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Driven flow with exclusion and transport in graphenelike structures
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We study driven flow with exclusion in graphenelike structures. The totally asymmetric simple exclusion
process (TASEP), a well-known model in its strictly one-dimensional (chain) version, is generalized to cylinder
(nanotube) and ribbon (nanoribbon) geometries. A mean-field theoretical description is given for very narrow
ribbons (“necklaces”) and nanotubes. For specific configurations of bond transmissivity rates, and for a variety of
boundary conditions, theory predicts equivalent steady-state behavior between (sublattices on) these structures
and chains. This is verified by numerical simulations, to excellent accuracy, by evaluating steady-state currents.
We also numerically treat ribbons of general width. We examine the adequacy of this model to the description of
electronic transport in carbon nanotubes and nanoribbons or specifically designed quantum-dot arrays.
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I. INTRODUCTION

The impact of geometric and topological aspects of the
atomic arrangements of materials on its electronic properties
has been recognized for quite some time [1]. A remarkable
example is carbon (C), for which different bonding and valence
states of C result in stable configurations of C-only-based
materials in all dimensions D, namely 3D (diamond, graphite,
and amorphous C), 2D (graphene), 1D [nanotubes (CNT)
and nanoribbons (CNR)], and 0D (fullerenes) [2]. Except for
diamond, ordered C-based materials of all dimensionalities are
constituted of stacked, deformed, or fragmented 2D graphene,
which may thus be considered as the basic building block of
all forms.

Here we use a simple model to investigate transport
properties on the hexagonal geometries of the CNT and CNR
structures. These systems are widely accepted as being 1D,
based on aspect-ratio criteria. For processes such as current
flow, e.g., having bias and collective aspects analogous to those
from Coulomb blockade, one can question how the geometry
affects the behavior and, in particular, ask whether the physical
quantity of interest in the system is indeed equivalent to what
is expected from a bona fide 1D system. The honeycomb
structure of graphene implies a topology that differs markedly
from a genuine 1D linear atomic array, where a one-to-one
correspondence of bonds and atoms is trivially given; as seen
in Sec. II, it requires introducing additional parameters in the
model used here.

We do not attempt a realistic description of electronic
transport in C allotropes under an applied bias, which requires
a quantum mechanical description of the electrons in the
respective ordered structure potential, as presented, e.g., in
Refs. [3,4]. Instead, we take a complementary viewpoint by
generalizing a very simple transport model, extensively studied
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in 1D lattices, to graphenelike nanotube and nanoribbon
structures. This highlights the effect of the topology of
the underlying skeleton on transport, allowing direct and
unambiguous comparison between such systems and the
well-established linear chain results obtained within the
same model, namely the totally asymmetric simple exclusion
process (TASEP) [5–11]. We find that, within certain plausible
assumptions, nanotubes can be close to exact realizations of
1D systems while, surprisingly, narrow nanoribbons deviate
substantially from 1D behavior, which is, however, obtained
only in the limit of very wide ribbons.

The TASEP is among the simplest models in nonequilib-
rium physics, while at the same time exhibiting many nontrivial
properties, including flow phase changes, because of its
collective character [5–11]. The TASEP and its generalizations
have been applied to a broad range of nonequilibrium physical
contexts, from the macroscopic level such as highway traffic
[12] to the microscopic, including sequence alignment in
computational biology [13] and current shot noise in quantum-
dot chains [14].

In the time evolution of the 1 + 1 dimensional TASEP, the
particle number n� at lattice site � can be 0 or 1, and the
forward hopping of particles is only to an empty adjacent site.
In addition to the stochastic character provided by random
selection of site occupation update [15,16], the instantaneous
current J�,�+1 across the bond from � to � + 1 depends also on
the stochastic attempt rate, p�, associated with it. Thus,

J�,�+1 =
{

n�(1 − n�+1) with probability p�

0 with probability 1 − p�.
. (1)

In Ref. [14] it was argued that the ingredients of TASEP
are expected to be physically present in the description of
electronic transport on a quantum-dot chain; namely the
directional bias would be provided by an external voltage
difference imposed at the ends of the system and the exclusion
effect by on-site Coulomb blockade.

Here we exploit the consequences of applying a similar
scenario to graphenelike geometries. In Sec. II a general mean-
field theoretic approach is developed for the problem of driven
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FIG. 1. Necklace structure for TASEP with open boundary
conditions at both ends and corresponding injection and ejection
rates α and β, respectively. Boundary conditions across direction of
flow are free.

flow with exclusion in two-dimensional structures which
are cutouts [“necklaces” (to be defined below), cylinders,
or ribbons, etc. ] from a honeycomb lattice. Fundamental
relationships, like that between the steady-state current J and
(i) the (site-averaged) particle density [for periodic boundary
conditions (PBC)] or (ii) the injection or ejection parameters
α, β (for systems with open ends) are given. Density profiles
throughout the system are discussed as well, and these
exhibit qualitative differences from the linear chain, especially
sublattice character and a loss of particle-hole symmetry.

The most basic structure which, while departing as little
as possible from the well-known strictly one-dimensional
case, already displays sites with threefold coordination is the
necklace depicted in Fig. 1. Accounting for the direction of
current flow, such sites can act either as “forking” points
or as “bottlenecks.” Boundary conditions perpendicular to
the flow direction are free. For the case of Fig. 1 one has
open boundary conditions at both ends. There, the externally
imposed parameters are the injection (attempt) rate α at the
left end and the ejection rate β at the right one.

Generalizations of the necklace are the cylinder- (nanotube)
or ribbonlike structures (see Fig. 2). As seen in that figure,
the nanotube and ribbon geometries considered here corre-
spond, respectively, to zigzag (CNT) and armchair (CNR)
configurations of the quasi-1D carbon allotropes [2]. These
configurations have no bonds orthogonal to the mean flow
direction; thus they fall easily within the generalized TASEP
description to be used, where each bond is to have a definite
directionality, compatible with that of average flow.

flow

FIG. 2. Planified section of a nanotube structure with Nw = 3
hexagons round. The dashed lines indicate the “wraparound” bonds
which fulfill periodic boundary conditions across the flow direction
(for a nanoribbon, such bonds would be absent). For clarity, bond
directionalities are omitted, except for wraparound bonds.

All these structures are amenable to the mean-field
approach introduced and developed in Secs. II A and II B.
Sections II C and II D concern boundary effects and extensions.
Some special cases are highlighted in which exact solutions
are possible.

Numerical tests of the theory are given in Sec. III. In
Sec. III A we describe the general approach, pointing out
details of the calculational method which are expected to
reflect properties of the actual transport process in graphene-
like samples. Section III B provides results for the necklace
structure. Section III C deals with honeycomb structures of
arbitrary width with PBC across the flow direction (nanotubes)
and gives numerical results of pertinent simulations. In
Sec. III D we consider honeycomb structures (ribbons) with
free boundary conditions across the flow direction and report
results of numerical simulations. In Sec. IV, we summarize our
results and discuss the possible pertinence of the TASEP model
results in the context of transport in physical systems such as
CNT, CNR, and quantum-dot arrays. Concluding remarks are
also presented there.

II. THEORY

A. Introduction

The emphasis here and throughout the paper is on steady-
state properties of the TASEP on generalized geometries. The
microscopic variables, i.e., occupation probabilities τi for each
site i, satisfy a hierarchy of dynamic equations each relating
n- and (n + 1)-body correlations.

In the steady state, the first of these becomes mean current
conservation at any site. Even here exact solution (requiring the
whole hierarchy) is difficult but can be achieved in the simplest
case of the linear chain with uniform bond rates [5,6,9]. For
this case, the mean field (factorization of correlations) already
gives an extremely useful account of steady-state properties,
some of which, like the critical current, are exactly provided.

In what follows, the mean-field procedure is extended to the
new geometries. With uniform bias, equal average site occu-
pations give (in mean-field) equal currents on each bond. This
gives a steady state for the chain. However, all the geometries
considered here have “branchings” at sites with coordination
number z = 3, where typically the division or merging of aver-
age current prevents equal site occupation from giving a steady
state. There are exceptions, e.g., where nonuniform bond rates
compensate. Except when this occurs, the steady states have
a sublattice character. The simplest of them have mean site
occupations uniform on each of a number of sublattices.

For analytic tractability we shall only consider cases where
mean flow direction is parallel to one of the lattice directions,
and bond rates are independent of coordinates transverse to
the flow direction.

For the chain, no sublattice division occurs but it is well
known that, in general, the mean-field site occupation profile
has monotonic variations along the flow direction that increase
for J < Jc and decrease for J > Jc, where Jc is the critical
current dividing the two phases the profile characterizes.
This result emerges from a Mobius-type profile map with
J -dependent coefficients which relates, for specified J , the
mean occupation of a site to that of the previous site [7].
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FIG. 3. Bond rates p, q, r , and s and sublattice occupations ρ, x,
y, z, and ρ ′ for TASEP on necklace structure; see Eq. (2).

In the generalized cases, the sublattice structure emerges
directly from the detailed form of the mean-field current
conservation equations, in terms of J and all bond rates.
Mobius maps for the profiles on each sublattice are given by
elimination of sites on other sublattices. By procedures similar
to that for the chain, the fixed points of the maps yield the
special steady states which are uniform on sublattices, as well
as critical currents. Away from the fixed points the maps give
the spatially dependent generalizations, characteristic lengths,
and so on. Various special characteristics for the chain are
generalized, and the particle-hole exchange symmetry known
for the chain typically disappears.

B. Mean-field approach

We first consider the necklace. The mean-field current
across a bond with hopping rate pij going from site i to site j

is pij 〈τi〉(1 − 〈τj 〉), where 〈τi〉, 〈τj 〉 are the mean occupations
of the two sites. The steady-state conservation equations for
mean current J are, for the necklace section shown in Fig. 3,

J = pρ(1 − x) = 2qx(1 − y)

= 2ry(1 − z) = 2sz(1 − ρ ′). (2)

These each relate site occupations ρ, x, r , s, and ρ ′ on
successive sublattices.

Eliminating site occupations between ρ and ρ ′, i.e., on the
sublattices other than that which corresponds to ρ, ρ ′, gives
the relation for specified J ,

ρ ′ = aρ − b

cρ − d
, (3)

where

a = 4pqrs − 2J [pqr + pqs + prs] + J 2 pr

b = 2qJ [2rs − J (r + s)]
(4)

c = 4pqrs − 2Jps(q + r)

d = 2qsJ [2r − J ].

The density profile maps for the other sublattices have the
same form but with cyclically interchanged rate variables. The
map Eq. (3) is of Mobius form; the corresponding Mobius
profile map for the TASEP chain [7] has d = 0, a = c. This
simplification is related to a particle-hole symmetry, which is
absent in the general necklace but is restored where the rates
satisfy a + d = c (needing p = 2s, r = q, see below).

Iteration of the map for any sublattice gives that sublattice’s
density profile. Alternatively, one can use any one sublattice

map, e.g., Eq. (3) with Eq. (4), together with Eq. (2), to give
all details (including relationships) of the sublattice density
profiles. So, among other things, all profiles are critical at the
same Jc.

Assigning a site label �, increasing to the right, for each
sublattice the map Eq. (3), rewritten as ρ�+1 = M(ρ�), gives
the density profile {ρ�} for the “chosen” sublattice. The ansatz
(see, for the chain, Refs. [7,9])

ρ� = A + B tanh θ� , where θ�+1 = θ� + φ, (5)

is consistent with the map provided tanh φ = cB/(cA − d)
[from decomposing tanh(θ� + φ)] and [to satisfy the remaining
relations for all θ�],

B(a + d) = 2cAB ; A(a + d) = b + c(A2 + B2). (6)

In terms of �0 such that θ� = φ� + θ0 ≡ φ(� − �0), one gets

ρ� = A + B tanh{φ(� − �0)}, (7)

where

A = a + d

2c
, B = 1

2c

√
(a + d)2 − 4bc, (8)

tanh φ = 1

a − d

√
(a + d)2 − 4bc. (9)

A, B, and φ are all dependent on J , since the coefficients
a, b, c, and d are. For a given set of bond rates, increasing J

can take it through a critical value Jc at which the square root
vanishes and then becomes imaginary, then

ρ� = A − |B| tan{|φ|(� − �0)}, J > Jc, (10)

while Eq. (7) above applies with real B, φ for J < Jc. This
corresponds to a phase change, similarly to the TASEP chain.
There, and in the generalized systems being considered, |φ|
is an inverse characteristic length, which diverges at the
(continuous) transition. For the chain, but not in general,
A = 1/2, corresponding to the particle-hole symmetry there,
and absent for the generalizations.

As for the chain, the fixed points ρ∗ = ρ>, ρ< = A ± B of
the controlling maps provide the special constant (sublattice)
profiles, for J < Jc. As J → Jc, ρ> and ρ< come together, i.e.,
B goes to zero, as does the inverse length |φ|, corresponding
to criticality.

For the nanotube section with the rates and mean site
densities shown in Fig. 4, the steady-state current balance
equations analogous to Eq. (2) are

J = p x(1 − y) = 2qy(1 − x ′) = p x ′(1 − y ′) = · · · . (11)

The greater symmetry implies only two sublattices and
gives a simpler description than for the necklace. The con-
sequent sublattice Mobius map for the x sublattice is

x ′ (= x�+1) = ax − b

cx − d
= M(x = x�), (12)

with

a = p(2q − J ); b = d = 2qJ ; c = 2pq. (13)
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FIG. 4. Bond rates p, q, and sublattice occupations x, y, x ′, y ′,
x ′′ . . . for TASEP on nanotube structure. For clarity, wraparound and
a few other bonds have been omitted (refer to Fig. 2). See Eq. (11).

Equations (7)–(10) also apply here, with a, b, c, and d now
given by Eq. (13). The map for the y sublattice is similar but
with 2q and p interchanged in the expressions for a, b, c, and
d. This implies that for the special case

2q = p (nanotube) (14)

the two sublattice maps are identical. In this case, for adjacent
sites in the full sequence x, y, x ′, y ′, x ′′, y ′′, . . ., the map is
always the same as for the linear chain TASEP. In this sense,
for 2q = p sublattices are irrelevant and the mean-field steady
state for the nanotube is equivalent to that on the linear chain;
the particle-hole symmetry is also recovered.

There is also a special case for the necklace, with the rates
(see Fig. 3)

q = r = s = p

2
(necklace), (15)

for which it is easy to check that the sublattice profile maps are
the same as the fourth-iterated linear chain map. So, as for the
nanotube with 2q = p, the sublattice density profiles are the
same as for the chain, except for spatial and rate rescalings.

Equations (7)–(10) apply equally well to general necklace
and nanotube, as do their detailed consequences such as critical
current. Since Jc is where B and φ of Eqs. (8) and (9) vanish,
Jc is given by solving the relation

(a + d)2 = 4bc (16)

between the J -dependent coefficients, given respectively by
Eq. (4) for the necklace and Eq. (13) for the nanotube.

For the necklace this leads to a quartic equation for Jc,
which factorizes for the special case of Eq. (15), yielding
Jc = p/4 as in the equivalent linear chain. Two additional
results are worth recording, for comparison with numerical

tests of the theory,

p = r = s = 2q : Jc = p

3
; (17)

p = q = r = s :
Jc

p
= 0.402 77 . . . . (18)

For the nanotube the equation for Jc is quadratic for general
rates, resulting in

Jc = μ−2
2

[
μ0 −

√
μ2

0 − μ2
1μ

2
2

]
, (19)

where μ0 = 2pq(2q + p), μ1 = 2pq, μ2 = 2q − p, as long
as μ2 �= 0; when p = 2q as in Eq. (14), Jc = p/4; this is the
case equivalent to the chain. Among other special cases needed
later for comparison with simulations is p = q, where

Jc/p = 2[3 −
√

8] (nanotube, p = q). (20)

The above analysis can also provide the characteristic length
ξ ≡ 1/|φ| (kink width, etc.). For J near Jc, ξ is found
to diverge like |J − Jc|−1/2, in general, as for the linear
chain. This can be used in the scaling analysis of finite-size
corrections for the current and so on but not too close to
the critical point where fluctuation effects absent from mean-
field theory are expected to dominate, changing the above
exponent.

C. Boundary effects

Boundary effects are strongly affected by the sublattice
distinctions required in the generalized geometries. Here the
sublattice tanh or tan density profiles given, respectively, in
Eqs. (7) and (10) are qualitatively similar to the linear chain
case. The current conservation equations (2) and (11) show that
here, for example, a tanh solution on one sublattice requires
one on the other sublattices, so all sublattices are in the same
(low or maximal) current phase; also, for J < Jc where kinks
are present in the chain density profile, the same equations
imply that the kinks on different sublattices are in neighboring
positions. So, for example, in an open geometry, a kink near
the left, the right, or neither boundary on one sublattice implies
the same on the other sublattices, so different sublattices also
share the same low- or high-density or coexistence character.

But the details depend crucially on which sublattices the
boundary sites sit on and, in particular, whether they are on the
same sublattice. The same is true with PBC. In the following,
where we examine the influence of boundary conditions along
the flow direction, we consider only the case of boundary
sites on the same sublattice [which we take as the “chosen”
sublattice in Sec. II B, see Eqs. (3) and (12)]. This applies
when an integer number N of basic units (one bond attached
to the left of a full hexagon) span the system. Any required
generalization could be readily made using the relationships
between sublattices provided by the current conservation
equations (not done here).

1. PBC

For PBC of the special type just defined, as in the linear
chain, the sublattice steady-state density profiles are flat. We
focus on the mean-field “fundamental relation” between J

and 〈ρ〉, where the latter is the (sublattice-averaged) global
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mean density. This is found by obtaining the two flat density
profiles for a chosen sublattice and then using the current
conservation equations to obtain the corresponding flat density
profiles for the other sublattices and combining them with the
correct weights to find 〈ρ〉 for the given J .

For the nanotube this reduces to

〈ρ〉 − 1

2
= ±B(J ) = ± 1

2c

√
(a + d)2 − 4bc, (21)

with a, b, c, and d given by Eq. (13). Inversion gives the
fundamental relation, which is always quadratic sufficiently
close to the maximum Jc. Remarkably, for any p, q, the
maximum occurs at 〈ρ〉 = 1/2, which is the same as for the
linear chain. For the special case p = 2q of Eq. (14) the full
nanotube result reduces exactly everywhere to

J = p

4
− p

(
〈ρ〉 − 1

2

)2

, (22)

as for the chain.
For the necklace the current-density relation is also

quadratic close to Jc:

Jc − J ∝ (〈ρ〉 − ρmax)2. (23)

However, ρmax �= 1/2, except in the special cases with s = q

[including that of Eq. (15) with sublattice equivalence to the
linear chain] where a symmetry argument applies, based on
particle-hole duality under flow reversal.

In the special case of Eq. (17),

J = Jc − p 32
27

(〈ρ〉 − 17
36

)2 + · · · (24)

for J near Jc = p/3.

2. Open BC

We next consider open boundary conditions, again with
boundary sites on the same “chosen” sublattice.

In the mean-field approach, the injection (ejection) pro-
cesses at the left (right) ends, with respective attempt rates
α and β, generalize the current conservation conditions
expressed in Eqs. (2) and (11) by the extra equations,

J = α(1 − ρ�=0) = βρ�=N . (25)

For given internal bond rates these in principle give the, so far
free, variables J and �0, and, hence, everything in terms of α,
β. At the critical condition, where B and φ of Eqs. (8) and (9)
vanish, the extra equations give the critical point in the (α,β)
plane as

(αc,βc) =
(

Jc

1 − A(Jc)
,

Jc

A(Jc)

)
, (26)

generally without the symmetry of the critical point (αc,βc) =
(p/2,p/2) for the chain, where A = 1/2, Jc = p/4. For
example, for the nanotube

(αc,βc) =
(

2μ1 Jc

μ1 − μ2 Jc

,
2μ1 Jc

μ1 + μ2 Jc

)
, (27)

in terms of the variables defined in connection with Eq. (19),
while for the necklace with p = r = s = 2q,

(αc,βc) =
(

p,
p

2

)
. (28)

By considering sublattice kinks near the system’s boundaries,
it can be shown that in mean-field theory the phase boundaries
are vertical and horizontal lines in the α-β plane through and
outwards from the critical point.

With (α,β) sufficiently below (αc,βc) the equations are
consistent with J < Jc and the kink width φ−1 is not very
large. Then the constraint equations, Eq. (25), can be consistent
with having the sublattice kinks away from the boundaries, so
the relations of α, β to profile values A ± B are

α [1 − (A(J ) − B(J ))] = β[A(J ) + B(J )] = J < Jc. (29)

For given rates this is a parametric equation in J for a curve
(the coexistence line) in the α-β plane. For the nanotube this
becomes

2pq(α − β) = (2q − p)αβ. (30)

For both necklace and nanotube it can be easily established
that the coexistence line joins the origin to the critical point,
and though it is, in general, not straight, its slope at the origin
is always unity.

D. Extensions

In the preceding mean-field discussion, the simplest situ-
ation has been where profiles are flat on sublattices. For the
chain this is known to be an exact property under special
conditions where correlation functions factorize; then size
dependencies disappear [8]. Here we consider this possibility
for necklaces and nanotubes with open boundary conditions.

We start by assuming factorization in the sense that
occupations τi are the same on all sites of a sublattice
but differ between sublattices. This is consistent with exact
average-current conservation (the first member of the hierarchy
of exact steady-state correlation function equations). Since no
occupation variable occurs squared in those equations, it is
also consistent with our generalized mean-field approximation,
including the Mobius maps and their consequences as spelled
out in Sec. II B, but only under conditions where those give a
constant profile on each sublattice, i.e., fixed points ρ∗. Adding
the injection or ejection constraints, Eq. (25), the flat fixed
point profiles will not, in general, be consistent with the latter,
unless

α [1 − ρ∗(J )] = J = β ρ∗(J ). (31)

So a necessary condition for the factorization to give an
exact solution is that (α, β) lies on the line in the (α,β)
plane whose parametric equation is Eq. (31). The remaining
condition for sufficiency is that factorization is consistent with
all the other members of the hierarchy of internal correlation
function equations (not proven here).

For the general nanotube, elimination of J from Eq. (31)
gives the “factorization line” as

α

2q
+ β

p
= 1. (32)
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This line goes through the critical point (αc,βc) of Eq. (27) and
becomes the same as for the chain if 2q = p [see Eq. (14)].

Quadratic J dependencies in the map coefficients for the
necklace complicate the analysis, but the line (now curved)
again goes through (αc,βc) of Eq. (27); the special case q =
r = s = p/2 again becomes that for the chain [see Eq. (15)].

In Sec. III we provide numerical checks of selected
predictions of the mean-field theory just described, namely
steady-state currents and their dependence on average particle
density (for PBC) or on injection or ejection attempt rates (for
systems with open boundaries), for both necklaces (Sec. III B)
and nanotubes (Sec. III C), all for assorted bond rate combina-
tions of interest. For nanoribbons the translational symmetry
perpendicular to flow direction [crucial in the reduction of the
number of sublattices for the nanotube, see Eq. (11) and Fig. 4]
is lost with free boundary conditions at the edges. Thus, in
this case, we restricted ourselves to the numerical simulations
described in Sec. III D.

Finally, we performed some numerical tests of factorization
for nanotubes with open boundary conditions [see Eqs. (31)
and (32) above]. They are briefly reported at the end of Sec. IV.

III. NUMERICS

A. Introduction

For simplicity we consider structures with an integer
number Nr of elementary cells (one bond attached to the left
of a full hexagon) along the mean flow direction.

Adapting the procedures used for the (1 + 1)-dimensional
TASEP, an elementary time step consists of Nb sequential bond
update attempts, each of these according to the following rules:
(1) select a bond at random, say, bond �; (2) if the chosen bond
has an occupied site to its left and an empty site to its right,
then (3) move the particle across it with probability (bond
rate) p�. If the injection or ejection bond is chosen, step (2)
is suitably modified to account for the particle reservoir (the
corresponding bond rate being, respectively, α or β).

One can equally well update sites instead (via Ns random
sequential site choices). Once a site is picked, (i) if the site
is a “forking” one, either of the two bonds to its right is
randomly selected (with probability 1/2, i.e., no transverse
bias is allowed) and then steps (2) and (3) above are followed;
(ii) for open boundary conditions, if the site is the injection
(ejection) one, then if it is unoccupied (occupied), a particle
is injected into (ejected out of) it with probability α (β);
(iii) otherwise, steps (2) and (3) above are followed right away.

It is easily seen that on average a total of Nb update
attempts will take place, in the course of a unit time step
as defined above, for either bond or site update. In the strictly
one-dimensional TASEP, bond and site update are entirely
equivalent. However, for full equivalence between the two
methods in the present case, it must be noted that randomly
selecting (with 1/2 probability) which bond to probe, when
starting from a “forking” site, effectively halves the following
bonds’s rates. For all geometries investigated here we ran
simulations using both bond and site update. In all cases for
which the effective bond rates (i.e., taking into account the
effect just described for site update) coincided, the results given
by both methods were indistinguishable within error bars.

Both site and bond update may be relevant in physical
applications. We defer a discussion of the potential relationship
of each update method to specific features of graphenelike
structures to Sec. IV.

Here we evaluate the steady-state current J as the time-
and ensemble-averaged number of particles (per unit time)
which (a) enter the system (for open ends) or (b) cross any
single bond connecting adjacent hexagons (for PBC). For
systems with Ne > 1 “entry” bonds, such as the nanotubes
and ribbons considered, respectively, in Secs. III C and III D,
one has to divide further by Ne to provide proper comparison
with the strictly one-dimensional case. Starting from a spatially
random configuration of occupied and empty sites, we usually
waited nin = 10 000 time steps for steady-state flow to be fully
established to ensure that our measurements were free from
startup effects. After that, we collected steady-state current
samples (typically for Nsam = 10 6 consecutive unit time
steps). The accuracy of results was estimated by evaluating
the root-mean-square (rms) deviation among Nset independent
sets of Nsam steady-state samples each. As is well known [17],
such rms deviations are essentially independent of Nset as long
as Nset is not too small and vary as N

−1/2
sam . We generally took

Nset = 10.

B. The necklace structure

The structures considered here have NP
s = 6Nr sites and

NP
b = 7Nr bonds (for PBC) or NO

s = 6Nr + 1 sites (recall
the extra site on the right, connecting to the ejection bond, see
Fig. 1) and NO

b = 7Nr + 2 bonds (counting the injection and
ejection bonds) for open boundary conditions.

We first check the mean-field prediction, see Eq. (15), that
the steady-state current on a system where all bond rates on the
hexagons are 1/2, and those on bonds between hexagons are
unity, is the same as on a strictly one-dimensional arrangement.
Using site updating procedures, we fixed the nominal bond
rates for links on a hexagon immediately following a “forking”
site to be unitary, so they would effectively be halved. We also
ran simulations using bond update, in which case all hexagon
bonds were set to p = 1/2 from the start, with the same results
(within error bars) as those from site update.

For systems with PBC, the current on a strictly one-
dimensional lattice with N sites and M particles (average
density ρ = M/N), and unit bond rates, is [7]

J = ρ (1 − ρ)
N

N − 1
(d = 1, PBC). (33)

Table I illustrates the excellent agreement found between
theoretical predictions and numerical simulations for PBC.
Remarkably, the identification between necklace and chain
current goes as far as finite-size effects: Systems of either type
with the same number of sites obey Eq. (33) equally. This is
consistent with exact factorizability needing no conditions like
Eq. (31) in the case of PBC.

Next we give results for systems with open boundary
conditions, also for the special rates of Eq. (15), at selected
locations on the α-β phase diagram; see Table II. Agreement
with mean-field theory (including finite-size effects or their
absence) is very good at (α,β) = (1/2,1/2), as well as
at (1/4,1/4) (with the latter point corresponding to the
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TABLE I. For systems with PBC, Ns sites, and 〈ρ〉 as specified,
Jnum is current through necklace (with Nr = Ns/6 rings, effective
bond rates p = 1/2 on hexagons, p = 1 on bonds between hexagons),
as given by numerical simulations with Nsam = 10 6, Nset = 10 (see
text); J1d is current through a one-dimensional system with N = Ns ,
given by Eq. (33).

Ns Jnum J1d

〈ρ〉 = 1/2
24 0.260 81(13) 0.260 867 . . .

36 0.257 13(18) 0.257 143 . . .

48 0.255 33(11) 0.255 319 . . .

60 0.254 26(11) 0.254 237 . . .

72 0.253 53(14) 0.253 521 . . .

84 0.252 97(10) 0.253 012 . . .

96 0.252 61(7) 0.252 632 . . .

〈ρ〉 = 1/4
24 0.195 63(15) 0.195 652 . . .

36 0.192 80(7) 0.192 857 . . .

48 0.191 49(11) 0.191 489 . . .

60 0.190 66(9) 0.190 678 . . .

72 0.190 15(9) 0.190 141 . . .

84 0.189 71(5) 0.189 759 . . .

96 0.189 45(12) 0.189 474 . . .

coexistence line between high-and low-density phases in the
one-dimensional TASEP). For (α,β) = (1,1), deep within the
maximal-current phase of the one-dimensional problem, small
discrepancies are present for small systems; however, they tend
to vanish as Ns increases.

We now turn to combinations of bond rates for which
mean-field solutions are less simple, but which are plausible
in terms of potentially describing electronic transport on a
graphene-like structure. Assuming the simplest case of lattice

TABLE II. For systems with open boundary conditions, Ns sites,
and (α,β) as specified, Jnum is current through necklace [with Nr =
(Ns − 1)/6 rings, effective bond rates p = 1/2 on hexagons, p =
1 on bonds between hexagons], as given by numerical simulations
with Nsam = 10 6, Nset = 10 (see text); J1d is current through a one-
dimensional system, see, e.g., Refs. [8,17].

Ns Jnum J1d

(α,β) = (1/2,1/2)
13 0.249 93(26) 1/4
31 0.249 96(15) 1/4
61 0.249 98(10) 1/4
301 0.249 99(9) 1/4

(α,β) = (1/4,1/4)
13 0.174 79(24) 0.175 399 . . .

31 0.181 75(25) 0.181 903 . . .

61 0.184 48(27) 0.184 547 . . .

301 0.186 88(25) 0.186 882 . . .

(α,β) = (1,1)
13 0.283 03(18) 0.277 777 . . .

31 0.263 24(13) 0.261 905 . . .

61 0.255 43(7) 0.256 098 . . .

301 0.251 25(10) 0.251 244 . . .

FIG. 5. (Color online) Current-density relationship for necklace
structure with PBC, all nominal bond rates p = 1, site update.
Points correspond to simulations; the solid curve is a fourth-degree
polynomial fit to the data. The long-dashed curve is for the one-
dimensional TASEP with PBC.

homogeneity, we consider uniform rates p = 1 for all bonds.
Except where otherwise noted, we use site update procedures
in the simulations described here; thus, as explained above,
the bonds immediately following a “forking” site have their
effective rates halved.

For the necklace with PBC we calculated steady-state
currents for 〈ρ〉 = m/12, m = 1,2, . . . ,11. For each density
we considered rings with Nr = 4,6, . . . ,16 elementary cells.
The respective sequences behave smoothly against N−1

r and
were extrapolated to N−1

r → 0 by fits to quadratic polyno-
mials. Final results are shown in Fig. 5. As predicted in
Sec. II C1, for this case in which q �= s the particle-hole
symmetry is lost. The maximum of the adjusted curve is at
(〈ρ〉,J ) = (0.475(3),0.3234(2)). The parabolic shape near the
maximum, predicted in Eq. (24), is verified, and the numerical
value given there for p = 1, namely ρc = 17/36 = 0.4722 . . .,
is within error bars; however, the predicted Jc = 1/3 appears
to overshoot the numerical result by some 3%.

The values of ρc, Jc given above are to be compared also
with the maximal current for the one-dimensional TASEP with
PBC and unit bond rates, namely J = 1/4 at ρ = 1/2, see
Eq. (33).

For the necklace with open boundary conditions, and
nominal rates p = 1 for all internal bonds(i.e., except for
the injection and ejection bonds at the extremes, with their
characteristic rates α and β), we first report results on the
α + β = 1 line. System sizes were the same as for PBC. The
current J , parametrized by α, is shown in Fig. 6. For the
one-dimensional TASEP, the steady-state current is J = αβ

on this line and is size independent [8]. Here we found
little size dependence for both α � 0.4 and α � 0.7. Around
the peak shown in Fig. 6, the current distinctly increases
with system size, thus we resorted to linear or quadratic fits
against N−1

r to produce extrapolated values. Comparison with
the one-dimensional TASEP would suggest that an increase
in J with system size indicates proximity to a coexistence
line between low- and high-density phases; see the entries
for (α,β) = (1/4,1/4) in Table II. In contrast to the case of
PBC, we could not produce a single, smooth fitting function
for the J vs α relationship over the full range 0 < α < 1,
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FIG. 6. (Color online) Current against injection rate α for neck-
lace structure with open boundaries, along α + β = 1, all nominal
bond rates p = 1, site update. Points correspond to simulations. The
long-dashed curve is for the one-dimensional TASEP on the line
α + β = 1. Inset: Close-up view of peak region. Same axis labels as
main figure.

mainly because of the sharply asymmetric peak. We estimate
the largest current along α + β = 1 to be J = 0.3058(2) at
α = 0.575(3).

Relying once more on analogies with the one-dimensional
TASEP, we examined the region close to (α,β) = (1,1) in order
to probe the extent of a hypothetical maximal-current phase.
Figure 7 shows the extrapolated (Nr → ∞) currents along
α = β, for 0.65 � α � 1. System sizes used were the same
as for PBC, except that for α > 0.7 we went up to Nr = 50.
In the latter region, improved accuracy was necessary in order
to distinguish between very similar values (see especially the
inset of Fig. 7).

Taking account of the error bars for individual results, our
tentative conclusion is that the current indeed stabilizes at
Jmax = 0.3232(1) and that the section of the α = β line for
α � 0.825 is within the maximal-current phase.

The estimate just found for the maximal current is con-
sistent within error bars with the corresponding one for
PBC, also with site update and the same bond rates, namely

FIG. 7. (Color online) Current against injection rate α for
necklace structure with open boundaries, along α = β, all nominal
bond rates p = 1, site update. Points correspond to simulations. Inset:
Close-up view of region close to α = 1. Same axis labels as in main
figure.

0.3234(2). This is to be expected, since, regardless of boundary
conditions, Jc is achieved with density profiles ρc = ρ> =
ρ<; for open boundary conditions this imposes additional
constraints on α, β [see Eq. (31)] while PBC are automatically
consistent with flat profiles.

We also checked the prediction of Eq. (18) for the critical
current on the necklace with all effective rates equal to unity
by using bond update procedures. For PBC with this particular
set of rates, mean-field theory predicts (see Sec. II C1) that the
J − 〈ρ〉 curve is symmetric about 〈ρ〉 = 1/2, thus restoring
particle-hole symmetry. A scan through various average
densities, similar to that shown in Fig. 5, indeed resulted
in a symmetric curve; however, we found Jc = 0.3958(4)
just under 2% below the mean-field prediction. With open
boundary conditions we scanned the region of the (α,β)
plane close to (α,β) = (1,1) and found a picture qualitatively
similar to the one exhibited in Fig. 7. From that we estimate
Jc = 0.395(1), in good agreement with the PBC result.

C. Nanotubes

We consider strips of a two-dimensional honeycomb lattice
with the same orientation, relative to particle flow direction,
as the necklace and with periodic boundary conditions across
the flow direction (recall Figs. 2 and 4). Such “nanotubes” can
be seen as Nw parallel necklaces, with adjacent necklaces
sharing edges parallel to the flow direction, as well as
the corresponding sites. The total number of sites is thus
NP

s = Nw × 4Nr for PBC, or NO
s = Nw × (4Nr + 1) for open

boundary conditions at the ends. As remarked in Sec. III B, the
normalized current J in this case is the (average) total number
of particles moving through a fixed cross section of the system,
per unit time, divided by Nw.

According to Eqs. (14) and (22), for the case where all
bonds parallel to the flow direction have rates p, and all others
have p/2, the current is the same as on a one-dimensional
lattice with all bond rates equal to p. For the nanotube,
such (effective) rates correspond to the physically plausible
assumption of equal nominal rates p = 1 on all bonds, together
with the use of site update procedures.

We first examine a toroidal geometry, i.e., one with PBC
in both directions. The finite-length effects on the one-
dimensional lattice, which come via the N -dependent factor
in Eq. (33), here correspond to the total number of sites on the
nanotube, i.e., N = Nw × 4Nr , independent of the aspect ratio
A ≡ Nw/4Nr . This is illustrated by the results in Table III.

We checked the predictions associated with Eq. (14) for
a nanotube with open boundary conditions at the ends, at
selected locations on the α-β phase diagram; see Table IV.
Agreement with mean-field theory is very good at (α,β) =
(1/2,1/2); at (1/4,1/4) and, especially, at (α,β) = (1,1),
differences between finite-lattice numerical results for the
nanotube and the corresponding exact ones for the chain are
somewhat significant (up to 5% for Ns = 104 at the latter
point) for small systems; however, they tend to vanish as Ns

increases.
We also probed the case with all effective bond rates

p = q = 1. Finite-size effects were generally dealt with by
considering systems of varying widths (Nw � 15 rings) and
lengths (Nr � 50 rings). Within these ranges we found that
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TABLE III. For systems with Ns sites, and 〈ρ〉 = 1/2, Jnum

is current through a toroid of width Nw , length Nr rings (Ns =
Nw × 4Nr ), effective bond rates p = 1 on bonds parallel to flow
direction, and p = 1/2 otherwise, as given by numerical simulations
with Nsam = 10 6, Nset = 10 (see text); J1d is current through one-
dimensional system, given by Eq. (33).

Ns Nw Nr Jnum J1d

80 4 5 0.253 172(74) 0.253 164 6 . . .

96 2 12 0.252 635(51) 0.252 631 6 . . .

96 3 8 0.252 641(57) 0.252 631 6 . . .

96 4 6 0.252 656(45) 0.252 631 6 . . .

96 6 4 0.252 626(49) 0.252 631 6 . . .

96 8 3 0.252 645(61) 0.252 631 6 . . .

96 12 2 0.252 636(46) 0.252 631 6 . . .

160 4 10 0.251 589(39) 0.251 572 3 . . .

results became essentially independent of Nw; for fixed (large)
Nw we extrapolated the corresponding sequences of finite-
length currents against N−1

r via linear, or at most quadratic,
fits. With PBC, we confirmed that the maximal current is
found at 〈ρ〉 = 1/2, consistent with theory (see Sec. II C1).
However, numerics gives Jc = 0.3492(1), slightly above the
prediction of Eq. (20). With open boundary conditions at the
ends, evaluating currents at and near (α,β) = (1,1) again gives
J = 0.3492(1), agreeing with the PBC result to four significant
digits.

D. Ribbons

Here, we only consider open boundary conditions at the
ribbon’s ends, and all nominal bond rates are taken as unitary.
Initially we use site update procedures, which halves the
effective rates for nearly all bonds not parallel to the mean

TABLE IV. For systems with open boundary conditions, Ns sites,
and (α,β) as specified, Jnum is the current through a nanotube of width
Nw , length Nr rings [Ns = Nw × (4Nr + 1)], effective bond rates
p = 1 on bonds parallel to flow direction, with p = 1/2 otherwise,
as given by numerical simulations with Nsam = 10 6, Nset = 10 (see
text); J1d is the current through a one-dimensional system, see, e.g.,
Refs. [8,17].

Ns Nw Nr Jnum J1d

(α,β) = (1/2,1/2)
104 8 3 0.249 994(65) 1/4
200 8 6 0.250 006(44) 1/4
246 6 10 0.250 011(36) 1/4
390 6 16 0.249 992(31) 1/4

(α,β) = (1/4,1/4)
104 8 3 0.183 90(7) 0.185 75 . . .

200 8 6 0.186 20(11) 0.186 574 . . .

246 6 10 0.186 61(11) 0.186 745 . . .

390 6 16 0.186 94(9) 0.187 022 . . .

(α,β) = (1,1)
104 8 3 0.267 521(56) 0.253 588 8 . . .

200 8 6 0.256 993(40) 0.251 870 3 . . .

246 6 10 0.253 495(34) 0.251 521 3 . . .

390 6 16 0.251 827(34) 0.250 960 3 . . .

FIG. 8. (Color online) Simulation results for current against
inverse system width N−1

w for nanoribbons with open boundary
conditions, with all nominal bond rates equal to unity and site update.
Each point represents previous extrapolation to Nr → ∞ at fixed Nw .
J1D is the Nr → ∞ current for one-dimensional systems with the
same injection and ejection rates: J1D = 0.25 for (α,β) = (0.5,0.5)
and (1.0,1.0), and 0.21 for (α,β) = (0.3,0.7). The lines are quadratic
fits to data.

flow direction. The difference to the nanotubes of Sec. III C
[where all such bonds have their rates halved, thus the system’s
rates are given by Eq. (14)] is a boundary effect: It arises
because those bonds on the ribbons’ edges, along which the
flow goes inward, do not immediately follow a “forking” site;
see Fig. 2. The effective rates of such bonds then remain
equal to their nominal value. Therefore, one expects the
discrepancies between steady-state currents on ribbons and
on nanotubes to vanish as the number Nw of elementary units
across both systems increases. It was predicted in Sec. II B,
and numerically verified in Sec. III C, that nanotubes with
effective bond rates given by Eq. (14) behave effectively as
one-dimensional systems, so this must also be the asymptotic
behavior of ribbons. We have checked, for selected points on
the (α,β) phase diagram, that this indeed happens, only with
finite-width (and -length) effects generally more significant
than for nanotubes; see Fig. 8.

We also made all effective rates equal to unity by using
bond update procedures. We concentrated on evaluating the
maximal (or critical) current across the system by making α =
β = 1. For fixed width Nw, we produced sequences of steady-
state current estimates with growing length Nr � 50. By fitting
such sequences to parabolic forms in N−1

r , we found that
the extrapolated values (for Nr → ∞) J∞(Nw) still depended
significantly on Nw. Finally, we extrapolated the sequence
of J∞(Nw) against N−1

w , finding Jc = limNw→∞ J∞(Nw) =
0.3493(1).

IV. DISCUSSION AND CONCLUSIONS

We have presented a mean-field theory for driven flow
with exclusion in graphene-like structures and numerically
checked its predictions for steady-state current on the necklace
and nanotube structures, with both PBC and open boundary
conditions at the ends.

For all bond rate combinations in which the mean-field
mapping reduces to the chain case, currents on necklaces and
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nanotubes match those in the strictly one-dimensional systems.
For PBC this includes finite-size effects, see Tables I and III.
For open boundary conditions, the absence of size dependence
on the factorizable line α + β = 1 is reproduced; away from
that line, finite-system corrections slightly differ from 1D
ones, but discrepancies die away as system size increases
(see Tables II and IV).

With bond rates such that no reduction to the chain case
occurs, the maximal (critical) currents J MF

c predicted by mean-
field theory [see Eqs. (17), (18), and (20)], appear to be slightly
off numerical results, J num

c (at most by 2–3%). Interestingly,
for the cases just mentioned, one has J MF

c > J num
c for the

necklace, while J MF
c < J num

c for the nanotube. Symmetry, or
lack thereof, of the fundamental current-density relationship
for PBC and general bond rates is correctly predicted by mean-
field theory (necklace and nanotube); see Sec. II C1.

In this and the following paragraph, we only refer to the
special case with all nominal bond rates equal to unity. We
found in Sec. III B that the maximal (critical) current on
the necklace structure is Jc = 0.3233(3) for site update, and
Jc = 0.395(1) for bond update, to quote an aggregate of the
results given there. For nanotubes, the mean-field theory of
Sec. II B predicts equivalence to the one-dimensional TASEP
for the bond rates quoted in Eq. (14). Such rates are effectively
reproduced by using site update with all nominal bond rates
unitary. So, if the actual transport mechanism on zigzag
CNTs displays the characteristics of site update, one would
expect such structures to behave effectively (rather than quasi-)
one-dimensionally.

For nanoribbons, no mean-field theory has been developed
for reasons explained at the end of Sec. II D. However, the
considerations of Sec. III D show that broad ribbons should
carry the same current as nanotubes (although finite-size
effects can be rather significant), so, e.g., for site update and
Nw � 1 the maximal current on both structures approaches
Jc = 1/4. This is verified numerically, as illustrated in Fig. 8.
For bond update, our data are summarized in Fig. 9, which
pertains both to Sec. III C and to Sec. III D. Figure 9 strongly
suggests that both types of structure asymptotically support the
same maximal current also when all effective rates are equal.
We quote Jc = 0.3492(2), allowing for the uncertainties of all
three sequences of estimates displayed there.

Regarding the applicability of the generalized TASEP
model discussed here to experimentally realized systems, we
first note that transport in CNT and CNR is predominantly
governed by band electrons [2], for which neither a bond nor
a site can be uniquely assigned at any time step. Nevertheless,
residual signatures of the topology of the hexagonal skeleton
can be expected to remain, such as the trend followed by
(normalized) current against increasing width, seen in Figs. 8
and 9. On the other hand, finer details of the TASEP behavior
unveiled here possibly have no discernible counterparts in such
C-based materials.

Turning now to quantum-dot (QD) systems, site update
would be adequate, e.g., to model QD arrays in which the
electron remains bound to a specific QD for dwell times much
longer than the inverse hopping attempt rate onto a neighboring
QD.

One might consider, e.g., a honeycomb arrangement of
QDs, so each QD may be empty or occupied by one electron,

FIG. 9. (Color online) For all effective bond rates equal to unity,
current against inverse system size N−1

r (triangles and squares)
or N−1

w (hexagons; each point represents previous extrapolation to
Nr → ∞ at fixed Nw). Hexagons: nanoribbons (NR) with open
boundary conditions, α = β = 1. Squares: nanotubes (NT) with open
boundary conditions, α = β = 1. Triangles: NT with PBC, 〈ρ〉 = 1/2
(corresponding to maximal current, see Sec. II C1). Points correspond
to simulations.

while a second electron is excluded by Coulomb blockade.
Electrostatically defined QD arrays have already been fabri-
cated via electrodes over a two-dimensional electron gas on
a semiconductor-barrier interface [18]. Recent experimental
investigations of electron hopping transport in systems of
self-assembled QD chains indicate that such studies in more
complex geometries may soon be accessible [19].

Of course, planar arrangements of QDs provide a physical
realization of a nanoribbon but not a nanotube. For a QD array
forming a ribbon-shaped cutout (along a given bond direction)
of the honeycomb lattice, individual tunnel barrier strengths
could be tuned by the electrodes shaping the confining
potential, thus defining the bond rates. The various bond
rates considered here would then be experimentally accessible.
Bond update procedures would be applicable to strongly
covalent arrays and may be useful to the study of transport
in macromolecules.

Finally, we mention preliminary investigations for open
boundary conditions at the ends, regarding the predictions
given in Eqs. (26)–(28) and (30)–(32), on the location
and properties of the critical points, phase boundaries, and
coexistence and factorization lines. We focus on the issue of
factorization. Among numerical tests of various degrees of fac-
torization we have looked at (i) constancy of sublattice density
profiles, (ii) satisfaction of Eq. (31), and (iii) factorization
of correlation functions in the steady state, both on, and off,
predicted factorization lines.

For the latter we evaluated

Cij ≡ 〈Jij 〉 − pij 〈τi〉 (1 − 〈τj 〉), (34)

where the average current 〈Jij 〉 across a chosen bond ij with
rate pij is the correlation function which, if factorizing, makes
the quantity Cij vanish.

The severe test (iii) has been very informative. For example,
for the nanotube it shows vanishing of Cij to the accuracy of
simulation (typically 1 part in 105) in the case with p = 1,
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q = 1/2 on (and only on) the predicted line Eq. (32); this is a
nontrivial higher-dimensional generalization of a well-known
result for the linear chain. On the other hand, for other cases
such as p = 1 = q = 1, in simulations of similar accuracy, the
factorization is no better than 1 part in 102. These results apply
whether or not extra stochastic fluctuations (such as those
which distinguish the steady-state current from the current
activity [17]) are included.

The open and relevant issue of factorization in these
systems deserves full attention in its own right. A com-
plete discussion, complementing the present study and in-
cluding comprehensive numerical results and theory based
on the hierarchy of equations of motion and on matrix

representations of the master equation, will be presented
elsewhere.
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