monte Carlo values
are y4,4 = −0.108(6) for N = 2, y4,4 = 0.013(4) for N = 3,
and y4,4 = 0.125(5) for N = 4. Here our values are larger, and
we expect to obtain better precision at higher orders in the
truncation.

Further, we explicitly compare our results for the crossover
exponent φT = θ1/θ2 = y2,2ν in the case N = 3 to the ones
obtained by other approaches: Here we get φT (N = 3)
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= 1.314, which is in reasonable agreement with φT = 1.260
from the five-loop ε expansion in Ref. [5] or φT = 1.275
from the two-loop RG series in Ref. [7]. We obtain a similar
comparison for other choices of N . While the largest critical
exponents θ1,θ2 already show good quantitative precision, the
values for the subleading exponents θ3,θ4,θ5 are less accurate.
Precision is expected to be achieved by an extension of the
truncation towards higher orders in the derivative expansion
as, e.g., shown for scalar models in Refs. [95,96]: For instance,
the seven-loop result for the critical exponent of the correlation
length, ν = 0.6304(13), cf. Ref. [97] compares well to the FRG
estimate in fourth order of the derivative expansion ν = 0.632,
cf. Ref. [95].

To study the effect of terms beyond our truncation, it is
useful to vary the numerical value for η by hand and test the
variation of Nc. Although this is not a self-consistent solution
to the set of flow equations, it can provide a measure for the
sensitivity of results on terms beyond the truncation. Assuming
that ∂λi

η(λi)|λi=λi ∗ � 1, we obtain a variation of Nc of ∼0.25
when varying η ∈ (0,0.1).

In a previous application of the FRG method to a related
N -vector model with cubic anisotropy, the critical value for
Nc has been determined to be Nc = 3.1 [98], working with an
exponential instead of an optimized regulator shape function.
This study works with a truncation up to order eight in the
fields and including derivative terms up to second order in
momenta and fourth order in the fields. In our truncation, we
actually observe a change of 0.1 in the value of Nc, when going
from LPA 8 to LPA 12. An analysis of the same model with
perturbative tools yields Nc < 3, cf. Refs. [94,99–106].

3. Critical exponents for the DFP

The stability analysis of the DFP simplifies due to an
exact scaling relation [6,8,107]. Four of the critical exponents
correspond to the O(N1) and O(N2) critical exponents θ1 = 1

ν1
,

θ2 = 1
ν2

, θ4 = −ω1, and θ5 = −ω2. The third, which actually
decides about the stability, is given by the relation

θ3 = 1

ν1
+ 1

ν2
− d . (32)

This allows us to determine the critical exponents for the DFP
from the pure O(N ) model for which the expression for the
anomalous dimension η is known, see Ref. [67] for details.
Using calculations in LPA to 12th order, including a simple
approximation to η, determined with respect to the Goldstone
modes, we get the following table for the critical exponents;
see Table III.

Our results are in accordance with Refs. [5,7]. For N1 = 1
we obtain a critical value of N2 = 2.31, to be compared, e.g., to
2.17 from Ref. [7]. We conclude that the case N1 = 2,N2 = 3
might be relevant for high-Tc superconductors, features a stable
tetracritical DFP, see Refs. [20,21].

To test the quality of our truncation, we can compare the
value for θ3 as obtained from the scaling relation to the result
from the explicit diagonalization of the stability matrix. Within
a truncated RG flow, we do not expect the exact scaling relation
to be fulfilled precisely. Here, we observe that a determination
of θ3 by explicit diagonalization shifts the transition line for

TABLE III. We show the five largest critical exponents of the
DFP as a function of N1 and N2 in 12th-order LPA, including the
anomalous dimension.

N N1 N2 θ1 θ2 θ3 θ4 θ5

2 1 1 1.571 1.571 0.142 −0.728 −0.728
3 1 2 1.571 1.459 0.030 −0.728 −0.735
4 1 3 1.571 1.367 −0.062 −0.728 −0.748
4 2 2 1.459 1.459 −0.082 −0.735 −0.735
5 1 4 1.571 1.296 −0.133 −0.728 −0.768
5 2 3 1.459 1.367 −0.174 −0.735 −0.748

the stability of the DFP in the N1-N2 plane by an absolute
value ∼0.01 within a fixed order of the truncation.

4. Stable fixed points as a function of N1 and N2

Here we refer to a fixed point as being stable when it
shows exactly two relevant directions. From the two previous
Sect. IV A2 and IV A3, it is possible to deduce that the IFP is
stable up to Nc = N1 + N2 ≈ 2.32 and the DFP is stable for
N1,N2 beyond a critical line, which depends on N1 and N2

separately; see Fig. 3. This result is in good agreement with
Ref. [7]. The shaded region in Fig. 3 contains the physical
points N1 = 1,N2 = 2 and N1 = 2,N2 = 1, where neither of
the fixed points deduced from symmetry is stable. This leads
us to investigate whether additional fixed points that do not
follow from the O(N ) Wilson-Fisher fixed point can exist in
these models.

B. Additional fixed points in d = 3

1. Biconical fixed point

Apart from those fixed points that can be inferred from
O(N ) models, the interaction between the two sectors could
induce further nontrivial fixed points. Indeed, an additional
fixed point, termed the biconical one (BFP), was discussed in
Ref. [4] and further studied in Refs. [5,7].

Here, we search for this fixed point in eighth-order LPA
without anomalous dimensions, i.e., ηφ = ηχ = 0. As is clear

0 1 2 3 4
0

1

2

3

4

N1

N
2

FIG. 3. (Color online) For LPA 12 including η �= 0, the IFP is
stable for N1 + N2 < 2.32 (thick blue dashed line), and the DFP is
stable for values to the upper right of the red full line. The thin lines
denote the stability boundaries in LPA 8 with η = 0.
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FIG. 4. (Color online) Here we plot the fixed-point values (upper
panel) of λ2,0 (green solid line), λ0,2 (red dashed line), and λ1,1 (blue
dotted line) as a function of N2 for N1 = 1 at the BFP. The third largest
critical exponent, deciding about the stability of the fixed point, is
negative for the BFP between 1.17 < N2 < 1.5 (purple disks in the
lower panel). For N2 � 1.17, the IFP is stable (blue squares), and
for N2 > 1.5, the IFP becomes stable (orange diamonds). Note that
λ1,1 < 0 does not automatically yield an unstable potential, as long
as this coupling does not exceed a critical value.

from the thin lines in Fig. 3, this fixed point should exist
and be stable in the region 1.17 � N2 � 1.50 for N1 = 1 at
this order of the approximation. The BFP emerges from the
IFP (see upper panel of Fig. 4) and immediately becomes the
stable fixed point; see the lower panel in Fig. 4. At N2 ≈ 1.5, it
merges with the DFP, which, in this order of the approximation,
is the stable fixed point beyond this value. Note that the critical
exponent θ3 for the DFP in Fig. 4 has been obtained by direct
diagonalization of the stability matrix and not by the scaling
relation, Eq. (32), to be consistent with the determinantion of
θ3 for the BFP and the IFP. We observe that �′ > 0 in the
stability region of the BFP. This implies tetracritical behavior
in that region.

As is obvious from Fig. 3, the stability region of the DFP
as found by resorting to the pure O(N ) model with anomalous
dimensions begins for larger values of N1,N2 than found from
LPA 8 without anomalous dimensions. We expect that if we
extend our results for the BFP to nonvanishing η, the region of
existence and stability of the BFP becomes wider. In agreement
with the conjecture that there is always one stable fixed point
[2,4,108], we expect the BFP to be stable in the complete
shaded region in Fig. 3. Thus the physical point N1 = 1, N2 =
2 should indeed be described by the BFP as its stable fixed
point. As we have shown using LPA 12 with η �= 0, neither
the IFP nor the DFP are stable at this point. We defer a more
detailed study of this physically interesting situation, including

explicit expressions for the anomalous dimensions of the two
bosonic sectors ηφ and ηχ , to future work.

2. Fixed points for �′ < 0

We observe that the BFP moves into the region �′ < 0
after colliding with the IFP, as λ1,1 > λ2,0/0,2, cf. Fig. 4. In
particular, it approaches another symmetry-enhanced fixed
point for N1 = 1 = N2. This motivates us to analyze the
existence of fixed points for �′ < 0 in more detail.

Let us specialize to the case N1 = N = N2 to discuss the
possible existence of further fixed points: Here, we observe
an additional fixed point with an enhanced discrete symmetry
φ ↔ χ , as has also been discussed as the cubic fixed point in
Refs. [65,66,98]. We call it the symmetric fixed point (SFP).
The existence of this fixed point can be inferred as follows: As
discussed above, the case �′ < 0 corresponds to a situation
where the four degenerate minima of the potential lie along
the axis φ = 0 or χ = 0. Rotating the basis (φ,χ ) in field
space to a new basis (φ̃,χ̃ ), which is tilted by π/4, yields
a potential that is symmetric in φ̃,χ̃ and has minima that lie
along the diagonal; see Refs. [65,66]. In fact it is possible, by a
redefinition of the couplings, to recover precisely the form (21).
Accordingly, we can again deduce the existence of fixed points
from the existence of O(N ) universality classes. This implies
the existence of a new fixed point, which is a decoupled fixed
point in the φ̃,χ̃ coordinates and features a φ ↔ χ symmetry
in the original basis. As it corresponds to the DFP in the new
coordinates, with the additional φ ↔ χ symmetry imposed
on the couplings, we infer that three of the critical exponents
are identical to this case; see Ref. [66]. The additional two
critical exponents that arise from relaxing the symmetry φ ↔
χ cannot be deduced from the DFP. Consequently, this fixed
point has at least three relevant directions for N = 1. (At least)
one of the critical exponents then changes sign for N = 2; see
Table III. We therefore conclude that a potentially stable fixed
point exists at �′ < 0, implying bicritical behavior.

Besides, we find a fixed point with nontrivial interaction
between the two sectors, and no enhanced symmetry, which we
call the asymmetric fixed point (AFP); see Table IV. We find
this fixed point in an expansion of the effective potential around
one of the saddle points which is a consequence of our ansatz
(21). We do not expect such an expansion to yield accurate
critical exponents. An improved estimate for their values can
be obtained by implementing the full effective potential with

TABLE IV. Fixed-point values and real parts of the critical
exponents for the asymmetric fixed point as a function of the
expansion order nmax of the effective potential. At the highest order
of the LPA, all five critical exponents become real.

nmax κφ κχ λ2,0 λ0,2 λ1,1

4 0.00871 0.0459 10.662 0.384 6.069
8 0.0135 0.0172 5.543 3.315 10.573
12 0.0146 0.0167 5.162 4.000 10.383
nmax θ1 θ2 θ3 θ4 θ5

4 1.800 1.220 1.009 −0.900 −0.900
8 2.037 1.556 0.148 −0.267 −0.267
12 1.990 1.523 0.150 −0.042 −0.732
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a higher numerical effort, which is beyond the scope of the
present work.

Note that this fixed point has three relevant parameters.
Accordingly, it simply may not be possible to reach it in a
realistic experimental setting, since three tunable parameters
might not be available. In this case, one might observe
nonuniversal behavior where the system undergoes a first-
order phase transition. A similar situation applies for the SFP.
In that case, systems with initial conditions in the �′ < 0
region would still show first-order phase transitions, even
though fixed points in that region exist. Let us clarify this
statement in some more detail: For a second-order phase
transition, the existence of a fixed point is a necessary but
not sufficient condition. It is necessary, as the divergence
of the correlation length at a second-order phase transition
corresponds to scale freedom in the system and therefore only
can be realized at a fixed point. If no fixed point exists, no
second-order phase transition can occur. For a given physical
system, the existence of a fixed point is not sufficient for the
second-order phase transition to occur: To reach a fixed point,
the couplings corresponding to relevant operators need to be
tuned. These correspond to physical parameters of the system
that would require tuning in order to reach the second-order
phase transition. In a given system, some of these parameters
might actually not be tunable (e.g., if they correspond to fixed
microscopic parameters of the system). In that case, the fixed
point cannot be reached, and the possibility of the second-order
phase transition is never realized. The more relevant couplings
exist, the more likely this situation is. We thus conclude that the
existence of the AFP and the SFP need not necessarily imply
that the corresponding physical systems undergo second-order
phase transitions.

Let us discuss the reason why the AFP has not been
discovered by perturbative tools: Expanding our β functions
for small values of the interaction couplings and around a
vanishing vacuum-expectation value, we get a perturbative
approximation to our full system. It turns out that the AFP is
not a fixed point of these perturbative β functions. We conclude
that it is nonperturbative in nature and probably connected
to threshold effects in the β functions which are invisible to
perturbation theory. In contrast, a nonperturbative Monte Carlo
study should be able to access the AFP and confirm or refute its
existence. Employing the FRG beyond a polynomial expansion
of the potential will also yield a nontrivial test of the existence
of these fixed points. At present, our study cannot preclude the
possiblity that this fixed point arises as a truncation artifact.

The SFP and the AFP are both characterized by �′ < 0, thus
corresponding to bicritical rather than tetracritical behavior
according to the mean-field criterion. Thus, contrary to the
analysis in Refs. [5,7], the RG flow within our truncation
shows fixed points in both the �′ > 0 as well as the �′ < 0
region. Since the RG flow does not cross the �′ = 0 boundary
(see Fig. 5), the nonexistence of fixed points for �′ < 0 would
imply that initial conditions within this region must necessarily
lead to a first-order phase transition. Our results suggest that
in fact second-order phase transitions could also exist in this
region. Of course, it remains to confirm the existence of these
fixed points beyond our truncation.

To summarize, the RG flow features a total of seven
fixed points. For the φ ↔ χ symmetric case, these reduce

0

5
Λ2,0

0
5

10

Λ1,1

0.02
0.06

ΚΦ

10

FIG. 5. (Color online) Here we show several selected trajectories
in the symmetry-reduced setting with φ ↔ χ in LPA 4, which connect
the fixed points. Due to the symmetry requirement, the AFP does
not appear. The trajectories start in the UV (purple color in online
version) and flow toward the IR (red color in online version). None
of the shown trajectories cross the �′ = 0 plane.

to four fixed points, which are shown in Fig. 5 for the
case N1 = 1 = N2.

C. Relevance for high-energy physics

Several features arise in the two-scalar Z2 ⊕ Z2 model with
potential interest for high-energy model, which we will discuss
in the following.

1. Critical exponents for the semi-Gaußian fixed point

At the DGFPs only a small subset of couplings is
nonzero, namely only the self-interaction of one scalar.
The self-interactions of the second scalar, as well as the
interactions between the two sectors vanish. Nevertheless,
the corresponding critical exponents are nontrivial and do
not all follow from canonical dimensionalities. It turns out
that nontrivial scaling arises due to the interactions between
the two sectors, even if, at the fixed point, λ1,1 = 0, and
similarly for higher-order couplings. Diagrammatically, the
β functions of these couplings receive contributions from
diagrams where (some of the) vertices are proportional to
the couplings in the interacting scalar sector. These yield
noncanonical entries in the stability matrix. This clearly
suffices to give nontrivial critical exponents; see Table V.
Reaching the Ising model as a special decoupled point in a
larger theory space that features interactions between the two
sectors therefore yields a nontrivial universality class which is
not simply constructed from the Ising universality class and
canonical critical exponents.

We accordingly observe a rather interesting property of an
interacting fixed point: Even if a sector of the theory is fully
noninteracting at this fixed point, this does not necessarily
imply canonical critical exponents. Let us for a moment
indulge in speculation and assume a scenario in which the
standard model is UV complete with the help of an interacting
fixed point, known as the asymptotic-safety scenario [109],
e.g., induced by the coupling to an asymptotically safe
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TABLE V. Here we show the real part of the largest critical exponents at the DGFP at order nmax in LPA. The italic values are those of the
Ising universality class.

nmax θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

4 2 1 1 0.667 −0.333 – – – –
6 1.372 1 1 0.547 0 −0.291 −0.928 −1.075 −1.075.

quantum theory of gravity [110–123]. In this case, even
asymptotically free sectors of the theory could show nontrivial
scaling behavior. In analogy to the DGFP in our model,
where the interacting sector induces nontrivial scaling in the
noninteracting sector, gravitational fluctuations could yield
noncanonical scaling for asymptotically free matter couplings.

2. Emergence of Goldstone modes from discrete symmetries

The emergence of massless modes from symmetry breaking
is expected from continuous symmetries only. There is no
Nambu-Goldstone mode associated with the breaking of a
discrete symmetry. Accordingly, one would naively expect
that the Z2 ⊕ Z2 model does not exhibit massless modes.
This is actually not the case; see Fig. 6. There we show the
two masses as a function of the RG scale on a particular
RG trajectory connecting the DFP in the UV with the IFP in
the IR in d = 3. At low momenta, one of the masses clearly
goes to zero, thus a massless mode emerges. This is in fact
in full accordance with Goldstone’s theorem, since there is
one particular point in our theory space which is characterized
by a continuous symmetry, namely O(2). It contains a fixed
point of the RG flow, namely the IFP. Accordingly, there
are RG trajectories which approach the IFP asympotically in
the IR. The previous analysis of the stability properties has
shown that for the Z2 ⊕ Z2 model the IFP is the stable fixed
point. Starting the RG flow in the symmetry-broken regime,
Goldstone’s theorem then forces one of the two massive modes
to become massless in this limit. As the corresponding fixed
point at which the symmetry enhancement takes place shows
IR-repulsive directions, fine-tuning is required in order to
reach this fixed point and observe the emergence of Goldstone
modes.

Let us add that, in principle, a similar mechanism might
be invoked to generate a mass hierarchy in a system where

20 10 10 20
0

0.35

0.7

t

m

FIG. 6. (Color online) Here we plot the two mass eigenvalues of
the u(2) matrix, corresponding to the dimensionless masses mi(k) =
m̄i

k
of physical excitations as a function of the RG scale t = ln(k/�)

on a trajectory connecting the DFP in the UV (high t) with the IFP in
the IR (low t).

the microscopic Lagrangian contains equal masses. If the
system can exhibit an enhancement of the symmetry by
an additional continuous symmetry transformation, then a
spontaneous breaking of this additional symmetry in the
infrared must produce a massless Goldstone mode. Small
explicit symmetry breaking terms can then give a small mass to
this pseudo-Goldstone mode. Compared to the other masses
in the theory the pseudo-Goldstone boson mass could then
remain rather small, thus producing a hierarchy.

3. Transition to d = 4 dimensions

The O(N ) theory suffers from the triviality problem in
d = 4 dimensions: The theory shows no interacting fixed point
and the Gaußian fixed point is IR stable. Towards the UV, the
scalar self-coupling diverges at a finite scale, i.e., it shows a
Landau pole. This happens unless the interaction is tuned to
vanish in the IR, yielding a trivial theory. Whether the Higgs
sector of the standard model shows this problem is not fully
clear, as a growing Higgs self-coupling implies that the theory
enters a strongly interacting regime, where further fermion
or gauge boson fluctuations might potentially prevent the
Landau pole; see, e.g., Refs. [86,124,125]. A second possibility
could be given by an interacting theory of two scalars, where
fluctuations of the second scalar field could counteract those of
the first scalar and thus suppress the Landau pole. One usually
expects that this option is not realized in four dimensions.
Here, we provide further evidence for the triviality of coupled
two-scalar models, by following the fate of the fixed points
towards d = 4. Our result implies that, e.g., Higgs-inflaton
theories as well as hybrid models for inflation with two coupled
scalar fields [47] both suffer from the triviality problem.

For the DFP, the SFP as well as the IFP, the nonexistence
in d = 4 follows from the lack of an interacting fixed point for
O(N ) models. Thus it remains to study the fate of the AFP,
which approaches the GFP towards d = 4; see Fig. 7.

V. CONCLUSIONS

In this paper we have established the nonperturbative
functional renormalization group as a useful tool to study
multicritical behavior in models with two competing order
parameters and address open questions in these models. As our
method relies on a truncation of the flowing action, we have
tested the reliability of our truncation by confirming results on
the isotropic, the decoupled, and the biconical fixed points. We
have also evaluated the crossover exponents φT as a function
of N at the isotropic fixed point, which are in good agreement
with results from higher-order perturbative calculations. Our
analysis implies that the isotropic, bicritical fixed point is the
stable one for N1 = 1 = N2. At N1 = 1, N2 = 2, and vice
versa, this fixed point becomes unstable as it shows an ad-
ditional relevant direction. Our most sophisticated truncation
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FIG. 7. (Color online) Here we show the fixed point values
(upper panel) for λ2,0 (magenta disks), λ1,1 (blue squares), and λ0,2

(green diamonds) at the AFP as a function of d in LPA fourth
order. Additionally, we show the real part of the five largest critical
exponents (lower panel) that approach the asymptotic values 2 and 0,
as expected from canonical scaling arguments.

shows that the decoupled tetracritical fixed point only becomes
stable for values of N = N1 + N2 > 3. We conclude that
models with N1 = 1,N2 = 2, describing, e.g., anisotropic an-
tiferromagnets in an external magnetic field, show tetracritical
behavior, described by the biconical fixed point. Consequently,
we would expect these physical systems to exhibit a mixed
phase, e.g., a supersolid in the case of helium-4 or a biconical
phase for anisotropic antiferromagnets, if the microscopic
parameters of the material correspond to the �′ > 0 region.
Here, we analyze the stability region of the biconical fixed
point in eighth-order LPA. We observe that this fixed point
becomes stable as soon as the IFP becomes unstable. For
larger values of N , the BFP then exchanges stability with the
DFP.

We further elucidate that the system is dominated by
collisions of fixed points, moving through coupling space as a
function of N1,N2. As they collide, they exchange stability
properties. Starting from a φ ↔ χ symmetric fixed point
at N1 = 1 = N2 characterized by �′ < 0 and thus bicritical
behavior, this fixed point starts to move through coupling
space, leaving the φ ↔ χ symmetric regime, as we increase
N2. At N2 c, it collides with the IFP and breaks through the
�′ = 0 surface. It then becomes the biconical, stable fixed
point describing tetracritical behavior. At a second critical
value of N2 the BFP collides with the DFP. Again, these two
interchange their stability properties in the collision, with the
DFP becoming stable.

This observation, consistent with Ref. [7], could explain
why the critical exponents at the BFP in the N1 = 1, N2 = 2
case will be rather close to that of the Heisenberg universality
class, if Nc � 3. If these fixed points collide very close to that
point, their critical exponents are still very close together at the
physical point N1 = 1,N2 = 2. This analysis of the BFP also
shows an interesting connection to the cubic fixed point [6,
65,66,98]: The φ ↔ χ symmetric cubic fixed point coincides
with the biconical fixed point for N1 = 1 = N2.

Further, we report the discovery of a new, asymmetric fixed
point at �′ < 0 within our truncation. Whether this fixed
point persists also beyond our approximation remains to be
confirmed. In the affirmative case, the �′ < 0 region of the
theory space could be dominated by a bicritical fixed point.
Thus models with initial conditions in this region could also
show bicritical behavior.

Turning to d = 4, we study several implications for high-
energy physics, with potential implications for hybrid models
for inflation as well as models with a Higgs-inflaton coupling.
Within our truncation we confirm that these models suffer
from a triviality problem, as none of the three-dimensional
fixed points has a nontrivial continuation at d = 4.

We further use the example of the semi-Gaußian fixed
points to argue that UV complete models in which a sector
of the theory becomes noninteracting, can still show nontrivial
critical exponents associated with this sector. Such a behavior
could be of interest for UV completions of the standard model
coupled to gravity.

Finally, we discuss how Goldstone modes can emerge
from models with only discrete symmetries. A necessary
requirement is the existence of symmetry enhanced points in
theory space, such as, in our case, the Z2 ⊕ Z2 → O(2) point.
We speculate whether infrared-attractive symmetry enhanced
points could help to construct mass hierarchies in scalar
models.

To summarize, we have established the FRG as a worth-
while tool to investigate models with multiple order param-
eters. In the future, several exciting extensions of our study
are possible: Following the methods developed in extended
studies of O(N ) models should allow us to improve our
estimate for the anomalous dimension in order to achieve
quantitative precision. Furthermore, the FRG naturally lends
itself to (numerical) studies of the nonuniversal flow of the
effective potential towards first-order phase transitions and the
study of full phase diagrams, e.g., for the case of anisotropic
antiferromagnets, as well as the SO(5) theory of high-Tc

superconductors and systems including fermionic degrees of
freedom. As we have derived the flow equations for general
dimensions d, and performed no expansion around any value
of d, an extension towards the highly interesting case of d = 2
is possible, similarly to Refs. [126,127]. Finally, the one-loop
form of the effective action makes it feasible to study models
with more than two competing orders and discuss the case of
multicritical points with a multiplicity higher than four.
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