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Nonequilibrium thermodynamics of the soft glassy rheology model
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The soft glassy rheology (SGR) model is a mesoscopic framework which proved to be very successful in
describing flow and deformation of various amorphous materials phenomenologically (e.g., pastes, slurries,
foams, etc.). In this paper, we cast SGR in a general, model-independent framework for nonequilibrium
thermodynamics called general equation for the nonequilibrium reversible-irreversible coupling. This leads
to a formulation of SGR which clarifies how it can properly be coupled to hydrodynamic fields, resulting in
a thermodynamically consistent, local, continuum version of SGR. Additionally, we find that compliance with
thermodynamics imposes the existence of a modification to the stress tensor as predicted by SGR.
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I. INTRODUCTION

Phenomenological models play an important role in
understanding deformation and flow behavior of a large
class of amorphous materials [1–6]. One of these models is
the so-called soft glassy rheology (SGR) model [7], which
is frequently used to interpret experimental results on soft
glassy materials including but not limited to pastes, slur-
ries, colloidal suspensions, foams, and polymeric dispersions
(e.g. [8–11]). The SGR model has been investigated in some
detail with respect to its predictions concerning rheologi-
cal, diffusive, and aging behavior of soft glassy materials
[12–14].

However, an aspect which has attracted attention only
recently is the issue of a proper thermodynamic interpretation
of SGR. This problem was addressed in [15] where the authors
adapted a reasoning introduced by Bouchbinder and Langer
in [16–18]. This analysis provided a new way of looking at an
important parameter of the SGR model, namely the effective
temperature x, and led to constraints on its time evolution.
However, the proof of the thermodynamic consistency of SGR
as given in [15] relies on specific assumptions concerning
the entropy production and the form of the entropy itself.
There, the authors note that it might be advantageous to
address the question of thermodynamic consistency by casting
SGR in a model-independent framework for nonequilibrium
thermodynamics.

In this work we will follow this route by formulating
SGR within a framework called general equation for the
nonequilibrium reversible-irreversible coupling (GENERIC)
[19]. This has the following three benefits. First, GENERIC
allows us to prove the thermodynamic consistency of SGR
based on more general assumptions compared to those made
in [15]. Second, we naturally obtain a closed set of time
evolution equations for both the SGR degree of freedom
and hydrodynamic fields allowing for a local, continuum
description of SGR embedded in hydrodynamic flow in three
dimensions as it is not present in the literature (although there is
a tensorial version of SGR [20], thermodynamical aspects and
the coupling between SGR and hydrodynamics is not treated
on this general level to the best of our knowledge). Third,
the structure of GENERIC allows us to identify a correction
to the stress tensor as it is predicted by the standard SGR
model.

We begin our discussion by briefly summarizing the SGR
model and the GENERIC framework (Secs. II and III). In
Sec. IV, we cast SGR in GENERIC form. Finally, several
implications of this formulation of SGR are discussed in
Sec. V.

II. SOFT GLASSY RHEOLOGY MODEL

The SGR model describes a glassy material as a collection
of mesoscopic elements, containing several, cooperatively
acting particles (e.g., a collection of cells in a foam). A single
element is located in an energy landscape and trapped in a
potential well of depth E. Due to thermal activation, one
element might “hop” to another trap elsewhere in the energy
landscape. On the microscopic level, this involves a local
rearrangement of cooperative particles somewhere in the
material. These rearrangements lead to stress redistributions
in the material which might facilitate another rearrangement
elsewhere. Many of these events are believed to sum up
to an effective thermal noise level. This is accounted for
by introducing an effective temperature x which activates
the “hopping” process of the mesoscopic elements. Rear-
rangements can additionally be facilitated by applying a
macroscopic deformation to the sample where an element
experiences a local strain l. It is assumed that every element
behaves elastically supporting a local stress kl, where k is an
elastic constant. If the stored elastic energy reaches the same
order of magnitude as the trap depth, a yield event takes place
(i.e., the system hops out of a trap). The attempt rate of escaping
a trap is denoted by � and is originally assumed to be of the
following form: �(E,l) = �0 exp[−(E − kl2/2)/x]. Here, �0

is a rate constant and we use units in which kB = 1 holds,
such that temperatures are measured in energy units. After the
occurrence of a yield event, the system rearranges and ends
up in a new trap drawn from an a priori distribution ρ(E,l)
which models the presence of structural disorder. The SGR
model was originally formulated for one dimension, where ρ

is assumed to be given by ρ ∼ exp(−E/Tg)δ(l). Here Tg is a
glass transition temperature and the δ function sets the local
strain variable to zero after a rearrangement has occurred.
Finally, we denote the probability distribution function of E

and l at time t by ψ . The total stress in a soft glassy material
as predicted by SGR is then given by the average of stress
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contributions from every element:

σ (t) = k〈l〉ψ = k

∫
lψ(E,l)dE dl. (1)

This constitutive equation has to be supplemented by
a time evolution equation for the probability distribution
function ψ . This time evolution equation as stated by the
SGR model contains a convective term, which accounts for the
transportation of ψ in l space, and relaxation terms modeling
the “jump” rate and the hop into a new trap. Thus the overall
time evolution reads as follows:

∂tψ = −γ̇ ∂lψ − �(E,l)ψ + Yρ(E,l), (2)

where γ̇ is the strain rate and Y = ∫
�(E,l)ψ dE dl the overall

yielding rate for a given ψ . With the previously mentioned
ansatz for � and ρ, the equilibrium solution for this one-
dimensional version of SGR becomes

ψ1D
0 ∼ exp(−E/Tg + E/x)δ(l), (3)

which ceases to be normalizable for temperatures x < Tg; an
equilibrium state does not exist anymore in this temperature
regime and the system shows various aging phenomena [14].
Together with proper initial conditions, Eqs. (1) and (2) fully
determine the stress in a soft glassy material. It is obvious
that Eq. (1) and the choice for the prior distribution ρ cannot
trivially be translated in a three-dimensional model. As it
will be discussed later, a slightly different choice for ρ is
necessary in three dimensions, but the main features of the
original SGR model remain the same in more general versions
of it.

III. GENERIC

Since GENERIC is a model-independent framework for
nonequilibrium thermodynamics, it proved to be a very
powerful tool for investigating the compliance of dynamic
equations of various models with thermodynamics. GENERIC
is a formulation of nonequilibrium thermodynamics which
divides the dynamics of a closed system into two parts [21,22].
Its first part is the reversible contribution describing the purely
mechanistic motion, whereas the second part is accounting for
irreversible dynamics. The framework implies a description in
terms of a set of carefully chosen slowly evolving variables
assuming a clear time-scale gap between these variables and
fast (irrelevant) degrees of freedom. For simple fluids, densities
of conserved quantities (i.e., mass density, momentum density,
and energy density) are appropriate variables to consider. For
complex fluids we introduce structural variables in addition
to the hydrodynamic variables. They need to be chosen such
that they contain enough information of the system’s state to
determine stresses without any memory effects. Hence, if x
denotes a set of variables which appropriately describe the
system, their time evolution can be cast into the following
form:

dx
dt

= L(x) · δE(x)

δx
+ M(x) · δS(x)

δx
. (4)

Here, δ/δx denotes the functional derivative of the energy
and entropy functionals, meaning that energy gradients drive
the reversible particle motion, whereas entropy gradients gen-
erate irreversibility. The linear operators L(x) (Poisson matrix)
and M(x) (friction matrix) represent the geometric (Poisson)
structure underlying the reversible motion and the dissipative
material properties, respectively. Their action on the energy
and entropy gradient involves an additional integration over
the system’s volume wherever fields are involved. Associated
with the Poisson matrix and two observables, A and B (i.e., real
valued, sufficiently regular functionals of the set of variables
x), is a Poisson bracket,

{A,B} := δA(x)

δx
· L(x) · δB(x)

δx
, (5)

satisfying an antisymmetry condition {A,B} = −{B,A}. Fur-
thermore, using a third observable C, the bracket obeys the
Leibniz rule, {AB,C} = A{B,C} + B{A,C}, and the Jacobi
identity, {A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0.

These conditions pose severe restrictions on the admissible
form of L(x) and therefore on the convective behavior of
x. Similarly, a dissipative bracket is defined for the friction
matrix, M(x):

[A,B] := δA(x)

δx
· M(x) · δB(x)

δx
, (6)

being symmetric, [A,B] = [B,A], and positive, [A,A] � 0.
The Poisson bracket and dissipative bracket allow us to

write the time evolution of an arbitrary observable A in a
compact form,

dA

dt
= {A,E} + [A,S]. (7)

This equation is supplemented by the degeneracy requirements

L(x) · δS(x)

δx
= 0 (8)

and

M(x) · δE(x)

δx
= 0. (9)

These degeneracy conditions together with the symmetries of
the brackets guarantee that the energy is conserved,

dE

dt
= {E,E} + [E,S] = 0 (10)

and that entropy is a nondecreasing function of time,

dS

dt
= [S,S] � 0. (11)

Thus we note that GENERIC is by construction sufficient
for Eqs. (10) and (11) but obviously not necessary for them.
However, the generality of the assumptions discussed in this
section ensures its applicability to a wide class of models.
A more detailed discussion of the GENERIC structure and
example applications can be found in [19]. We now implement
a GENERIC formulation of SGR by choosing an appropriate
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set of variables and constructing the GENERIC building blocks
E, S, L, and M .

IV. GENERIC FORMULATION OF SGR

An appropriate choice of the variables x is the crucial first
step and a prerequisite for formulating a constitutive model
within the GENERIC framework. Since we are interested in
a formulation of SGR which allows for a proper treatment of
hydrodynamics, it is natural to include the conserved quantities
mass density ρm, momentum density m, and energy density in
the set of variables. Following the reasoning presented in [15]
and [16–18], we conceptually divide the degrees of freedom
in a soft glassy material in two coupled subsystems: a config-
urational subsystem which describes in which one of the local
energy minima of the potential-energy landscape (inherent
structures) the system currently is in and a kinetic-vibrational
subsystem which accounts for the energy contribution arising
from the motion around these minima. Additionally, the
authors in [15] and [16–18] consider a third subsystem being a
thermal reservoir and setting the thermodynamic temperature
of the system. For the sake of simplicity, we do not distinguish
between the reservoir and the fast kinetic-vibrational degrees
of freedom tacitly assuming a strong coupling between these
subsystems. Therefore, we account for the configurational and
fast contributions to the energy by adding an energy density
for both the configurational subsystem (εc) and the kinetic-
vibrational subsystem (ε) in our list of variables. Finally, the
last state variable is the SGR probability distribution function
ψ itself, which accounts for the barrier height E felt by the
mesoscopic SGR elements and for their local strain l . Thus
our total set of variables for the SGR model is given by

x = {ρm(r),m(r),ε(r),εc(r),ψ(E,l,r)}. (12)

We allow all quantities to depend on the position in the
system r though the length scale of interest has to be taken
much larger than the dimension of one SGR element. On this
coarser scale every hydrodynamic volume element contains
enough SGR elements to have a meaningful local distribution
of yield energies E and strains l . Here, we describe the strain
of a SGR element with a vector l implicitly considering those
elements as dumbbell-like objects as done in previous tensorial
formulations of SGR [20]. All quantities are local in nature and
we will suppress the position argument in our notation from
now on for the sake of simplicity.

A. Total energy and total entropy

With our previous considerations at hand, it is straightfor-
ward to formulate a functional for the total energy E[x],

E[x] =
∫ (

m2

2ρm
+ ε + εc

)
d3r

+
∫

φE(E,l)ψ(E,l)dE d3l d3r. (13)

The first two terms are the kinetic energy accounting for
the flow of the fluid and the internal energy density of the
fast subsystem ε. The energy density of the configurational
subsystem εc has to be regarded as a level in the “true”
potential-energy landscape which defines the region of this

FIG. 1. Variable εc sets a level in the potential-energy landscape.
Within the SGR model wells below this level are approximated by
harmonic traps with a trap depth Ei drawn from the distribution
ρ(E,l). Work performed on the system by deforming the material
can be stored by the mesoscopic SGR elements. If the stored elastic
energy becomes comparable to the energy depth of a well, a yielding
event takes place.

landscape being accessible for the system. The wells below
this level are approximated by harmonic traps according to the
SGR model (see Fig. 1). The last term in the total energy
accounts for these traps, where we introduced a potential
φE(E,l), describing the energy gain for every mesoscopic
element residing in the bottom of a well. This energy gain
is given by the trap depth −E. However, every SGR element
can elastically be strained, which increases the effective trap
depth by the stored elastic energy kl2/2. These considerations
lead us to the assumption φE(E,l) = kl2/2 − E. We note that
a conceptually similar model was developed in [23]. There,
the authors describe plastic deformation of single crystalline
materials by considering a periodic arrangement of identical
energy wells. The dynamic variable of this model is given by
the distribution function of the strain between two layers of
the material and the plastic strain rate emerges as the average
hopping rate between energy wells.

In a next step, we make an ansatz for the total entropy,

S[x] =
∫

[s(ρ,ε) + sc(εc)]d3r

−
∫

ψ(E,l) ln
ψ(E,l)
R(E,l)

dE d3l d3r, (14)

where we separate entropy contributions from the reservoir
(s) and from the configurational subsystem (sc) implicitly
making a local equilibrium assumption for both the fast and
the slow subsystem. Additionally, we made a conventional
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ansatz for the form of the ψ dependence of the entropy. At
this point, we keep a general function R(E,l) and postpone
a specific choice for the reference distribution function. The
derivatives of total energy and total entropy with respect to
the state variables are given by

δE

δx
=

(
−v2

2
,v,1,1,φE

)
(15)

and

δS

δx
=

(
−μ

T
,0,

1

T
,

1

χ
,− ln

ψ

R

)
. (16)

Here, we introduce the local fluid velocity v = m/ρm

and the chemical potential μ. Furthermore, we define the

standard thermodynamic temperature T and a configurational
temperature χ via 1/T = ∂s/∂ε and 1/χ = ∂sc/∂εc.

B. Poisson matrix L

Having formulated expressions for energy and entropy,
we proceed to the construction of the Poisson matrix. The
procedure of properly implementing the Poisson matrix for
standard hydrodynamics was worked out in one of the original
publications on GENERIC [22]. We note that the specific
form of the entries in the matrix is fully determined by the
tensorial character of the state variables [19]. Therefore, the
construction of the Poisson matrix is straightforward and reads
as follows:

L = −

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ∂
∂ r ρm 0 0 0

ρm
∂
∂ r

(
∂
∂ r m + m ∂

∂ r

)T
ε ∂

∂ r + ∂
∂ r · �S εc

∂
∂ r + ∂

∂ r · �S
c ψ ∂

∂ r − ∂
∂ r · ψ l ∂

∂ l

0 ∂
∂ r ε + �S · ∂

∂ r 0 0 0

0 ∂
∂ r εc + �S

c · ∂
∂ r 0 0 0

0 ∂
∂ r ψ + ∂

∂ l ψ l · ∂
∂ r 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠, (17)

where the differential operators act on all functions to their right. The entry in the last row guarantees a proper convection of
the distribution function ψ itself and of the strain vector l . We have allowed for entropic pressure tensor contributions (�S and
�S

c ) of reservoir and the configurational subsystem. Their form is determined by the degeneracy condition (8). It is only the
multiplication of the second row with the entropy gradient which does not trivially satisfy the degeneracy condition but gives the
condition

ρm
∂

∂ r
μ

T
− ε

∂

∂ r
1

T
− ∂

∂ r
· �S

T
− ∂

∂ r
· �S

c

χ
+

∫ (
ψ

∂

∂ r
ln

ψ

R
− ∂

∂ r
· ψ l

∂

∂ l
ln

ψ

R

)
dE d3l = 0. (18)

Using the expression for the hydrostatic pressure p,

p = T

(
s − ρm

∂s

∂ρm
− ε

∂s

∂ε

)
, (19)

identifying the hydrodynamic pressure tensor with the pressure contribution arising from the standard background fluid �S (i.e.,
�S = p1), assuming that ln R does not depend on position and performing an integration by parts, we finally find the following
configurational contribution to the stress:

�S
c

χ
=

∫
ψ(E,l)

[
21 + l

∂ ln R(E,l)
∂ l

]
dE d3l. (20)

The first term matches the hydrodynamic pressure p and is not of interest for standard rheological measurements, whereas the
second part is an additional entropic stress tensor contribution which has not been taken into account by previous versions of the
SGR model. Its specific form depends on the reference distribution. We will discuss a natural choice for R and its implications
in the next section.

C. Friction matrix M

We now turn to the friction matrix describing the dissipative processes present in our system. As we constructed our model, we
expect the following three contributions to the M matrix. First, we assume that the reservoir acts like a standard Newtonian fluid
(i.e., it contributes to the rheological response with a shear viscosity η and a dilatational viscosity κ̂). Additionally, we model
its thermal behavior satisfying Fourier’s law of heat conduction. A proper M matrix for this hydrodynamic contribution (MHD)
was already given in [22]. The second, configurational part (MC) is the dissipative process of yield events as modeled by the
nonconvective part of the SGR time evolution equation for the probability density ψ . As we will discuss later, the SGR model can
be viewed as a time continuous Markov process for which the appropriate form of the M matrix is known as well [24]. Finally,
the last contribution (MHF) can trivially be formulated and models the coupling between reservoir and configurational degrees
of freedom allowing for an energy exchange or heat flow between those subsystems. This means that the form of the M matrix
for all involved dissipative contributions to our SGR formulation is well known. These contributions add up to the following
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total matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 − ∂
∂ r ηT ∂

∂ r + 1 ∂
∂ r · ηT ∂

∂ r − ∂
∂ r κ̂T ∂

∂ r
∂
∂ r · ηT γ̇ + ∂

∂ r
κ̂T
2 Tr(γ̇ ) 0 0

0 −ηT γ̇ · ∂
∂ r − κ̂T

2 Tr(γ̇ ) ∂
∂ r

ηT

2 γ̇ : γ̇ + κ̂T
4 [Tr(γ̇ )]2 − ∂

∂ r · λ · T 2 ∂
∂ r 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
MHD

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0
0 0 α −α 0
0 0 −α α 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
MHF

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 φEM55φ

E −M55φ
E

0 0 0 −M55φ
E M55

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
MC

. (21)

Here, we denote a double contraction by a colon (e.g.,
a : b = ∑

i,j aij bji). We used the rate of strain tensor γ̇ and
allowed for a tensorial heat conduction tensor λ which can
model anisotropic heat flow in the reservoir. The (positive)
function α describes the energy exchange between the
reservoir and the configurational subsystem. The operator
M55 contains all the information of the yielding processes. MC

was constructed in the following way. First, an appropriate
operator M55 is chosen to describe the dissipative part of the
SGR model. Then, the degeneracy condition (9) determines
the entry M54 which automatically is equal to M45 due to the
symmetry of M . The entry M44 is again fixed by the degeneracy
requirement. The other parts of the friction matrix are
constructed analogously, which guarantees that the proposed
M matrix satisfies the degeneracy condition (9). Our last step
is formulating an expression for the operator M55. We note that
the nonconvective part of the SGR time evolution equation (2),
ψ̇nc, can be viewed as a time continuous Markov process
with the transition rate w(E → E′,l → l ′) = �(E,l) =
�0 exp[−(E − kl2/2)/x] and the density of states ρ(E′,l ′),

ψ̇nc(E,l) = −
∫

w(E → E′,l → l ′)ρ(E′,l ′)ψ(E,l)dE′d3l ′

+
∫

w(E′ → E,l ′ → l)ρ(E,l)ψ(E′,l ′)dE′d3l ′.

(22)

It can easily be verified that inserting the definition of
the rate w in (22) indeed results in the nonconvective time
evolution of the SGR distribution function. Any entropy
driven master equation, describing a Markovian jump process
satisfying detailed balance

w(E → E′,l → l ′)ρ ′ψ0 = w(E′ → E,l ′ → l)ρψ ′
0, (23)

can be cast into GENERIC form [24]. The corresponding
operator M55 is given by

M55 =
∫

�(E,l)�(E′′,l ′′)
ψ ′′ψ0 − ψψ ′′

0

ln
(

ψ ′′ψ0

ψ ′′
0 ψ

)
× [δ(E − E′,l − l ′) − δ(E′′ − E′,l ′′ − l ′)]dE′′d3l ′′,

(24)

where we used the abbreviation ψ0 = Yρ/�, which is the
equilibrium distribution function for x > Tg. In Eqs. (23) and
(24) we did not explicitly include the variable dependency of
the distribution function but used ψ = ψ(E,l,r) and ψ ′′ =
ψ(E′′,l ′′,r) as a short notation. The operator M55 acts on
functions which depend on the variables {r,E′,l ′} or {r,E,l}.
Note that multiplication with M55 involves an additional
integration step over E and l or E′ and l ′, respectively.

The construction of M55 is detailed in the Appendices.
As discussed in Sec. III, we have to show that the proposed
M matrix in total is non-negative and symmetric in order to
obtain a thermodynamically valid model. A discussion of these
properties of the M matrix can also be found in the Appendices.
This completes our construction of the GENERIC building
blocks and we proceed with the discussion of the obtained
time evolution equations.

V. TIME EVOLUTION EQUATIONS

In this section we combine all previously discussed
GENERIC building blocks to obtain a thermodynamically
consistent set of equations for the state variables x. To obtain
the time evolution for ψ we proceed as follows. First, we
specify the function φE(E,l). As it was argued previously and
following the reasoning given in [15], we expect this function
to be nothing other than kl2/2 − E, i.e., the effective trap
depth felt by a strained SGR element. Additionally, we make
a specific choice for the reference distribution R. A natural
assumption is using the a priori distribution: R(E,l) = ρ(E,l).
The irreversible part of the time evolution of ψ is given by

M55

(
−φE(E′,l ′)

χ
+ δS

δψ ′

)

= −M55

(
ln

ψ(E′,l ′)
R(E′,l ′) exp[−φE(E′,l ′)/χ ]

)
. (25)

If we want to obtain SGR-like equations in our GENERIC
formulation, we have to postulate that the denominator of the
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expression in the logarithm is proportional to the equilibrium
distribution function, i.e., R(E,l) exp(−φE/χ ) ∼ ψ0. With
our choice of R, this proportionality is true only if χ = x, i.e.,
we assume that the configurational temperature coincides with
the effective temperature. This observation is in agreement
with conclusions drawn in [15]. In total, this leads to

−M55 ln
ψ ′

ψ ′
0

= −
∫ ∫

�(E,l)�(E′,l ′)
ψ ′′ψ0 − ψψ ′′

0

ln
(

ψ ′′ψ0

ψ ′′
0 ψ

)
× [δ(E − E′,l − l ′) − δ(E′′ − E′,l ′′ − l ′)]

× ln
ψ ′

ψ ′
0

dE′′d3l ′′dE′d3l ′

=
∫

�(E,l)�(E′,l ′)(ψ ′′ψ0 − ψψ ′′
0 )dE′′d3l ′′.

(26)

Inserting the definition for ψ0 and for the rates w we find
that this is equal to the right side of Eq. (22) and we obtain
the nonconvective time evolution for ψ . The total set of time
evolution equations reads as follows:

ρ̇m = − ∂

∂ r
· (ρmv), (27)

ṁ = − ∂

∂ r
· (mv) + ∂

∂ r
· τ , (28)

ε̇ = − ∂

∂ r
· (εv) − �S :

∂

∂ r
v + η

2
γ̇ : γ̇ + κ̂

4
[Tr(γ̇ )]2

− ∂

∂ r
· λ · T 2 ∂

∂ r
1

T
+ α

(
1

T
− 1

χ

)
, (29)

ε̇c = − ∂

∂ r
· (εcv) − �S

c :
∂

∂ r
v + α

(
1

χ
− 1

T

)

−
∫

φE(E,l)[−�(E,l)ψ(E,l) + Yρ(E,l)]dE d3l,

(30)

ψ̇ = − ∂

∂ r
· [ψ(E,l)v] − ∂

∂ l
·
(

∂

∂ r
v

)
· lψ(E,l)

−�(E,l)ψ(E,l) + Yρ(E,l). (31)

In Eq. (28) we have introduced the total stress tensor,

τ = −�S − �S
c +

∫ (
ψ(E,l)l

∂

∂ l
φE(E,l)

)
dE d3l

+ηγ̇ + κ̂

2
Tr(γ̇ )1

= −
[
p + 2χ − κ̂

2
Tr(γ̇ )

]
1 + ηγ̇ + k

∫
ψ(E,l)l l dE d3l

−χ

∫
ψ(E,l)

[
l
∂ ln R(E,l)

∂ l

]
dE d3l. (32)

We briefly discuss the physical meaning of the terms
appearing in the equations of motion for the energy densities
(ε,εc): the first part on the right-hand side of the equation for
ε̇ is simply convective transport. The second term includes the
hydrostatic pressure of the reservoir. The terms containing

the viscosity constants describe viscous heating and the
term containing the heat conduction tensor λ allows for
heat transport in the fast subsystem. Finally, the last term
describes heat transfer between fast and slow subsystems. In
the equation for ε̇c, the heat transfer term between slow and fast
subsystems appears again but with opposite sign accounting
for heat flux in the reverse direction. The last term is the
energy which is dissipated due to yield events. Equation (31)
perfectly coincides with the time evolution as stated by the
dumbbell-like tensorial version of the SGR model [20] besides
the presence of an additional term in our model which accounts
for spatial convection.

VI. CONCLUSION AND DISCUSSION

In this paper we have successfully formulated the SGR
model within the GENERIC framework from which we draw
the following conclusions. The SGR model is proven to be
thermodynamically consistent, i.e., an isolated system of a
soft glassy material in which the SGR equation of motion is
coupled to hydrodynamics as discussed previously is found to
be compliant with the laws of thermodynamics. We note that
this proof follows a different route than the authors in [20],
where it was assumed that different contributions to the total
entropy have to be non-negative separately. Any assumption
of that kind is not required in our approach. Additionally, we
allow for a general form of the entropy which is allowed to
be a function of the strain variable l carrying its own entropy
contribution. Furthermore, we conclude that thermodynamic
consistency implies the existence of an additional entropic
contribution (20) to the stress tensor.

A. Stress tensor

We can clearly distinguish the following contributions to
the total pressure tensor in our GENERIC formulation of the
SGR model.

(i) A hydrostatic pressure tensor: �S = p1.
(ii) An energetic contribution: −k

∫
ψ(E,l)l l dE d3l .

(iii) An entropic contribution: �S
c = ∫

ψ(E,l)(2χ1 +
χ l ∂ ln R(E,l)

∂ l )d3E d3l .
(iv) A Newtonian contribution from the reservoir account-

ing for viscous heating of the “background” fluid.
Note that the entropic contribution was not considered

in previous work on the SGR model but its existence is
imposed by the GENERIC structure. However, we want to
stress that this entropic contribution arises from the degeneracy
condition (8) and a Kullback-Leibler type of ansatz for the
entropy for the SGR degrees of freedom. In [15] a different
choice for this entropy was made and it might be possible
that a similar entropic contribution would arise within the
framework employed there, if a Kullback-Leibler entropy
would be considered.

With our choice R(E,l) = ρ(E,l) for the reference distri-
bution, the nonisotropic part to this entropic contribution to
the pressure tensor is of the following form:

∫
χψ(E,l)l

∂ ln ρ(E,l)
∂ l

d3E d3l. (33)
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In tensorial models of SGR, it was suggested that ρ(E,l) is
proportional to exp(−E/Tg) exp(−kl2/2x). With this assump-
tion the pressure tensor contribution (33) becomes −k〈l l〉ψ ,
where we have used x = χ again. Remarkably, this has the
same form as the standard, energetic contribution to the SGR
pressure tensor. It might be a difficult task to test different
(possibly similar) contributions to the stress tensor separately.
If a microscopically based foundation of the SGR model going
beyond its current mean-field character was available, it would
be possible to test the predictions of the proposed equations
numerically in simulations. Thus tracing back the separate
contributions to the stress tensor to its energetic or entropic
origin remains an open problem.

B. Effective temperature x

We note that the SGR model coincides with the GENERIC
equations of motion if and only if we identify the effective
temperature x with the configurational temperature χ , thus
clarifying the role of this a priori undetermined parameter.
Choosing A = χ in Eq. (7) results in an equation of motion
for the configurational temperature:

χ̇ = −v · ∂

∂ r
χ − εc + 2χ

CV
c

∂

∂ r
· v

+ 1

CV
c

{
(k〈l l〉) :

∂

∂ r
v + α

(
1

χ
− 1

T

)

−
∫

φE(E,l)[−�(E,l)ψ(E,l) + Yρ(E,l)]dE d3l
}
,

(34)

where we introduced a configurational heat capacity at con-
stant volume CV

c . The interpretation of (34) is as follows. The
first term on the right-hand side convects the configurational
temperature in space. The remaining terms describe energy
flows in or out of the configurational subsystem, which result
in a temperature change given by the quotient of energy dif-
ference and heat capacity. The contributions from left to right
are due to work done to compress the fluid, work performed
by deforming the SGR elements, heat flow between configura-
tional subsystem and reservoir, and the average energy which
is dissipated as a consequence of the energy gain or loss due
to the hopping into another energy trap. As a simple example
we discuss the implications of (34) for simple shear, i.e.,

∂

∂ r
v =

⎛
⎜⎝ 0 0 0

γ̇0 0 0

0 0 0

⎞
⎟⎠, (35)

with the constant strain rate γ̇0. Considering a stationary
flow, where ψ̇ = 0, and assuming χ to be constant along
streamlines, Eq. (34) yields the following expression for the
ratio χ/T as a function of T and γ̇0:

χ

T
= 1

1 − 2kT γ̇0〈l1l2〉/α . (36)

Equation (36) means that in this particular flow the ratio of
configurational temperature χ and temperature of the reservoir
T is determined by the quotient of the rate at which elastic

energy can be stored in the SGR elements and the dissipation
of heat into the fast subsystem.

C. Entropy production

Employing Eq. (11) results in the following expression for
the total entropy production:

dS

dt
=

∫ {
∂

∂ r
1

T
· λT 2 · ∂

∂ r
1

T
+ α

(
1

χ
− 1

T

)2

−
∫

ln
ψ(E,l)
ψ0(E,l)

[−�(E,l)ψ(E,l) + Yρ(E,l)]dE d3l

+
(

κ̂

4T
(Trγ̇ )2 + η

2T
γ̇ : γ̇

)}
d3r, (37)

where we have used R(E,l) = ρ(E,l) again. In (37) we
can readily identify all dissipative processes contributing
to the total entropy production. We note that the form of
the entropy production is considerably different from the
expression given by Eq. (6) of [15]. First, the reservoir in
our formulation of SGR is not a pure heat bath but it acts
as a Newtonian fluid, i.e., there is an entropy contribution
accounting for heat transport in the reservoir, it supports
stresses, and can be heated via viscous heating. Second, besides
entropy contributions arising from dissipative processes in
both the reservoir and the configurational subsystem, there is
an explicit term which arises from the heat exchange between
the subsystems. In the Appendix of [15] the authors discuss
another total entropy production which is based on more
general assumptions and more closely resembles our result
(37) following from employing the GENERIC framework. We
note that the unknown coefficients of Eq. (A6) in [15] can be
traced back to more explicit expressions containing material
constants by comparing them to (37).

D. SGR coupled to hydrodynamics

The presented equations of motion provide a closed
description of both thermodynamic and rheological behavior
of soft glassy materials allowing for a full three-dimensional
treatment of hydrodynamics of these materials as it is not
present in the literature (although there exists a tensorial
version of SGR [20], thermodynamical aspects are not treated
on this general level). The obtained equations of motion are
also of local nature, slightly generalizing the original version of
SGR and the supplemental equations account for a correct ther-
modynamic treatment. As a conclusion, we have successfully
formulated the SGR model within the GENERIC framework.
The obtained time evolution for the SGR distribution function
ψ coincides with a tensorial version of SGR. We have proven
that the SGR model is thermodynamically consistent and it
turned out that this consistency implies a modification to the
stress tensor as stated by earlier versions of the SGR model.
Additionally, our work supports the conclusion drawn in [15]
that the effective temperature x as it appears in the SGR
model should be identical to the configurational temperature
χ associated with the slow degrees of freedom.

The present formulation of the SGR model and in particular
its extension to allow for spatial inhomogeneities might be
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useful when studying the flow of soft glassy systems in
complicated geometries. The corresponding problem of inho-
mogeneous deformations in hard amorphous systems has been
studied only very recently via mean-field or lattice models [25].
While the stress field around localized plastic events is found to
have a predominant quadrupolar character, the situation is less
clear-cut for soft amorphous systems. Knowledge of the stress
field and interactions between relaxation events would allow
one to propose an improved SGR model that goes beyond its
current mean-field formulation.
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APPENDIX A: CONSTRUCTION OF THE OPERATOR M55

In this section we discuss the construction of the operator
M55. In [24] it was shown that every time continuous Markov
process satisfying the detailed balance condition (23) can be
formulated within GENERIC. The corresponding operator is
given by

M55 =
∫

�(E,E′′,l,l ′′)√
ψ0ψ

′′
0

ψ ′′ψ0 − ψψ ′′
0

ln
(

ψ ′′ψ0

ψ ′′
0 ψ

)
× [δ(E − E′,l − l ′) − δ(E′′ − E′,l ′′ − l ′)]dE′′d3l ′′,

(A1)

where we used the fact that product of jump probability w and
density of states ρ can be written as

w(E → E′,l → l ′)ρ(E′,l ′) = �(E,E′,l,l ′)

√
ψ0

ψ ′
0

, (A2)

with a function � being symmetric in both pairs of arguments
(E,E′ and l , l ′) and non-negative as pointed out in [26]. It is
straightforward to verify that for our model this function reads
as follows:

�(E,E′,l,l ′) =
√

�(E′,l ′)ρ(E′,l ′)
√

�(E,l)ρ(E,l), (A3)

Acting on an expression of the type ln ψ/ψ0, the δ distributions
cancel the specific form of the logarithmic term in the
denominator after an integration over the primed variables.
Inserting the definition (A2) in (A1) yields an expression which
is basically the master equation for the Markovian process. A
more detailed discussion and motivation for the specific form
of M55 can also be found in [24].

APPENDIX B: SYMMETRY AND NON-NEGATIVITY OF M

We will discuss symmetry and non-negativity for the three
parts of M separately. The first part (MHD) is known to
be positive and symmetric [22]. The second part (MHF) is
also symmetric and its eigenvalues are 2α and 0. Since we
assumed the heat transfer function to be positive, this part is
non-negative as well. For the last part (MC) it is sufficient
to show that the operator M55 satisfies the symmetry and
positivity condition. First, we show that the operator M55 is
symmetric with respect to the transformation l → l ′, E → E′.
We treat the two delta functions separately:

M55 =
∫

�(E,E′′,l,l ′′)√
ψ0ψ

′′
0

ψ ′′ψ0 − ψψ ′′
0

ln
(

ψ ′′ψ0

ψ ′′
0 ψ

) δ(E − E′,l − l ′)dE′′d3l ′′

︸ ︷︷ ︸
a1

−
∫

�(E,E′′,l,l ′′)√
ψ0ψ

′′
0

ψ ′′ψ0 − ψψ ′′
0

ln
(

ψ ′′ψ0

ψ ′′
0 ψ

) δ(E′′ − E′,l ′′ − l ′)dE′′d3l ′′

︸ ︷︷ ︸
a2

. (B1)

The whole first expression inherits the symmetry of the delta function. Performing the integration in the second part yields

a2 ∼ �(E,E′,l,l ′)√
ψ0ψ

′
0

ψ ′ψ0 − ψψ ′
0

ln
(

ψ ′ψ0

ψ ′
0ψ

) . (B2)

The first factor is obviously symmetric. The second factor is a quotient of two antisymmetric expressions and therefore symmetric
as well.

In order to prove the positivity of M55, we rewrite it in the following form:

M55 = 1

2

∫ ∫ b1︷ ︸︸ ︷
�(F,F ′,k,k′)√

ψ0(F,k)ψ0(F ′,k′)

b2︷ ︸︸ ︷
ψ(F ′,k′)ψ0(F,k) − ψ(F,k)ψ0(F ′,k′)

ln
(

ψ(F ′,k′)ψ0(F,k)
ψ0(F ′,k′)ψ(F,k)

) (
δ(F − E,k − l)

δ(F ′ − E,k′ − l)

)

×
(

1 −1

−1 1

)
︸ ︷︷ ︸

b3

·
(

δ(F − E′,k − l ′)
δ(F ′ − E′,k′ − l ′)

)
dF d3k dF ′d3k′. (B3)
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Using the symmetry properties discussed previously, it is
straightforward to verify that this is indeed the operator
M55. The expressions b1 and b2 are necessarily positive and

the matrix b3 has the eigenvalues 2 [eigenvector (−1,1)]
and 0 [eigenvector (1,1)]. Therefore, the operator M55 is
non-negative.
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