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Effect of coordination number on the nonequilibrium critical point
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We study the nonequilibrium critical point of the zero-temperature random-field Ising model on a triangular
lattice and compare it with known results on honeycomb, square, and simple cubic lattices. We suggest that the
coordination number of the lattice rather than its dimension plays the key role in determining the universality class
of the nonequilibrium critical behavior. This is discussed in the context of numerical evidence that equilibrium and
nonequilibrium critical points of the zero-temperature random-field Ising model belong to the same universality
class. The physics of this curious result is not fully understood.
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I. INTRODUCTION

Systems with quenched disorder tend to respond to a
smoothly varying force by way of avalanches in their structure
[1–5]. Generally, the avalanches are microscopic and therefore
the response is macroscopically smooth. However, there are
several instances in nature where the response exhibits an
abrupt and catastrophic jump discontinuity: Snow falls gently
on a mountain for days before tons of snow may move abruptly
in an avalanche. This cannot be attributed to the last snowflake
before the avalanche. Similarly, landslides may occur abruptly
during periods of incessant rain. Earthquakes are sporadic and
sudden effects of the tectonic plates pressing against each other
all the time. A more familiar and repeatable example from a
physics laboratory is the Barkhausen noise on magnetization
curves [6]. The theory of the Barkhausen noise has been
studied extensively in the framework of the zero-temperature
nonequilibrium random-field Ising model of a ferromagnet on
a lattice [7]. The disorder is normally modeled by an on-site
Gaussian random-field with average value zero and standard
deviation σ . Numerical simulations on d-dimensional lattices
(d > 1) reveal that there is a critical value σc such that for
σ > σc, the response of the system, i.e., the magnetization
m(h,σ ) in an applied field h, is macroscopically smooth
over the entire range of the applied field −∞ < h < ∞. For
σ < σc, m(h,σ ) has a jump discontinuity at h = hc(σ ). The
size of the jump as well as |hc(σ )| decreases as σ → σc. The
point {σc,hc(σc)} is a nonequilibrium critical point exhibiting
anomalous scale-invariant fluctuations and universality remi-
niscent of the equilibrium critical point phenomena.

The similarity between the nonequilibrium and equilibrium
critical behavior has a reason, but one that is not fully
understood. The equilibrium critical point in a system with
quenched disorder is controlled by a stable zero-temperature
fixed point [8]. Therefore, it is not entirely surprising to
observe critical behavior at zero temperature by varying the
parameter σ . Let us consider zero-temperature equilibrium
magnetization curves for different values of σ . We may
expect smooth trajectories for σ > σc, jump discontinuities
for σ < σc, and a vanishing jump discontinuity at σ = σc just
as in the case of the nonequilibrium magnetization curves.
The only difference will be that the equilibrium case would
show no hysteresis and therefore all singularities will occur
at h = 0. The nonequilibrium response will show hysteresis
and the singularities for σ � σc will occur on the lower and

upper halves of the hysteresis loop in a symmetrical fashion.
One may ask if the noise on the equilibrium magnetization
curves and the anomalous fluctuations at the equilibrium
critical points have the same character as their nonequilibrium
counterparts. Surprisingly, the answer to this question is that
they do in the framework of the zero-temperature random-
field Ising model. Numerical studies of the model provide
strong evidence that the disorder-induced critical points in
equilibrium as well as the nonequilibrium case belong to the
same universality class [9]. This serendipity may provide a
way to infer nonequilibrium properties of a system from its
equilibrium properties. It is intriguing. As a system is driven
by an applied field from h = −∞ to ∞, the nonequilibrium
trajectory of the system comprises a sequence of metastable
states. The equilibrium trajectory goes through the states of
global minima of the energy. What is the physics that puts the
two cases in the same universality class?

We focus on a similar but smaller question. It is known
that the universality class of an equilibrium critical point is
determined by the dimensionality of the lattice and not by
the kind of Bravais lattice it is. The reason for this is well
understood. The correlation length diverges at the critical
point and therefore the short-range structure of the lattice is
irrelevant to the critical behavior. In contrast, the existence of
a nonequilibrium critical point, let alone its universality class,
appears to be determined by the coordination number of the
lattice rather than its dimensionality. An exact calculation on
the Bethe lattice of an arbitrary coordination number z shows
that a nonequilibrium critical point exists only if z > 3 [10].
Numerical simulations suggest that the significance of this
result goes beyond the Bethe lattice; periodic lattices with
z = 3 in d = 2,3 do not possess a nonequilibrium critical
point [11]. Although these results have been reported quite
some time ago, their significance does not appear to be widely
recognized. For example, numerical simulations have often
failed to settle the question if there is a nonequilibrium critical
point on the square lattice (z = 4) [2]. Recent results indicate
that it is there [12]. This has been taken to indicate that the
lower critical dimension for nonequilibrium critical behavior
is equal to 2. However, it has been shown earlier that there is no
nonequilibrium phase transition on a honeycomb lattice [11].
Indeed, there is good evidence that the nonequilibrium critical
behavior is controlled by a lower critical coordination number
(z = 4) rather than a lower critical dimension (d = 2).
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In this paper we study the nonequilibrium critical point
on a triangular lattice (z = 6) reiterating the importance of
the coordination number rather than the dimensionality of the
lattice. We show the existence of a critical point and estimate
the critical exponent ν. Within numerical errors we find ν

to be tantalizingly close to the value reported for the simple
cubic lattice. The simple cubic and the triangular lattices have
the same coordination number (z = 6) and it is possible that
the values of the nonequilibrium critical exponents depend
on z just as their existence depends on z. Indeed, it may be
useful to study the triangular lattice with gradual dilution of
one of the three sublattices comprising it. This way, one can
go continuously from a triangular (z = 6) to a honeycomb
(z = 3) lattice and study the effect of z on the critical behavior.
However, this is beyond the scope of the present paper.

II. MODEL AND SIMULATIONS
ON A TRIANGULAR LATTICE

The random-field Ising model is characterized by the
Hamiltonian

H = −J
∑
i,j

sisj −
∑

i

hisi − h
∑

i

si , (1)

where {si = ±1} are Ising spins on a triangular lattice and {hi}
are identically distributed independent random fields drawn
from a Gaussian distribution with mean zero and standard
deviation σ . Periodic boundary conditions are imposed. Here J

is the ferromagnetic interaction between nearest neighbors and
h is an external field that is varied adiabatically from −∞ to
∞. A stable state of the system at h has each spin aligned along
the net field at its site. As h is ramped up, numerous instabilities
occur where a spin flips up and causes neighboring spins to
flip up in an avalanche. When this happens, h is kept constant
during the avalanche and then increased again until the next
avalanche. The curve m(h,σ ) is the locus of the magnetization
of locally stable states along increasing h for a random-field
distribution characterized by standard deviation σ .

In contrast to the case of the square lattice [12], it takes
a rather modest effort to see that the curve m(h,σ ) makes a
transition between a discontinuous and a continuous form as σ

is increased. Figure 1 shows m(h,σ ) in increasing h for σ = 1
(red triangles), σ = 1.275 (orange squares), and σ = 2 (blue
continuous line) on a 1000 × 1000 triangular lattice. Only the
data in the range 1.3 � h � 2 are shown. The curve for σ = 1
shows a jump in the magnetization at h ≈ 1.9, but the curve
for σ = 2 is smooth. This suggests that a transition occurs at a
critical value σc (1 < σc < 2) as σ is increased. However, it is
difficult to locate the exact σc. The difficulty is illustrated by
the m(h,σ ) curve for σ = 1.275, which is close to the critical
value σc. Ideally, we would like to see a single jump in an
otherwise smooth curve and the size of the jump approaching
zero as σ → σc from below. However, the critical point {σc,hc}
is characterized by anomalously large fluctuations. Therefore,
the critical curve in a typical simulation is punctuated by
several jumps of different sizes. Increasing the system size
does not alleviate this difficulty because the critical fluctuations
also increase in proportion. We will return to this point in the
following paragraph. For now we note another point of caution
even in the case σ � σc, where a large jump in m(h,σ ) is rather
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FIG. 1. (Color online) Magnetization curves in increasing field h

for σ = 1 (red discontinuous curve comprising triangles), σ = 2 (blue
continuous curve), and at an intermediate value σ = 1.275 (orange
squares with several jumps).

obvious. In the limit σ → 0, the initial state of the system
(h = −∞, all spins down) has an instability such that the first
spin to flip up in increasing h causes all the spins in the system
to flip up. This is easily understood. The first spin flips up at
h = 6J − hmax, where hmax is the maximum random field on
an L × L lattice, h2

max ≈ σ 2 log10 2πσ 2/L4. After the first spin
flips up, the effective field on its neighbors becomes 4J − hi ,
which is positive with probability unity in the limit σ → 0,
and so all the neighbors flip up. Indeed, this causes an infinite
avalanche leading to a state with all spins up. It is important
to distinguish this instability from a genuine disorder-driven
discontinuity that may occur for larger values of σ [11].

It is relatively easy to spot a large first-order discontinuity
in the magnetization curve m(h,σ ). However, it is not as
straightforward as it may look at first sight. In simulations as
well as in experiments, it is difficult to distinguish between
a truly discontinuous curve and one that may be smooth
but steeply rising. We have to employ a method that takes
into account the nature of fluctuations underlying the phase
transition. One of the methods used in the literature is that of
the Binder cumulant [13] calculated from the averages of the
square and the fourth power of the magnetization. It has been
used for estimating the critical temperature of Ising models
and distinguishing between first-order and second-order phase
transitions in models without quenched disorder and applied
field. For the present problem, we use a method that counts
all the avalanches of size s as the system is driven from
h = −∞ to ∞. Let P (s,σ ) be the probability of an avalanche
of size s, where σ is the standard deviation of the random-field
distribution. In general, P (s,σ ) is a product of an algebraically
decreasing part and an exponentially decreasing part with a
cutoff s0 that sets the scale of the avalanches. At a critical
point we have s0 = ∞ and therefore the avalanches become
scale invariant.

The distribution P (s,σ ) has a different form depending
upon whether m(h,σ ) is continuous or discontinuous [14].
The idea is illustrated by Fig. 2, which shows the probability
P (s,σ ) of an avalanche of size s for σ = 1.25 (red triangles),
1.63 (pink squares), and 2 (blue), respectively. The m(h,σ )
curve for σ = 1.25 has a jump discontinuity. The avalanches
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FIG. 2. (Color online) Plot of P (s,σ ), the probability of an
avalanche of size s on a 100 × 100 triangular lattice for σ = 1.25
(red triangles, lower curve with a peak at s ≈ 104), σ = 1.63 (pink
squares, curve with its tail nearest the red triangles’ peak), and σ = 2
(blue circles, curve with is tail farthest from the red triangles’ peak).

near the discontinuity are very large and may span the
entire system. Away from the discontinuity the avalanches
are small and P (s,σ ) decreases exponentially with s. Thus
the defining trend of the avalanche distribution (red triangles)
along a discontinuous magnetization curve is an algebraically
decreasing P (s,σ ) followed by a peak at s ≈ L × L. In
contrast to this, the avalanches along a noncritical continuous
magnetization curve, e.g., the m(h,σ ) curve for σ = 2 in Fig. 1,
are exponentially small with a cutoff much smaller than L × L.
This is reflected in the corresponding curve (blue circles) in
Fig. 2 by an initial algebraic decrease of P (s,σ ) followed by
a more rapid decrease characteristic of the cutoff. Thus the
distribution of avalanche sizes along the magnetization curve
provides us with a method to distinguish between a smooth
m(h,σ ) and one with a discontinuity. However, our goal is to
identify a critical m(h,σ ) curve where the discontinuity just
vanishes, i.e., to determine σc. This is evidently a difficult
task. At σc, we may expect log10 P (s,σ ) to vary linearly with
log10 s in the entire range 1 < s < L × L with the peak at
s ≈ L × L just vanishing. It is difficult to implement this
criterion strictly within a reasonable computational effort
because avalanche distributions for different σ have to be
obtained and compared with each other. We have tried to meet
this criterion within a reasonable error to the second decimal
place in σc as illustrated by the pink (squares) curve in Fig. 2
for σ = 1.63; σc = 1.63 ± 0.01 is our best estimate for the
critical point on the 100 × 100 triangular lattice. This estimate
has been obtained from 50 000 independent realizations of
the random-field distribution and took nearly a day of CPU
time on our computer. We have often used binned data along
with the unbinned data to find the best estimate for σc. As an
illustration, Fig. 3 shows the binned data for avalanches on
a 200 × 200 lattice. The possible range of an avalanche lies
between a single spin flip and 4 × 104 spin flips. This range
is divided into 40 linear bins and the weight of each bin is
represented by a point on the curve. See the caption on Fig. 3
for more details. We have also analyzed the data shown in
Fig. 2 using logarithmic binning. The result is shown in Fig. 4.
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FIG. 3. (Color online) Binned data for P (s,σ ) vs s on a 200 × 200
triangular lattice for σ = 1.45 (red squares), 1.48 (orange inverted
triangles), 1.50 (black circles), 1.52 (pink triangles), and 1.54 (blue
diamonds). Generally, the last point on each curve may be ignored
because of less data in the last bin. We estimate σc = 1.50 for a
lattice of linear size L = 200 because the corresponding distribution
is nearly linear over the entire range of avalanche sizes. Avalanches for
σ < σc tend to show a δ-function peak at the largest avalanche, while
avalanches for σ > σc tend to bend down. The opposite trends for
σ < σc and σ > σc become more pronounced as one moves farther
away from σc.

As may be expected, the fat tails of the distributions shown in
Fig. 2 are replaced by more clearly defined curves.

III. FINITE-SIZE EFFECTS

Following the procedure outlined above, we have deter-
mined σc(L) for lattices of linear size L = 100–400. The
results are presented in Table I.

As σ → σc from below, the size of the avalanche diverges
with the exponent ν, i.e., s ∼ (σ − σc)−ν . On a finite lattice, the
largest avalanche is limited by the size of the lattice. Thus we
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FIG. 4. (Color online) Plot of P (s,σ ) using the same data as in
Fig. 2 but using logarithmic binning. The colors and symbols have
the same meaning as in Fig. 2.
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TABLE I. σc(L) for lattices of linear size L = 100–400.

L σc(L)

100 1.63 ± 0.01
125 1.58 ± 0.01
150 1.545 ± 0.005
175 1.52 ± 0.01
200 1.50 ± 0.01
250 1.47 ± 0.01
300 1.45 ± 0.01
400 1.42 ± 0.01

define a lattice-dependent critical value σc(L) by the equation

L−1/ν = σc(L) − σc

σc

or − 1

ν
log10 L = log10

[
σc(L)

σc

− 1

]
.

(2)

We determine σc by requiring the data in Table I to fit a
straight line. The best fit to the straight line is shown in Fig. 5.
The slope of the line gives 1/ν = 0.62, or ν = 1.6 ± 0.2. The
data shown in Table I are based on linear binning. They change
slightly if logarithmic binning is used; we get σc(L) = 1.525 ±
0.005 for L = 175, σc(L) = 1.41 ± 0.01 for L = 400, and
estimates of σc(L) for other values of L remain unchanged.
The quality of the best straight line fit to the changed data is
slightly poorer as compared to the one shown in Fig. 5, but it
yields ν = 1.5 ± 0.2.

Although it is a good practice to fit the data with a minimum
number of adjustable parameters, we also tried the following
form with an additional parameter a:

L−1/ν = σc(L) − σ ′
c

a
. (3)

We find that the best straight line fit to Eq. (3) is obtained
when σ ′

c = σc obtained from fitting the data to Eq. (2). If we
set σ ′

c = 0, we are not able to fit the data to a straight line. This
shows that we must have σ ′

c > 0. Figure 6 shows the data and
the nearest straight line fit to it for σ ′

c = 0 and a = 1. The slope
of the straight line corresponds to ν = 10.2 approximately.
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FIG. 5. (Color online) Finite-size scaling: plot of − log10 L

(x axis) vs log10[σc(L)/σc − 1] (y axis). The parameter σc = 1.27
is determined by the best linear fit to the data of Table I. The slope of
the line yields ν = 1.6.
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FIG. 6. (Color online) Plot of − log10 L (x axis) vs log10 σc(L)/a
for a = 1 (y axis). The curve does not fit well to a straight line. The
straight line with a slope of 0.098 (ν = 10.17) shown in the figure
is the best fit to the data. Changing the parameter a shifts the curve
along the y axis.

The role of the parameter a is only to shift the curve along the
y axis. It does not affect the slope of the straight line that best
fits the data.

The existence of a critical point is expected to be accom-
panied by scaling of thermodynamic functions in its vicinity.
Thus the existence of a critical value σc > 0 means that a
quantity such as P (s,σ ), which is in general a function of two
independent variables s and σ , must become a function of a
single variable, say, s| σc−σ

σ
|p as σ → σc for some value of the

exponent p. Let us define

r = σc(L) − σ

σ
. (4)

The scaling hypothesis requires that as σ → σc(L), the
plots of sqP (s,σ ) vs s|r|p for a fixed lattice of size L × L

and different values of σ should collapse on a single curve
for suitable choices of the exponents p and q. Figure 7 shows
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FIG. 7. (Color online) Data collapse: plot of sqP (s,σ ) vs s|r|p
for a 200 × 200 lattice. The upper set of curves are for σ =
1.52,1.53,1.54,1.56 (σ > σc = 1.50). These collapse reasonably on
top of each other for q = 2 and p = 0.66. The lower set of curves are
for σ = 1.48,1.47,1.46,1.45 (σ < σc). These too show reasonable
collapse for q = 2 and p = 0.25.

042138-4



EFFECT OF COORDINATION NUMBER ON THE . . . PHYSICAL REVIEW E 88, 042138 (2013)

such a collapse for a 200 × 200 lattice. The collapsed curves
are distinct for r < 0 (q = 2 and p = 0.66) and r > 0 (q = 2
and p = 0.25). The exponents p and q may be related to
standard critical point exponents, e.g., q = τ + σβδ [12,15].
The family of collapsed curves for different thermodynamic
functions can be used to determine standard critical exponents,
but in the present case we do not have sufficient data to take
this approach. We are content to note that the avalanche size
distributions show a reasonable collapse in a rather wide region
around the critical point.

IV. DISCUSSION

We have shown that there is a critical point in the
behavior of the zero-temperature random-field Ising model
on a triangular lattice. This result assumes significance in
the context of a long-standing speculation as to whether
there is a nonequilibrium critical point in two dimensions.
Generally, the hysteretic behavior of the random-field Ising
model on a square lattice has been taken to characterize
the behavior of the model in two dimensions. However, the
coordination number z of the lattice seems to be a key
parameter. Two-dimensional lattices with z = 3 (honeycomb
structure) do not have a critical point [11]. Studies on a square
lattice (z = 4) were initially inconclusive, but more recent
studies suggest that it has a critical point [12]. The existence
of a critical point on a triangular lattice (z = 6) can be verified
with a rather modest effort as shown here. These results

suggest that a lower critical coordination number has a greater
significance for determining critical avalanches than a lower
critical dimension. Although this goes against the spirit of the
renormalization group theory that the short-range structure of
the lattice should become irrelevant at the divergence of the
correlation length, some reflection shows that it is reasonable in
the context of avalanches. It is reasonable that the coordination
number of the lattice should determine how far an avalanche
can propagate from its point of origin. Therefore, a minimum
coordination number must be necessary for the divergence
of avalanches irrespective of the dimensionality of the
lattice.

If the existence of the nonequilibrium critical point depends
on a lower critical coordination number rather than a lower
critical dimension of the lattice, then it is natural to ask if the
critical exponents depend upon z as well. An exact solution of
the random-field Ising model on a Bethe lattice of coordination
number z shows that the exponents are independent of z as long
as z � 4. Numerical results on periodic lattices do not give
such a clear indication. Let us focus on the critical exponent
ν. The uncertainty in the numerical determination of this
exponent is rather large, although it is of central importance
conceptually. The best estimates are ν = 5.15 ± 0.20 on a
square (z = 4) lattice [12], ν = 1.4 ± 0.2 on a simple cubic
(z = 6) lattice [16], and the present result ν = 1.6 ± 0.2 on a
triangular (z = 6) lattice. The closeness of ν on simple cubic
and triangular lattice is interesting in view of the fact that the
coordination number of both lattices is the same.

[1] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature (London)
410, 242 (2001).

[2] The Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz
(Academic, New York, 2005).

[3] G. Durin and S. Zapperi, in The Science of Hysteresis (Ref. [2]).
[4] D. S. Fisher, Phys. Rep. 301, 113 (1998).
[5] M. C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J. R.

Grosso, Nature (London) 410, 667 (2001).
[6] See, for example, E. C. Stoner, Rev. Mod. Phys. 25, 2 (1953);

the main features of Barkhausen noise discovered in these early
experiments are still topics of current research.

[7] J. P. Sethna, K. A. Dahmen, and O. Percovic, in The Science of
Hysteresis (Ref. [2]), and references therein.

[8] D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986).
[9] Y. Liu and K. A. Dahmen, Phys. Rev. E 79, 061124 (2009).

[10] D. Dhar, P. Shukla, and J. P. Sethna, J. Phys. A 30, 5259 (1997).

[11] S. Sabhapandit, D. Dhar, and P. Shukla, Phys. Rev. Lett. 88,
197202 (2002).

[12] D. Spasojevic, S. Janicevic, and M. Knezevic, Phys. Rev. Lett.
106, 175701 (2011); Phys. Rev. E 84, 051119 (2011).

[13] K. Binder, Phys. Rev. Lett. 47, 693 (1981); Z. Phys. B 43,
119 (1981); K. Binder and H. J. Herrmann, in Monte Carlo
Simulations in Statistical Physics, edited by M. Cardona,
P. Fulde, K. von Klitzing, and H. J. Queisser (Springer, Berlin,
1992).

[14] C. L. Farrow, P. Shukla, and P. M. Duxbury, J. Phys. A:
Math. Theor. 40, F581 (2007); P. Shukla, Pramana 71, 319
(2008).

[15] O. Perkovic, K. A. Dahmen, and J. P. Sethna,
arXiv:cond-mat/9609072v1.

[16] O. Perkovic, K. A. Dahmen, and J. P. Sethna, Phys. Rev. B 59,
6106 (1999).

042138-5

http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1038/35070524
http://dx.doi.org/10.1103/RevModPhys.25.2
http://dx.doi.org/10.1103/PhysRevLett.56.416
http://dx.doi.org/10.1103/PhysRevE.79.061124
http://dx.doi.org/10.1088/0305-4470/30/15/013
http://dx.doi.org/10.1103/PhysRevLett.88.197202
http://dx.doi.org/10.1103/PhysRevLett.88.197202
http://dx.doi.org/10.1103/PhysRevLett.106.175701
http://dx.doi.org/10.1103/PhysRevLett.106.175701
http://dx.doi.org/10.1103/PhysRevE.84.051119
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1088/1751-8113/40/27/F02
http://dx.doi.org/10.1088/1751-8113/40/27/F02
http://dx.doi.org/10.1007/s12043-008-0165-2
http://dx.doi.org/10.1007/s12043-008-0165-2
http://arXiv.org/abs/arXiv:cond-mat/9609072v1
http://dx.doi.org/10.1103/PhysRevB.59.6106
http://dx.doi.org/10.1103/PhysRevB.59.6106



